mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2024-12-18 11:28:51 +08:00
3273 lines
111 KiB
C++
3273 lines
111 KiB
C++
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
#ifdef _WIN32
|
|
#include <io.h>
|
|
#else
|
|
#include <sys/types.h>
|
|
#include <unistd.h>
|
|
#endif
|
|
#include <float.h>
|
|
|
|
#include "openclwrapper.h"
|
|
#include "oclkernels.h"
|
|
|
|
// for micro-benchmark
|
|
#include "otsuthr.h"
|
|
#include "thresholder.h"
|
|
|
|
#if ON_APPLE
|
|
#include <mach/mach_time.h>
|
|
#include <stdio.h>
|
|
#endif
|
|
|
|
/*
|
|
Convenience macro to test the version of Leptonica.
|
|
*/
|
|
#if defined(LIBLEPT_MAJOR_VERSION) && defined(LIBLEPT_MINOR_VERSION)
|
|
#define TESSERACT_LIBLEPT_PREREQ(maj, min) \
|
|
((LIBLEPT_MAJOR_VERSION) > (maj) || \
|
|
((LIBLEPT_MAJOR_VERSION) == (maj) && (LIBLEPT_MINOR_VERSION) >= (min)))
|
|
#else
|
|
#define TESSERACT_LIBLEPT_PREREQ(maj, min) 0
|
|
#endif
|
|
|
|
#if TESSERACT_LIBLEPT_PREREQ(1, 73)
|
|
#define CALLOC LEPT_CALLOC
|
|
#define FREE LEPT_FREE
|
|
#endif
|
|
|
|
#ifdef USE_OPENCL
|
|
|
|
#include "opencl_device_selection.h"
|
|
GPUEnv OpenclDevice::gpuEnv;
|
|
|
|
bool OpenclDevice::deviceIsSelected = false;
|
|
ds_device OpenclDevice::selectedDevice;
|
|
|
|
int OpenclDevice::isInited = 0;
|
|
|
|
static l_int32 MORPH_BC = ASYMMETRIC_MORPH_BC;
|
|
|
|
static const l_uint32 lmask32[] = {
|
|
0x80000000, 0xc0000000, 0xe0000000, 0xf0000000, 0xf8000000, 0xfc000000,
|
|
0xfe000000, 0xff000000, 0xff800000, 0xffc00000, 0xffe00000, 0xfff00000,
|
|
0xfff80000, 0xfffc0000, 0xfffe0000, 0xffff0000, 0xffff8000, 0xffffc000,
|
|
0xffffe000, 0xfffff000, 0xfffff800, 0xfffffc00, 0xfffffe00, 0xffffff00,
|
|
0xffffff80, 0xffffffc0, 0xffffffe0, 0xfffffff0, 0xfffffff8, 0xfffffffc,
|
|
0xfffffffe, 0xffffffff};
|
|
|
|
static const l_uint32 rmask32[] = {
|
|
0x00000001, 0x00000003, 0x00000007, 0x0000000f, 0x0000001f, 0x0000003f,
|
|
0x0000007f, 0x000000ff, 0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff,
|
|
0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff, 0x0001ffff, 0x0003ffff,
|
|
0x0007ffff, 0x000fffff, 0x001fffff, 0x003fffff, 0x007fffff, 0x00ffffff,
|
|
0x01ffffff, 0x03ffffff, 0x07ffffff, 0x0fffffff, 0x1fffffff, 0x3fffffff,
|
|
0x7fffffff, 0xffffffff};
|
|
|
|
struct tiff_transform {
|
|
int vflip; /* if non-zero, image needs a vertical fip */
|
|
int hflip; /* if non-zero, image needs a horizontal flip */
|
|
int rotate; /* -1 -> counterclockwise 90-degree rotation,
|
|
0 -> no rotation
|
|
1 -> clockwise 90-degree rotation */
|
|
};
|
|
|
|
static struct tiff_transform tiff_orientation_transforms[] = {
|
|
{0, 0, 0},
|
|
{0, 1, 0},
|
|
{1, 1, 0},
|
|
{1, 0, 0},
|
|
{0, 1, -1},
|
|
{0, 0, 1},
|
|
{0, 1, 1},
|
|
{0, 0, -1}
|
|
};
|
|
|
|
static const l_int32 MAX_PAGES_IN_TIFF_FILE = 3000;
|
|
|
|
cl_mem pixsCLBuffer, pixdCLBuffer, pixdCLIntermediate; //Morph operations buffers
|
|
cl_mem pixThBuffer; //output from thresholdtopix calculation
|
|
cl_int clStatus;
|
|
KernelEnv rEnv;
|
|
|
|
// substitute invalid characters in device name with _
|
|
void legalizeFileName( char *fileName) {
|
|
//printf("fileName: %s\n", fileName);
|
|
const char *invalidChars =
|
|
"/\?:*\"><| "; // space is valid but can cause headaches
|
|
// for each invalid char
|
|
for (int i = 0; i < strlen(invalidChars); i++) {
|
|
char invalidStr[4];
|
|
invalidStr[0] = invalidChars[i];
|
|
invalidStr[1] = '\0';
|
|
//printf("eliminating %s\n", invalidStr);
|
|
//char *pos = strstr(fileName, invalidStr);
|
|
// initial ./ is valid for present directory
|
|
//if (*pos == '.') pos++;
|
|
//if (*pos == '/') pos++;
|
|
for (char *pos = strstr(fileName, invalidStr); pos != nullptr;
|
|
pos = strstr(pos + 1, invalidStr)) {
|
|
// printf("\tfound: %s, ", pos);
|
|
pos[0] = '_';
|
|
// printf("fileName: %s\n", fileName);
|
|
}
|
|
}
|
|
}
|
|
|
|
void populateGPUEnvFromDevice( GPUEnv *gpuInfo, cl_device_id device ) {
|
|
//printf("[DS] populateGPUEnvFromDevice\n");
|
|
size_t size;
|
|
gpuInfo->mnIsUserCreated = 1;
|
|
// device
|
|
gpuInfo->mpDevID = device;
|
|
gpuInfo->mpArryDevsID = new cl_device_id[1];
|
|
gpuInfo->mpArryDevsID[0] = gpuInfo->mpDevID;
|
|
clStatus =
|
|
clGetDeviceInfo(gpuInfo->mpDevID, CL_DEVICE_TYPE,
|
|
sizeof(cl_device_type), &gpuInfo->mDevType, &size);
|
|
CHECK_OPENCL( clStatus, "populateGPUEnv::getDeviceInfo(TYPE)");
|
|
// platform
|
|
clStatus =
|
|
clGetDeviceInfo(gpuInfo->mpDevID, CL_DEVICE_PLATFORM,
|
|
sizeof(cl_platform_id), &gpuInfo->mpPlatformID, &size);
|
|
CHECK_OPENCL( clStatus, "populateGPUEnv::getDeviceInfo(PLATFORM)");
|
|
// context
|
|
cl_context_properties props[3];
|
|
props[0] = CL_CONTEXT_PLATFORM;
|
|
props[1] = (cl_context_properties) gpuInfo->mpPlatformID;
|
|
props[2] = 0;
|
|
gpuInfo->mpContext = clCreateContext(props, 1, &gpuInfo->mpDevID, nullptr,
|
|
nullptr, &clStatus);
|
|
CHECK_OPENCL( clStatus, "populateGPUEnv::createContext");
|
|
// queue
|
|
cl_command_queue_properties queueProperties = 0;
|
|
gpuInfo->mpCmdQueue = clCreateCommandQueue( gpuInfo->mpContext, gpuInfo->mpDevID, queueProperties, &clStatus );
|
|
CHECK_OPENCL( clStatus, "populateGPUEnv::createCommandQueue");
|
|
}
|
|
|
|
int OpenclDevice::LoadOpencl()
|
|
{
|
|
#ifdef WIN32
|
|
HINSTANCE HOpenclDll = nullptr;
|
|
void *OpenclDll = nullptr;
|
|
// fprintf(stderr, " LoadOpenclDllxx... \n");
|
|
OpenclDll = static_cast<HINSTANCE>(HOpenclDll);
|
|
OpenclDll = LoadLibrary("openCL.dll");
|
|
if (!static_cast<HINSTANCE>(OpenclDll)) {
|
|
fprintf(stderr, "[OD] Load opencl.dll failed!\n");
|
|
FreeLibrary(static_cast<HINSTANCE>(OpenclDll));
|
|
return 0;
|
|
}
|
|
fprintf(stderr, "[OD] Load opencl.dll successful!\n");
|
|
#endif
|
|
return 1;
|
|
}
|
|
int OpenclDevice::SetKernelEnv( KernelEnv *envInfo )
|
|
{
|
|
envInfo->mpkContext = gpuEnv.mpContext;
|
|
envInfo->mpkCmdQueue = gpuEnv.mpCmdQueue;
|
|
envInfo->mpkProgram = gpuEnv.mpArryPrograms[0];
|
|
|
|
return 1;
|
|
}
|
|
|
|
cl_mem allocateZeroCopyBuffer(KernelEnv rEnv, l_uint32 *hostbuffer, size_t nElements, cl_mem_flags flags, cl_int *pStatus)
|
|
{
|
|
cl_mem membuffer = clCreateBuffer( rEnv.mpkContext, (cl_mem_flags) (flags),
|
|
nElements * sizeof(l_uint32), hostbuffer, pStatus);
|
|
|
|
return membuffer;
|
|
}
|
|
|
|
PIX *mapOutputCLBuffer(KernelEnv rEnv, cl_mem clbuffer, PIX *pixd, PIX *pixs,
|
|
int elements, cl_mem_flags flags, bool memcopy = false,
|
|
bool sync = true) {
|
|
PROCNAME("mapOutputCLBuffer");
|
|
if (!pixd) {
|
|
if (memcopy) {
|
|
if ((pixd = pixCreateTemplate(pixs)) == nullptr)
|
|
(PIX *)ERROR_PTR("pixd not made", procName, nullptr);
|
|
} else {
|
|
if ((pixd = pixCreateHeader(pixGetWidth(pixs), pixGetHeight(pixs),
|
|
pixGetDepth(pixs))) == nullptr)
|
|
(PIX *)ERROR_PTR("pixd not made", procName, nullptr);
|
|
}
|
|
}
|
|
l_uint32 *pValues = (l_uint32 *)clEnqueueMapBuffer(
|
|
rEnv.mpkCmdQueue, clbuffer, CL_TRUE, flags, 0,
|
|
elements * sizeof(l_uint32), 0, nullptr, nullptr, nullptr);
|
|
|
|
if (memcopy) {
|
|
memcpy(pixGetData(pixd), pValues, elements * sizeof(l_uint32));
|
|
} else {
|
|
pixSetData(pixd, pValues);
|
|
}
|
|
|
|
clEnqueueUnmapMemObject(rEnv.mpkCmdQueue, clbuffer, pValues, 0, nullptr,
|
|
nullptr);
|
|
|
|
if (sync) {
|
|
clFinish(rEnv.mpkCmdQueue);
|
|
}
|
|
|
|
return pixd;
|
|
}
|
|
|
|
cl_mem allocateIntBuffer( KernelEnv rEnv, const l_uint32 *_pValues, size_t nElements, cl_int *pStatus , bool sync = false)
|
|
{
|
|
cl_mem xValues =
|
|
clCreateBuffer(rEnv.mpkContext, (cl_mem_flags)(CL_MEM_READ_WRITE),
|
|
nElements * sizeof(l_int32), nullptr, pStatus);
|
|
|
|
if (_pValues != nullptr) {
|
|
l_int32 *pValues = (l_int32 *)clEnqueueMapBuffer(
|
|
rEnv.mpkCmdQueue, xValues, CL_TRUE, CL_MAP_WRITE, 0,
|
|
nElements * sizeof(l_int32), 0, nullptr, nullptr, nullptr);
|
|
|
|
memcpy(pValues, _pValues, nElements * sizeof(l_int32));
|
|
|
|
clEnqueueUnmapMemObject(rEnv.mpkCmdQueue, xValues, pValues, 0, nullptr,
|
|
nullptr);
|
|
|
|
if (sync) clFinish(rEnv.mpkCmdQueue);
|
|
}
|
|
|
|
return xValues;
|
|
}
|
|
|
|
|
|
void OpenclDevice::releaseMorphCLBuffers()
|
|
{
|
|
if (pixdCLIntermediate != nullptr) clReleaseMemObject(pixdCLIntermediate);
|
|
if (pixsCLBuffer != nullptr) clReleaseMemObject(pixsCLBuffer);
|
|
if (pixdCLBuffer != nullptr) clReleaseMemObject(pixdCLBuffer);
|
|
if (pixThBuffer != nullptr) clReleaseMemObject(pixThBuffer);
|
|
pixdCLIntermediate = pixsCLBuffer = pixdCLBuffer = pixThBuffer = nullptr;
|
|
}
|
|
|
|
int OpenclDevice::initMorphCLAllocations(l_int32 wpl, l_int32 h, PIX* pixs)
|
|
{
|
|
SetKernelEnv( &rEnv );
|
|
|
|
if (pixThBuffer != nullptr) {
|
|
pixsCLBuffer = allocateZeroCopyBuffer(rEnv, nullptr, wpl * h,
|
|
CL_MEM_ALLOC_HOST_PTR, &clStatus);
|
|
|
|
// Get the output from ThresholdToPix operation
|
|
clStatus =
|
|
clEnqueueCopyBuffer(rEnv.mpkCmdQueue, pixThBuffer, pixsCLBuffer, 0, 0,
|
|
sizeof(l_uint32) * wpl * h, 0, nullptr, nullptr);
|
|
}
|
|
else
|
|
{
|
|
//Get data from the source image
|
|
l_uint32* srcdata = (l_uint32*) malloc(wpl*h*sizeof(l_uint32));
|
|
memcpy(srcdata, pixGetData(pixs), wpl*h*sizeof(l_uint32));
|
|
|
|
pixsCLBuffer = allocateZeroCopyBuffer(rEnv, srcdata, wpl*h, CL_MEM_USE_HOST_PTR, &clStatus);
|
|
}
|
|
|
|
pixdCLBuffer = allocateZeroCopyBuffer(rEnv, nullptr, wpl * h,
|
|
CL_MEM_ALLOC_HOST_PTR, &clStatus);
|
|
|
|
pixdCLIntermediate = allocateZeroCopyBuffer(
|
|
rEnv, nullptr, wpl * h, CL_MEM_ALLOC_HOST_PTR, &clStatus);
|
|
|
|
return (int)clStatus;
|
|
}
|
|
|
|
int OpenclDevice::InitEnv()
|
|
{
|
|
//PERF_COUNT_START("OD::InitEnv")
|
|
// printf("[OD] OpenclDevice::InitEnv()\n");
|
|
#ifdef SAL_WIN32
|
|
while( 1 )
|
|
{
|
|
if( 1 == LoadOpencl() )
|
|
break;
|
|
}
|
|
PERF_COUNT_SUB("LoadOpencl")
|
|
#endif
|
|
// sets up environment, compiles programs
|
|
|
|
InitOpenclRunEnv_DeviceSelection( 0 );
|
|
//PERF_COUNT_SUB("called InitOpenclRunEnv_DS")
|
|
//PERF_COUNT_END
|
|
return 1;
|
|
}
|
|
|
|
int OpenclDevice::ReleaseOpenclRunEnv()
|
|
{
|
|
ReleaseOpenclEnv( &gpuEnv );
|
|
#ifdef SAL_WIN32
|
|
FreeOpenclDll();
|
|
#endif
|
|
return 1;
|
|
}
|
|
inline int OpenclDevice::AddKernelConfig( int kCount, const char *kName )
|
|
{
|
|
if ( kCount < 1 )
|
|
fprintf(stderr,"Error: ( KCount < 1 ) AddKernelConfig\n" );
|
|
strcpy( gpuEnv.mArrykernelNames[kCount-1], kName );
|
|
gpuEnv.mnKernelCount++;
|
|
return 0;
|
|
}
|
|
int OpenclDevice::RegistOpenclKernel()
|
|
{
|
|
if ( !gpuEnv.mnIsUserCreated )
|
|
memset( &gpuEnv, 0, sizeof(gpuEnv) );
|
|
|
|
gpuEnv.mnFileCount = 0; //argc;
|
|
gpuEnv.mnKernelCount = 0UL;
|
|
|
|
AddKernelConfig( 1, (const char*) "oclAverageSub1" );
|
|
return 0;
|
|
}
|
|
|
|
int OpenclDevice::InitOpenclRunEnv_DeviceSelection( int argc ) {
|
|
//PERF_COUNT_START("InitOpenclRunEnv_DS")
|
|
if (!isInited) {
|
|
// after programs compiled, selects best device
|
|
//printf("[DS] InitOpenclRunEnv_DS::Calling performDeviceSelection()\n");
|
|
ds_device bestDevice_DS = getDeviceSelection( );
|
|
//PERF_COUNT_SUB("called getDeviceSelection()")
|
|
cl_device_id bestDevice = bestDevice_DS.oclDeviceID;
|
|
// overwrite global static GPUEnv with new device
|
|
if (selectedDeviceIsOpenCL() ) {
|
|
//printf("[DS] InitOpenclRunEnv_DS::Calling populateGPUEnvFromDevice() for selected device\n");
|
|
populateGPUEnvFromDevice( &gpuEnv, bestDevice );
|
|
gpuEnv.mnFileCount = 0; //argc;
|
|
gpuEnv.mnKernelCount = 0UL;
|
|
//PERF_COUNT_SUB("populate gpuEnv")
|
|
CompileKernelFile(&gpuEnv, "");
|
|
//PERF_COUNT_SUB("CompileKernelFile")
|
|
} else {
|
|
//printf("[DS] InitOpenclRunEnv_DS::Skipping populateGPUEnvFromDevice() b/c native cpu selected\n");
|
|
}
|
|
isInited = 1;
|
|
}
|
|
//PERF_COUNT_END
|
|
return 0;
|
|
}
|
|
|
|
|
|
OpenclDevice::OpenclDevice()
|
|
{
|
|
//InitEnv();
|
|
}
|
|
|
|
OpenclDevice::~OpenclDevice()
|
|
{
|
|
//ReleaseOpenclRunEnv();
|
|
}
|
|
|
|
int OpenclDevice::ReleaseOpenclEnv( GPUEnv *gpuInfo )
|
|
{
|
|
int i = 0;
|
|
int clStatus = 0;
|
|
|
|
if ( !isInited )
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
for ( i = 0; i < gpuEnv.mnFileCount; i++ )
|
|
{
|
|
if ( gpuEnv.mpArryPrograms[i] )
|
|
{
|
|
clStatus = clReleaseProgram( gpuEnv.mpArryPrograms[i] );
|
|
CHECK_OPENCL( clStatus, "clReleaseProgram" );
|
|
gpuEnv.mpArryPrograms[i] = nullptr;
|
|
}
|
|
}
|
|
if ( gpuEnv.mpCmdQueue )
|
|
{
|
|
clReleaseCommandQueue( gpuEnv.mpCmdQueue );
|
|
gpuEnv.mpCmdQueue = nullptr;
|
|
}
|
|
if ( gpuEnv.mpContext )
|
|
{
|
|
clReleaseContext( gpuEnv.mpContext );
|
|
gpuEnv.mpContext = nullptr;
|
|
}
|
|
isInited = 0;
|
|
gpuInfo->mnIsUserCreated = 0;
|
|
delete[] gpuInfo->mpArryDevsID;
|
|
return 1;
|
|
}
|
|
int OpenclDevice::BinaryGenerated( const char * clFileName, FILE ** fhandle )
|
|
{
|
|
unsigned int i = 0;
|
|
cl_int clStatus;
|
|
int status = 0;
|
|
char *str = nullptr;
|
|
FILE *fd = nullptr;
|
|
char fileName[256] = {0}, cl_name[128] = {0};
|
|
char deviceName[1024];
|
|
clStatus = clGetDeviceInfo(gpuEnv.mpArryDevsID[i], CL_DEVICE_NAME,
|
|
sizeof(deviceName), deviceName, nullptr);
|
|
CHECK_OPENCL(clStatus, "clGetDeviceInfo");
|
|
str = (char *)strstr(clFileName, (char *)".cl");
|
|
memcpy(cl_name, clFileName, str - clFileName);
|
|
cl_name[str - clFileName] = '\0';
|
|
sprintf(fileName, "%s-%s.bin", cl_name, deviceName);
|
|
legalizeFileName(fileName);
|
|
fd = fopen(fileName, "rb");
|
|
status = (fd != nullptr) ? 1 : 0;
|
|
if (fd != nullptr) {
|
|
*fhandle = fd;
|
|
}
|
|
return status;
|
|
|
|
}
|
|
int OpenclDevice::CachedOfKernerPrg( const GPUEnv *gpuEnvCached, const char * clFileName )
|
|
{
|
|
int i;
|
|
for ( i = 0; i < gpuEnvCached->mnFileCount; i++ )
|
|
{
|
|
if ( strcasecmp( gpuEnvCached->mArryKnelSrcFile[i], clFileName ) == 0 )
|
|
{
|
|
if (gpuEnvCached->mpArryPrograms[i] != nullptr) {
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
int OpenclDevice::WriteBinaryToFile( const char* fileName, const char* birary, size_t numBytes )
|
|
{
|
|
FILE *output = nullptr;
|
|
output = fopen(fileName, "wb");
|
|
if (output == nullptr) {
|
|
return 0;
|
|
}
|
|
|
|
fwrite( birary, sizeof(char), numBytes, output );
|
|
fclose( output );
|
|
|
|
return 1;
|
|
|
|
}
|
|
int OpenclDevice::GeneratBinFromKernelSource( cl_program program, const char * clFileName )
|
|
{
|
|
unsigned int i = 0;
|
|
cl_int clStatus;
|
|
size_t *binarySizes;
|
|
cl_uint numDevices;
|
|
cl_device_id *mpArryDevsID;
|
|
char **binaries, *str = nullptr;
|
|
|
|
clStatus = clGetProgramInfo(program, CL_PROGRAM_NUM_DEVICES,
|
|
sizeof(numDevices), &numDevices, nullptr);
|
|
CHECK_OPENCL( clStatus, "clGetProgramInfo" );
|
|
|
|
mpArryDevsID = (cl_device_id*) malloc( sizeof(cl_device_id) * numDevices );
|
|
if (mpArryDevsID == nullptr) {
|
|
return 0;
|
|
}
|
|
/* grab the handles to all of the devices in the program. */
|
|
clStatus = clGetProgramInfo(program, CL_PROGRAM_DEVICES,
|
|
sizeof(cl_device_id) * numDevices, mpArryDevsID,
|
|
nullptr);
|
|
CHECK_OPENCL( clStatus, "clGetProgramInfo" );
|
|
|
|
/* figure out the sizes of each of the binaries. */
|
|
binarySizes = (size_t*) malloc( sizeof(size_t) * numDevices );
|
|
|
|
clStatus =
|
|
clGetProgramInfo(program, CL_PROGRAM_BINARY_SIZES,
|
|
sizeof(size_t) * numDevices, binarySizes, nullptr);
|
|
CHECK_OPENCL( clStatus, "clGetProgramInfo" );
|
|
|
|
/* copy over all of the generated binaries. */
|
|
binaries = (char**) malloc( sizeof(char *) * numDevices );
|
|
if (binaries == nullptr) {
|
|
return 0;
|
|
}
|
|
|
|
for ( i = 0; i < numDevices; i++ )
|
|
{
|
|
if ( binarySizes[i] != 0 )
|
|
{
|
|
binaries[i] = (char*) malloc( sizeof(char) * binarySizes[i] );
|
|
if (binaries[i] == nullptr) {
|
|
return 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
binaries[i] = nullptr;
|
|
}
|
|
}
|
|
|
|
clStatus = clGetProgramInfo(program, CL_PROGRAM_BINARIES,
|
|
sizeof(char *) * numDevices, binaries, nullptr);
|
|
CHECK_OPENCL(clStatus,"clGetProgramInfo");
|
|
|
|
/* dump out each binary into its own separate file. */
|
|
for ( i = 0; i < numDevices; i++ )
|
|
{
|
|
char fileName[256] = { 0 }, cl_name[128] = { 0 };
|
|
|
|
if ( binarySizes[i] != 0 )
|
|
{
|
|
char deviceName[1024];
|
|
clStatus = clGetDeviceInfo(mpArryDevsID[i], CL_DEVICE_NAME,
|
|
sizeof(deviceName), deviceName, nullptr);
|
|
CHECK_OPENCL( clStatus, "clGetDeviceInfo" );
|
|
|
|
str = (char*) strstr( clFileName, (char*) ".cl" );
|
|
memcpy( cl_name, clFileName, str - clFileName );
|
|
cl_name[str - clFileName] = '\0';
|
|
sprintf( fileName, "%s-%s.bin", cl_name, deviceName );
|
|
legalizeFileName(fileName);
|
|
if ( !WriteBinaryToFile( fileName, binaries[i], binarySizes[i] ) )
|
|
{
|
|
printf("[OD] write binary[%s] failed\n", fileName);
|
|
return 0;
|
|
} //else
|
|
printf("[OD] write binary[%s] successfully\n", fileName);
|
|
}
|
|
}
|
|
|
|
// Release all resouces and memory
|
|
for ( i = 0; i < numDevices; i++ )
|
|
{
|
|
free(binaries[i]);
|
|
binaries[i] = nullptr;
|
|
}
|
|
|
|
free(binaries);
|
|
binaries = nullptr;
|
|
|
|
free(binarySizes);
|
|
binarySizes = nullptr;
|
|
|
|
free(mpArryDevsID);
|
|
mpArryDevsID = nullptr;
|
|
|
|
return 1;
|
|
}
|
|
|
|
void copyIntBuffer( KernelEnv rEnv, cl_mem xValues, const l_uint32 *_pValues, size_t nElements, cl_int *pStatus )
|
|
{
|
|
l_int32 *pValues = (l_int32 *)clEnqueueMapBuffer(
|
|
rEnv.mpkCmdQueue, xValues, CL_TRUE, CL_MAP_WRITE, 0,
|
|
nElements * sizeof(l_int32), 0, nullptr, nullptr, nullptr);
|
|
clFinish(rEnv.mpkCmdQueue);
|
|
if (_pValues != nullptr) {
|
|
for (int i = 0; i < (int)nElements; i++) pValues[i] = (l_int32)_pValues[i];
|
|
}
|
|
|
|
clEnqueueUnmapMemObject(rEnv.mpkCmdQueue, xValues, pValues, 0, nullptr,
|
|
nullptr);
|
|
//clFinish( rEnv.mpkCmdQueue );
|
|
return;
|
|
}
|
|
|
|
int OpenclDevice::CompileKernelFile( GPUEnv *gpuInfo, const char *buildOption )
|
|
{
|
|
//PERF_COUNT_START("CompileKernelFile")
|
|
cl_int clStatus = 0;
|
|
size_t length;
|
|
char *buildLog = nullptr, *binary;
|
|
const char *source;
|
|
size_t source_size[1];
|
|
int b_error, binary_status, binaryExisted, idx;
|
|
cl_uint numDevices;
|
|
cl_device_id *mpArryDevsID;
|
|
FILE *fd, *fd1;
|
|
const char* filename = "kernel.cl";
|
|
//fprintf(stderr, "[OD] CompileKernelFile ... \n");
|
|
if ( CachedOfKernerPrg(gpuInfo, filename) == 1 )
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
idx = gpuInfo->mnFileCount;
|
|
|
|
source = kernel_src;
|
|
|
|
source_size[0] = strlen( source );
|
|
binaryExisted = 0;
|
|
binaryExisted = BinaryGenerated( filename, &fd ); // don't check for binary during microbenchmark
|
|
//PERF_COUNT_SUB("BinaryGenerated")
|
|
if ( binaryExisted == 1 )
|
|
{
|
|
clStatus = clGetContextInfo(gpuInfo->mpContext, CL_CONTEXT_NUM_DEVICES,
|
|
sizeof(numDevices), &numDevices, nullptr);
|
|
CHECK_OPENCL(clStatus, "clGetContextInfo");
|
|
|
|
mpArryDevsID = (cl_device_id *)malloc(sizeof(cl_device_id) * numDevices);
|
|
if (mpArryDevsID == nullptr) {
|
|
return 0;
|
|
}
|
|
//PERF_COUNT_SUB("get numDevices")
|
|
b_error = 0;
|
|
length = 0;
|
|
b_error |= fseek( fd, 0, SEEK_END ) < 0;
|
|
b_error |= ( length = ftell(fd) ) <= 0;
|
|
b_error |= fseek( fd, 0, SEEK_SET ) < 0;
|
|
if ( b_error )
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
binary = (char*) malloc( length + 2 );
|
|
if ( !binary )
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
memset( binary, 0, length + 2 );
|
|
b_error |= fread( binary, 1, length, fd ) != length;
|
|
|
|
|
|
fclose( fd );
|
|
//PERF_COUNT_SUB("read file")
|
|
fd = nullptr;
|
|
// grab the handles to all of the devices in the context.
|
|
clStatus = clGetContextInfo(gpuInfo->mpContext, CL_CONTEXT_DEVICES,
|
|
sizeof(cl_device_id) * numDevices,
|
|
mpArryDevsID, nullptr);
|
|
CHECK_OPENCL( clStatus, "clGetContextInfo" );
|
|
//PERF_COUNT_SUB("get devices")
|
|
//fprintf(stderr, "[OD] Create kernel from binary\n");
|
|
gpuInfo->mpArryPrograms[idx] = clCreateProgramWithBinary( gpuInfo->mpContext,numDevices,
|
|
mpArryDevsID, &length, (const unsigned char**) &binary,
|
|
&binary_status, &clStatus );
|
|
CHECK_OPENCL( clStatus, "clCreateProgramWithBinary" );
|
|
//PERF_COUNT_SUB("clCreateProgramWithBinary")
|
|
free( binary );
|
|
free( mpArryDevsID );
|
|
mpArryDevsID = nullptr;
|
|
// PERF_COUNT_SUB("binaryExisted")
|
|
}
|
|
else
|
|
{
|
|
// create a CL program using the kernel source
|
|
//fprintf(stderr, "[OD] Create kernel from source\n");
|
|
gpuInfo->mpArryPrograms[idx] = clCreateProgramWithSource( gpuInfo->mpContext, 1, &source,
|
|
source_size, &clStatus);
|
|
CHECK_OPENCL( clStatus, "clCreateProgramWithSource" );
|
|
//PERF_COUNT_SUB("!binaryExisted")
|
|
}
|
|
|
|
if (gpuInfo->mpArryPrograms[idx] == (cl_program) nullptr) {
|
|
return 0;
|
|
}
|
|
|
|
//char options[512];
|
|
// create a cl program executable for all the devices specified
|
|
//printf("[OD] BuildProgram.\n");
|
|
PERF_COUNT_START("OD::CompileKernel::clBuildProgram")
|
|
if (!gpuInfo->mnIsUserCreated)
|
|
{
|
|
clStatus =
|
|
clBuildProgram(gpuInfo->mpArryPrograms[idx], 1, gpuInfo->mpArryDevsID,
|
|
buildOption, nullptr, nullptr);
|
|
// PERF_COUNT_SUB("clBuildProgram notUserCreated")
|
|
}
|
|
else
|
|
{
|
|
clStatus =
|
|
clBuildProgram(gpuInfo->mpArryPrograms[idx], 1, &(gpuInfo->mpDevID),
|
|
buildOption, nullptr, nullptr);
|
|
// PERF_COUNT_SUB("clBuildProgram isUserCreated")
|
|
}
|
|
PERF_COUNT_END
|
|
if ( clStatus != CL_SUCCESS )
|
|
{
|
|
printf ("BuildProgram error!\n");
|
|
if ( !gpuInfo->mnIsUserCreated )
|
|
{
|
|
clStatus = clGetProgramBuildInfo(
|
|
gpuInfo->mpArryPrograms[idx], gpuInfo->mpArryDevsID[0],
|
|
CL_PROGRAM_BUILD_LOG, 0, nullptr, &length);
|
|
}
|
|
else
|
|
{
|
|
clStatus = clGetProgramBuildInfo(
|
|
gpuInfo->mpArryPrograms[idx], gpuInfo->mpDevID,
|
|
CL_PROGRAM_BUILD_LOG, 0, nullptr, &length);
|
|
}
|
|
if ( clStatus != CL_SUCCESS )
|
|
{
|
|
printf("opencl create build log fail\n");
|
|
return 0;
|
|
}
|
|
buildLog = (char*) malloc( length );
|
|
if (buildLog == (char *)nullptr) {
|
|
return 0;
|
|
}
|
|
if ( !gpuInfo->mnIsUserCreated )
|
|
{
|
|
clStatus = clGetProgramBuildInfo( gpuInfo->mpArryPrograms[idx], gpuInfo->mpArryDevsID[0],
|
|
CL_PROGRAM_BUILD_LOG, length, buildLog, &length );
|
|
}
|
|
else
|
|
{
|
|
clStatus = clGetProgramBuildInfo( gpuInfo->mpArryPrograms[idx], gpuInfo->mpDevID,
|
|
CL_PROGRAM_BUILD_LOG, length, buildLog, &length );
|
|
}
|
|
if ( clStatus != CL_SUCCESS )
|
|
{
|
|
printf("opencl program build info fail\n");
|
|
return 0;
|
|
}
|
|
|
|
fd1 = fopen( "kernel-build.log", "w+" );
|
|
if (fd1 != nullptr) {
|
|
fwrite(buildLog, sizeof(char), length, fd1);
|
|
fclose(fd1);
|
|
}
|
|
|
|
free( buildLog );
|
|
//PERF_COUNT_SUB("build error log")
|
|
return 0;
|
|
}
|
|
|
|
strcpy( gpuInfo->mArryKnelSrcFile[idx], filename );
|
|
//PERF_COUNT_SUB("strcpy")
|
|
if ( binaryExisted == 0 ) {
|
|
GeneratBinFromKernelSource( gpuInfo->mpArryPrograms[idx], filename );
|
|
PERF_COUNT_SUB("GenerateBinFromKernelSource")
|
|
}
|
|
|
|
gpuInfo->mnFileCount += 1;
|
|
//PERF_COUNT_END
|
|
return 1;
|
|
}
|
|
|
|
l_uint32* OpenclDevice::pixReadFromTiffKernel(l_uint32 *tiffdata,l_int32 w,l_int32 h,l_int32 wpl,l_uint32 *line)
|
|
{
|
|
PERF_COUNT_START("pixReadFromTiffKernel")
|
|
cl_int clStatus;
|
|
KernelEnv rEnv;
|
|
size_t globalThreads[2];
|
|
size_t localThreads[2];
|
|
int gsize;
|
|
cl_mem valuesCl;
|
|
cl_mem outputCl;
|
|
|
|
//global and local work dimensions for Horizontal pass
|
|
gsize = (w + GROUPSIZE_X - 1)/ GROUPSIZE_X * GROUPSIZE_X;
|
|
globalThreads[0] = gsize;
|
|
gsize = (h + GROUPSIZE_Y - 1)/ GROUPSIZE_Y * GROUPSIZE_Y;
|
|
globalThreads[1] = gsize;
|
|
localThreads[0] = GROUPSIZE_X;
|
|
localThreads[1] = GROUPSIZE_Y;
|
|
|
|
SetKernelEnv( &rEnv );
|
|
|
|
l_uint32 *pResult = (l_uint32 *)malloc(w*h * sizeof(l_uint32));
|
|
rEnv.mpkKernel = clCreateKernel( rEnv.mpkProgram, "composeRGBPixel", &clStatus );
|
|
CHECK_OPENCL(clStatus, "clCreateKernel composeRGBPixel");
|
|
|
|
//Allocate input and output OCL buffers
|
|
valuesCl = allocateZeroCopyBuffer(rEnv, tiffdata, w*h, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR, &clStatus);
|
|
outputCl = allocateZeroCopyBuffer(rEnv, pResult, w*h, CL_MEM_WRITE_ONLY | CL_MEM_USE_HOST_PTR, &clStatus);
|
|
|
|
//Kernel arguments
|
|
clStatus = clSetKernelArg(rEnv.mpkKernel, 0, sizeof(cl_mem), &valuesCl);
|
|
CHECK_OPENCL( clStatus, "clSetKernelArg");
|
|
clStatus = clSetKernelArg(rEnv.mpkKernel, 1, sizeof(w), &w);
|
|
CHECK_OPENCL( clStatus, "clSetKernelArg" );
|
|
clStatus = clSetKernelArg(rEnv.mpkKernel, 2, sizeof(h), &h);
|
|
CHECK_OPENCL( clStatus, "clSetKernelArg" );
|
|
clStatus = clSetKernelArg(rEnv.mpkKernel, 3, sizeof(wpl), &wpl);
|
|
CHECK_OPENCL( clStatus, "clSetKernelArg" );
|
|
clStatus = clSetKernelArg(rEnv.mpkKernel, 4, sizeof(cl_mem), &outputCl);
|
|
CHECK_OPENCL( clStatus, "clSetKernelArg");
|
|
|
|
//Kernel enqueue
|
|
PERF_COUNT_SUB("before")
|
|
clStatus =
|
|
clEnqueueNDRangeKernel(rEnv.mpkCmdQueue, rEnv.mpkKernel, 2, nullptr,
|
|
globalThreads, localThreads, 0, nullptr, nullptr);
|
|
CHECK_OPENCL(clStatus, "clEnqueueNDRangeKernel");
|
|
|
|
/* map results back from gpu */
|
|
void *ptr = clEnqueueMapBuffer(rEnv.mpkCmdQueue, outputCl, CL_TRUE, CL_MAP_READ,
|
|
0, w * h * sizeof(l_uint32), 0, nullptr, nullptr,
|
|
&clStatus);
|
|
CHECK_OPENCL(clStatus, "clEnqueueMapBuffer outputCl");
|
|
clEnqueueUnmapMemObject(rEnv.mpkCmdQueue, outputCl, ptr, 0, nullptr, nullptr);
|
|
|
|
// Sync
|
|
clFinish(rEnv.mpkCmdQueue);
|
|
PERF_COUNT_SUB("kernel & map")
|
|
PERF_COUNT_END
|
|
return pResult;
|
|
}
|
|
|
|
PIX * OpenclDevice::pixReadTiffCl ( const char *filename, l_int32 n )
|
|
{
|
|
PERF_COUNT_START("pixReadTiffCL")
|
|
FILE *fp;
|
|
PIX *pix;
|
|
|
|
//printf("pixReadTiffCl file");
|
|
PROCNAME("pixReadTiff");
|
|
|
|
if (!filename)
|
|
return (PIX *)ERROR_PTR("filename not defined", procName, nullptr);
|
|
|
|
if ((fp = fopenReadStream(filename)) == nullptr)
|
|
return (PIX *)ERROR_PTR("image file not found", procName, nullptr);
|
|
if ((pix = pixReadStreamTiffCl(fp, n)) == nullptr) {
|
|
fclose(fp);
|
|
return (PIX *)ERROR_PTR("pix not read", procName, nullptr);
|
|
}
|
|
fclose(fp);
|
|
PERF_COUNT_END
|
|
return pix;
|
|
}
|
|
TIFF *
|
|
OpenclDevice::fopenTiffCl(FILE *fp,
|
|
const char *modestring)
|
|
{
|
|
l_int32 fd;
|
|
|
|
PROCNAME("fopenTiff");
|
|
|
|
if (!fp) return (TIFF *)ERROR_PTR("stream not opened", procName, nullptr);
|
|
if (!modestring)
|
|
return (TIFF *)ERROR_PTR("modestring not defined", procName, nullptr);
|
|
|
|
if ((fd = fileno(fp)) < 0)
|
|
return (TIFF *)ERROR_PTR("invalid file descriptor", procName, nullptr);
|
|
lseek(fd, 0, SEEK_SET);
|
|
|
|
return TIFFFdOpen(fd, "TIFFstream", modestring);
|
|
}
|
|
l_int32 OpenclDevice::getTiffStreamResolutionCl(TIFF *tif,
|
|
l_int32 *pxres,
|
|
l_int32 *pyres)
|
|
{
|
|
l_uint16 resunit;
|
|
l_int32 foundxres, foundyres;
|
|
l_float32 fxres, fyres;
|
|
|
|
PROCNAME("getTiffStreamResolution");
|
|
|
|
if (!tif)
|
|
return ERROR_INT("tif not opened", procName, 1);
|
|
if (!pxres || !pyres)
|
|
return ERROR_INT("&xres and &yres not both defined", procName, 1);
|
|
*pxres = *pyres = 0;
|
|
|
|
TIFFGetFieldDefaulted(tif, TIFFTAG_RESOLUTIONUNIT, &resunit);
|
|
foundxres = TIFFGetField(tif, TIFFTAG_XRESOLUTION, &fxres);
|
|
foundyres = TIFFGetField(tif, TIFFTAG_YRESOLUTION, &fyres);
|
|
if (!foundxres && !foundyres) return 1;
|
|
if (!foundxres && foundyres)
|
|
fxres = fyres;
|
|
else if (foundxres && !foundyres)
|
|
fyres = fxres;
|
|
|
|
if (resunit == RESUNIT_CENTIMETER) { /* convert to ppi */
|
|
*pxres = (l_int32)(2.54 * fxres + 0.5);
|
|
*pyres = (l_int32)(2.54 * fyres + 0.5);
|
|
}
|
|
else {
|
|
*pxres = (l_int32)fxres;
|
|
*pyres = (l_int32)fyres;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct L_Memstream
|
|
{
|
|
l_uint8 *buffer; /* expands to hold data when written to; */
|
|
/* fixed size when read from. */
|
|
size_t bufsize; /* current size allocated when written to; */
|
|
/* fixed size of input data when read from. */
|
|
size_t offset; /* byte offset from beginning of buffer. */
|
|
size_t hw; /* high-water mark; max bytes in buffer. */
|
|
l_uint8 **poutdata; /* input param for writing; data goes here. */
|
|
size_t *poutsize; /* input param for writing; data size goes here. */
|
|
};
|
|
typedef struct L_Memstream L_MEMSTREAM;
|
|
|
|
/* These are static functions for memory I/O */
|
|
static L_MEMSTREAM *memstreamCreateForRead(l_uint8 *indata, size_t pinsize);
|
|
static L_MEMSTREAM *memstreamCreateForWrite(l_uint8 **poutdata,
|
|
size_t *poutsize);
|
|
static tsize_t tiffReadCallback(thandle_t handle, tdata_t data, tsize_t length);
|
|
static tsize_t tiffWriteCallback(thandle_t handle, tdata_t data,
|
|
tsize_t length);
|
|
static toff_t tiffSeekCallback(thandle_t handle, toff_t offset, l_int32 whence);
|
|
static l_int32 tiffCloseCallback(thandle_t handle);
|
|
static toff_t tiffSizeCallback(thandle_t handle);
|
|
static l_int32 tiffMapCallback(thandle_t handle, tdata_t *data, toff_t *length);
|
|
static void tiffUnmapCallback(thandle_t handle, tdata_t data, toff_t length);
|
|
|
|
|
|
static L_MEMSTREAM *
|
|
memstreamCreateForRead(l_uint8 *indata,
|
|
size_t insize)
|
|
{
|
|
L_MEMSTREAM *mstream;
|
|
|
|
mstream = (L_MEMSTREAM *)CALLOC(1, sizeof(L_MEMSTREAM));
|
|
mstream->buffer = indata; /* handle to input data array */
|
|
mstream->bufsize = insize; /* amount of input data */
|
|
mstream->hw = insize; /* high-water mark fixed at input data size */
|
|
mstream->offset = 0; /* offset always starts at 0 */
|
|
return mstream;
|
|
}
|
|
|
|
|
|
static L_MEMSTREAM *
|
|
memstreamCreateForWrite(l_uint8 **poutdata,
|
|
size_t *poutsize)
|
|
{
|
|
L_MEMSTREAM *mstream;
|
|
|
|
mstream = (L_MEMSTREAM *)CALLOC(1, sizeof(L_MEMSTREAM));
|
|
mstream->buffer = (l_uint8 *)CALLOC(8 * 1024, 1);
|
|
mstream->bufsize = 8 * 1024;
|
|
mstream->poutdata = poutdata; /* used only at end of write */
|
|
mstream->poutsize = poutsize; /* ditto */
|
|
mstream->hw = mstream->offset = 0;
|
|
return mstream;
|
|
}
|
|
|
|
|
|
static tsize_t
|
|
tiffReadCallback(thandle_t handle,
|
|
tdata_t data,
|
|
tsize_t length)
|
|
{
|
|
L_MEMSTREAM *mstream;
|
|
size_t amount;
|
|
|
|
mstream = (L_MEMSTREAM *)handle;
|
|
amount = L_MIN((size_t)length, mstream->hw - mstream->offset);
|
|
memcpy(data, mstream->buffer + mstream->offset, amount);
|
|
mstream->offset += amount;
|
|
return amount;
|
|
}
|
|
|
|
|
|
static tsize_t
|
|
tiffWriteCallback(thandle_t handle,
|
|
tdata_t data,
|
|
tsize_t length)
|
|
{
|
|
L_MEMSTREAM *mstream;
|
|
size_t newsize;
|
|
|
|
/* reallocNew() uses calloc to initialize the array.
|
|
* If malloc is used instead, for some of the encoding methods,
|
|
* not all the data in 'bufsize' bytes in the buffer will
|
|
* have been initialized by the end of the compression. */
|
|
mstream = (L_MEMSTREAM *)handle;
|
|
if (mstream->offset + length > mstream->bufsize) {
|
|
newsize = 2 * (mstream->offset + length);
|
|
mstream->buffer = (l_uint8 *)reallocNew((void **)&mstream->buffer,
|
|
mstream->offset, newsize);
|
|
mstream->bufsize = newsize;
|
|
}
|
|
|
|
memcpy(mstream->buffer + mstream->offset, data, length);
|
|
mstream->offset += length;
|
|
mstream->hw = L_MAX(mstream->offset, mstream->hw);
|
|
return length;
|
|
}
|
|
|
|
|
|
static toff_t
|
|
tiffSeekCallback(thandle_t handle,
|
|
toff_t offset,
|
|
l_int32 whence)
|
|
{
|
|
L_MEMSTREAM *mstream;
|
|
|
|
PROCNAME("tiffSeekCallback");
|
|
mstream = (L_MEMSTREAM *)handle;
|
|
switch (whence) {
|
|
case SEEK_SET:
|
|
/* fprintf(stderr, "seek_set: offset = %d\n", offset); */
|
|
mstream->offset = offset;
|
|
break;
|
|
case SEEK_CUR:
|
|
/* fprintf(stderr, "seek_cur: offset = %d\n", offset); */
|
|
mstream->offset += offset;
|
|
break;
|
|
case SEEK_END:
|
|
/* fprintf(stderr, "seek end: hw = %d, offset = %d\n",
|
|
mstream->hw, offset); */
|
|
mstream->offset = mstream->hw - offset; /* offset >= 0 */
|
|
break;
|
|
default:
|
|
return (toff_t)ERROR_INT("bad whence value", procName,
|
|
mstream->offset);
|
|
}
|
|
|
|
return mstream->offset;
|
|
}
|
|
|
|
|
|
static l_int32
|
|
tiffCloseCallback(thandle_t handle)
|
|
{
|
|
L_MEMSTREAM *mstream;
|
|
|
|
mstream = (L_MEMSTREAM *)handle;
|
|
if (mstream->poutdata) { /* writing: save the output data */
|
|
*mstream->poutdata = mstream->buffer;
|
|
*mstream->poutsize = mstream->hw;
|
|
}
|
|
FREE(mstream); /* never free the buffer! */
|
|
return 0;
|
|
}
|
|
|
|
|
|
static toff_t
|
|
tiffSizeCallback(thandle_t handle)
|
|
{
|
|
L_MEMSTREAM *mstream;
|
|
|
|
mstream = (L_MEMSTREAM *)handle;
|
|
return mstream->hw;
|
|
}
|
|
|
|
|
|
static l_int32
|
|
tiffMapCallback(thandle_t handle,
|
|
tdata_t *data,
|
|
toff_t *length)
|
|
{
|
|
L_MEMSTREAM *mstream;
|
|
|
|
mstream = (L_MEMSTREAM *)handle;
|
|
*data = mstream->buffer;
|
|
*length = mstream->hw;
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void
|
|
tiffUnmapCallback(thandle_t handle,
|
|
tdata_t data,
|
|
toff_t length)
|
|
{
|
|
return;
|
|
}
|
|
|
|
|
|
/*!
|
|
* fopenTiffMemstream()
|
|
*
|
|
* Input: filename (for error output; can be "")
|
|
* operation ("w" for write, "r" for read)
|
|
* &data (<return> written data)
|
|
* &datasize (<return> size of written data)
|
|
* Return: tiff (data structure, opened for write to memory)
|
|
*
|
|
* Notes:
|
|
* (1) This wraps up a number of callbacks for either:
|
|
* * reading from tiff in memory buffer --> pix
|
|
* * writing from pix --> tiff in memory buffer
|
|
* (2) After use, the memstream is automatically destroyed when
|
|
* TIFFClose() is called. TIFFCleanup() doesn't free the memstream.
|
|
*/
|
|
static TIFF *
|
|
fopenTiffMemstream(const char *filename,
|
|
const char *operation,
|
|
l_uint8 **pdata,
|
|
size_t *pdatasize)
|
|
{
|
|
L_MEMSTREAM *mstream;
|
|
|
|
PROCNAME("fopenTiffMemstream");
|
|
|
|
if (!filename)
|
|
return (TIFF *)ERROR_PTR("filename not defined", procName, nullptr);
|
|
if (!operation)
|
|
return (TIFF *)ERROR_PTR("operation not defined", procName, nullptr);
|
|
if (!pdata)
|
|
return (TIFF *)ERROR_PTR("&data not defined", procName, nullptr);
|
|
if (!pdatasize)
|
|
return (TIFF *)ERROR_PTR("&datasize not defined", procName, nullptr);
|
|
if (!strcmp(operation, "r") && !strcmp(operation, "w"))
|
|
return (TIFF *)ERROR_PTR("operation not 'r' or 'w'}", procName,
|
|
nullptr);
|
|
|
|
if (!strcmp(operation, "r"))
|
|
mstream = memstreamCreateForRead(*pdata, *pdatasize);
|
|
else
|
|
mstream = memstreamCreateForWrite(pdata, pdatasize);
|
|
|
|
return TIFFClientOpen(filename, operation, mstream, tiffReadCallback,
|
|
tiffWriteCallback, tiffSeekCallback,
|
|
tiffCloseCallback, tiffSizeCallback,
|
|
tiffMapCallback, tiffUnmapCallback);
|
|
}
|
|
|
|
|
|
|
|
PIX *
|
|
OpenclDevice::pixReadMemTiffCl(const l_uint8 *data,size_t size,l_int32 n)
|
|
{
|
|
l_int32 i, pagefound;
|
|
PIX *pix;
|
|
TIFF *tif;
|
|
// L_MEMSTREAM *memStream;
|
|
PROCNAME("pixReadMemTiffCl");
|
|
|
|
if (!data)
|
|
return (PIX *)ERROR_PTR("data pointer is nullptr", procName, nullptr);
|
|
|
|
if ((tif = fopenTiffMemstream("", "r", (l_uint8 **)&data, &size)) ==
|
|
nullptr)
|
|
return (PIX *)ERROR_PTR("tif not opened", procName, nullptr);
|
|
|
|
pagefound = FALSE;
|
|
pix = nullptr;
|
|
for (i = 0; i < MAX_PAGES_IN_TIFF_FILE; i++) {
|
|
if (i == n) {
|
|
pagefound = TRUE;
|
|
if ((pix = pixReadFromTiffStreamCl(tif)) == nullptr) {
|
|
TIFFCleanup(tif);
|
|
return (PIX *)ERROR_PTR("pix not read", procName, nullptr);
|
|
}
|
|
break;
|
|
}
|
|
if (TIFFReadDirectory(tif) == 0) break;
|
|
}
|
|
|
|
if (pagefound == FALSE) {
|
|
L_WARNING("tiff page %d not found\n", procName, i);
|
|
TIFFCleanup(tif);
|
|
return nullptr;
|
|
}
|
|
|
|
TIFFCleanup(tif);
|
|
return pix;
|
|
}
|
|
|
|
PIX *
|
|
OpenclDevice::pixReadStreamTiffCl(FILE *fp,
|
|
l_int32 n)
|
|
{
|
|
l_int32 i, pagefound;
|
|
PIX *pix;
|
|
TIFF *tif;
|
|
|
|
PROCNAME("pixReadStreamTiff");
|
|
|
|
if (!fp) return (PIX *)ERROR_PTR("stream not defined", procName, nullptr);
|
|
|
|
if ((tif = fopenTiffCl(fp, "rb")) == nullptr)
|
|
return (PIX *)ERROR_PTR("tif not opened", procName, nullptr);
|
|
|
|
pagefound = FALSE;
|
|
pix = nullptr;
|
|
for (i = 0; i < MAX_PAGES_IN_TIFF_FILE; i++) {
|
|
if (i == n) {
|
|
pagefound = TRUE;
|
|
if ((pix = pixReadFromTiffStreamCl(tif)) == nullptr) {
|
|
TIFFCleanup(tif);
|
|
return (PIX *)ERROR_PTR("pix not read", procName, nullptr);
|
|
}
|
|
break;
|
|
}
|
|
if (TIFFReadDirectory(tif) == 0)
|
|
break;
|
|
}
|
|
|
|
if (pagefound == FALSE) {
|
|
L_WARNING("tiff page %d not found", procName, n);
|
|
TIFFCleanup(tif);
|
|
return nullptr;
|
|
}
|
|
|
|
TIFFCleanup(tif);
|
|
return pix;
|
|
}
|
|
|
|
static l_int32
|
|
getTiffCompressedFormat(l_uint16 tiffcomp)
|
|
{
|
|
l_int32 comptype;
|
|
|
|
switch (tiffcomp)
|
|
{
|
|
case COMPRESSION_CCITTFAX4:
|
|
comptype = IFF_TIFF_G4;
|
|
break;
|
|
case COMPRESSION_CCITTFAX3:
|
|
comptype = IFF_TIFF_G3;
|
|
break;
|
|
case COMPRESSION_CCITTRLE:
|
|
comptype = IFF_TIFF_RLE;
|
|
break;
|
|
case COMPRESSION_PACKBITS:
|
|
comptype = IFF_TIFF_PACKBITS;
|
|
break;
|
|
case COMPRESSION_LZW:
|
|
comptype = IFF_TIFF_LZW;
|
|
break;
|
|
case COMPRESSION_ADOBE_DEFLATE:
|
|
comptype = IFF_TIFF_ZIP;
|
|
break;
|
|
default:
|
|
comptype = IFF_TIFF;
|
|
break;
|
|
}
|
|
return comptype;
|
|
}
|
|
|
|
void compare(l_uint32 *cpu, l_uint32 *gpu,int size)
|
|
{
|
|
for(int i=0;i<size;i++)
|
|
{
|
|
if(cpu[i]!=gpu[i])
|
|
{
|
|
printf("\ndoesnot match\n");
|
|
return;
|
|
}
|
|
}
|
|
printf("\nit matches\n");
|
|
}
|
|
|
|
//OpenCL implementation of pixReadFromTiffStream.
|
|
//Similar to the CPU implentation of pixReadFromTiffStream
|
|
PIX *
|
|
OpenclDevice::pixReadFromTiffStreamCl(TIFF *tif)
|
|
{
|
|
l_uint8 *linebuf, *data;
|
|
l_uint16 spp, bps, bpp, tiffbpl, photometry, tiffcomp, orientation;
|
|
l_uint16 *redmap, *greenmap, *bluemap;
|
|
l_int32 d, wpl, bpl, comptype, i, ncolors;
|
|
l_int32 xres, yres;
|
|
l_uint32 w, h;
|
|
l_uint32 *line, *tiffdata;
|
|
PIX *pix;
|
|
PIXCMAP *cmap;
|
|
|
|
PROCNAME("pixReadFromTiffStream");
|
|
|
|
if (!tif) return (PIX *)ERROR_PTR("tif not defined", procName, nullptr);
|
|
|
|
TIFFGetFieldDefaulted(tif, TIFFTAG_BITSPERSAMPLE, &bps);
|
|
TIFFGetFieldDefaulted(tif, TIFFTAG_SAMPLESPERPIXEL, &spp);
|
|
bpp = bps * spp;
|
|
if (bpp > 32)
|
|
return (PIX *)ERROR_PTR("can't handle bpp > 32", procName, nullptr);
|
|
if (spp == 1)
|
|
d = bps;
|
|
else if (spp == 3 || spp == 4)
|
|
d = 32;
|
|
else
|
|
return (PIX *)ERROR_PTR("spp not in set {1,3,4}", procName, nullptr);
|
|
|
|
TIFFGetField(tif, TIFFTAG_IMAGEWIDTH, &w);
|
|
TIFFGetField(tif, TIFFTAG_IMAGELENGTH, &h);
|
|
tiffbpl = TIFFScanlineSize(tif);
|
|
|
|
if ((pix = pixCreate(w, h, d)) == nullptr)
|
|
return (PIX *)ERROR_PTR("pix not made", procName, nullptr);
|
|
data = (l_uint8 *)pixGetData(pix);
|
|
wpl = pixGetWpl(pix);
|
|
bpl = 4 * wpl;
|
|
|
|
if (spp == 1) {
|
|
if ((linebuf = (l_uint8 *)CALLOC(tiffbpl + 1, sizeof(l_uint8))) ==
|
|
nullptr)
|
|
return (PIX *)ERROR_PTR("calloc fail for linebuf", procName, nullptr);
|
|
|
|
for (i = 0; i < h; i++) {
|
|
if (TIFFReadScanline(tif, linebuf, i, 0) < 0) {
|
|
FREE(linebuf);
|
|
pixDestroy(&pix);
|
|
return (PIX *)ERROR_PTR("line read fail", procName, nullptr);
|
|
}
|
|
memcpy((char *)data, (char *)linebuf, tiffbpl);
|
|
data += bpl;
|
|
}
|
|
if (bps <= 8)
|
|
pixEndianByteSwap(pix);
|
|
else
|
|
pixEndianTwoByteSwap(pix);
|
|
FREE(linebuf);
|
|
} else {
|
|
if ((tiffdata = (l_uint32 *)CALLOC(w * h, sizeof(l_uint32))) == nullptr) {
|
|
pixDestroy(&pix);
|
|
return (PIX *)ERROR_PTR("calloc fail for tiffdata", procName, nullptr);
|
|
}
|
|
if (!TIFFReadRGBAImageOriented(tif, w, h, (uint32 *)tiffdata,
|
|
ORIENTATION_TOPLEFT, 0)) {
|
|
FREE(tiffdata);
|
|
pixDestroy(&pix);
|
|
return (PIX *)ERROR_PTR("failed to read tiffdata", procName, nullptr);
|
|
}
|
|
line = pixGetData(pix);
|
|
|
|
// Invoke the OpenCL kernel for pixReadFromTiff
|
|
l_uint32 *output_gpu = pixReadFromTiffKernel(tiffdata, w, h, wpl, line);
|
|
|
|
pixSetData(pix, output_gpu);
|
|
// pix already has data allocated, it now points to output_gpu?
|
|
FREE(tiffdata);
|
|
FREE(line);
|
|
// FREE(output_gpu);
|
|
}
|
|
|
|
if (getTiffStreamResolutionCl(tif, &xres, &yres) == 0) {
|
|
pixSetXRes(pix, xres);
|
|
pixSetYRes(pix, yres);
|
|
}
|
|
|
|
|
|
TIFFGetFieldDefaulted(tif, TIFFTAG_COMPRESSION, &tiffcomp);
|
|
comptype = getTiffCompressedFormat(tiffcomp);
|
|
pixSetInputFormat(pix, comptype);
|
|
|
|
if (TIFFGetField(tif, TIFFTAG_COLORMAP, &redmap, &greenmap, &bluemap)) {
|
|
if ((cmap = pixcmapCreate(bps)) == nullptr) {
|
|
pixDestroy(&pix);
|
|
return (PIX *)ERROR_PTR("cmap not made", procName, nullptr);
|
|
}
|
|
ncolors = 1 << bps;
|
|
for (i = 0; i < ncolors; i++)
|
|
pixcmapAddColor(cmap, redmap[i] >> 8, greenmap[i] >> 8,
|
|
bluemap[i] >> 8);
|
|
pixSetColormap(pix, cmap);
|
|
} else {
|
|
if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &photometry)) {
|
|
if (tiffcomp == COMPRESSION_CCITTFAX3 ||
|
|
tiffcomp == COMPRESSION_CCITTFAX4 ||
|
|
tiffcomp == COMPRESSION_CCITTRLE ||
|
|
tiffcomp == COMPRESSION_CCITTRLEW) {
|
|
photometry = PHOTOMETRIC_MINISWHITE;
|
|
} else
|
|
photometry = PHOTOMETRIC_MINISBLACK;
|
|
}
|
|
if ((d == 1 && photometry == PHOTOMETRIC_MINISBLACK) ||
|
|
(d == 8 && photometry == PHOTOMETRIC_MINISWHITE))
|
|
pixInvert(pix, pix);
|
|
}
|
|
|
|
if (TIFFGetField(tif, TIFFTAG_ORIENTATION, &orientation)) {
|
|
if (orientation >= 1 && orientation <= 8) {
|
|
struct tiff_transform *transform =
|
|
&tiff_orientation_transforms[orientation - 1];
|
|
if (transform->vflip) pixFlipTB(pix, pix);
|
|
if (transform->hflip) pixFlipLR(pix, pix);
|
|
if (transform->rotate) {
|
|
PIX *oldpix = pix;
|
|
pix = pixRotate90(oldpix, transform->rotate);
|
|
pixDestroy(&oldpix);
|
|
}
|
|
}
|
|
}
|
|
|
|
return pix;
|
|
}
|
|
|
|
//Morphology Dilate operation for 5x5 structuring element. Invokes the relevant OpenCL kernels
|
|
cl_int
|
|
pixDilateCL_55(l_int32 wpl, l_int32 h)
|
|
{
|
|
size_t globalThreads[2];
|
|
cl_mem pixtemp;
|
|
cl_int status;
|
|
int gsize;
|
|
size_t localThreads[2];
|
|
|
|
//Horizontal pass
|
|
gsize = (wpl*h + GROUPSIZE_HMORX - 1)/ GROUPSIZE_HMORX * GROUPSIZE_HMORX;
|
|
globalThreads[0] = gsize;
|
|
globalThreads[1] = GROUPSIZE_HMORY;
|
|
localThreads[0] = GROUPSIZE_HMORX;
|
|
localThreads[1] = GROUPSIZE_HMORY;
|
|
|
|
rEnv.mpkKernel = clCreateKernel( rEnv.mpkProgram, "morphoDilateHor_5x5", &status );
|
|
CHECK_OPENCL(status, "clCreateKernel morphoDilateHor_5x5");
|
|
|
|
status = clSetKernelArg(rEnv.mpkKernel,
|
|
0,
|
|
sizeof(cl_mem),
|
|
&pixsCLBuffer);
|
|
status = clSetKernelArg(rEnv.mpkKernel,
|
|
1,
|
|
sizeof(cl_mem),
|
|
&pixdCLBuffer);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 2, sizeof(wpl), &wpl);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 3, sizeof(h), &h);
|
|
|
|
status = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue, rEnv.mpkKernel, 2,
|
|
nullptr, globalThreads, localThreads, 0,
|
|
nullptr, nullptr);
|
|
|
|
//Swap source and dest buffers
|
|
pixtemp = pixsCLBuffer;
|
|
pixsCLBuffer = pixdCLBuffer;
|
|
pixdCLBuffer = pixtemp;
|
|
|
|
//Vertical
|
|
gsize = (wpl + GROUPSIZE_X - 1)/ GROUPSIZE_X * GROUPSIZE_X;
|
|
globalThreads[0] = gsize;
|
|
gsize = (h + GROUPSIZE_Y - 1)/ GROUPSIZE_Y * GROUPSIZE_Y;
|
|
globalThreads[1] = gsize;
|
|
localThreads[0] = GROUPSIZE_X;
|
|
localThreads[1] = GROUPSIZE_Y;
|
|
|
|
rEnv.mpkKernel = clCreateKernel( rEnv.mpkProgram, "morphoDilateVer_5x5", &status );
|
|
CHECK_OPENCL(status, "clCreateKernel morphoDilateVer_5x5");
|
|
|
|
status = clSetKernelArg(rEnv.mpkKernel,
|
|
0,
|
|
sizeof(cl_mem),
|
|
&pixsCLBuffer);
|
|
status = clSetKernelArg(rEnv.mpkKernel,
|
|
1,
|
|
sizeof(cl_mem),
|
|
&pixdCLBuffer);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 2, sizeof(wpl), &wpl);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 3, sizeof(h), &h);
|
|
status = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue, rEnv.mpkKernel, 2,
|
|
nullptr, globalThreads, localThreads, 0,
|
|
nullptr, nullptr);
|
|
|
|
return status;
|
|
}
|
|
|
|
//Morphology Erode operation for 5x5 structuring element. Invokes the relevant OpenCL kernels
|
|
cl_int
|
|
pixErodeCL_55(l_int32 wpl, l_int32 h)
|
|
{
|
|
size_t globalThreads[2];
|
|
cl_mem pixtemp;
|
|
cl_int status;
|
|
int gsize;
|
|
l_uint32 fwmask, lwmask;
|
|
size_t localThreads[2];
|
|
|
|
lwmask = lmask32[31 - 2];
|
|
fwmask = rmask32[31 - 2];
|
|
|
|
//Horizontal pass
|
|
gsize = (wpl*h + GROUPSIZE_HMORX - 1)/ GROUPSIZE_HMORX * GROUPSIZE_HMORX;
|
|
globalThreads[0] = gsize;
|
|
globalThreads[1] = GROUPSIZE_HMORY;
|
|
localThreads[0] = GROUPSIZE_HMORX;
|
|
localThreads[1] = GROUPSIZE_HMORY;
|
|
|
|
rEnv.mpkKernel = clCreateKernel( rEnv.mpkProgram, "morphoErodeHor_5x5", &status );
|
|
CHECK_OPENCL(status, "clCreateKernel morphoErodeHor_5x5");
|
|
|
|
status = clSetKernelArg(rEnv.mpkKernel,
|
|
0,
|
|
sizeof(cl_mem),
|
|
&pixsCLBuffer);
|
|
status = clSetKernelArg(rEnv.mpkKernel,
|
|
1,
|
|
sizeof(cl_mem),
|
|
&pixdCLBuffer);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 2, sizeof(wpl), &wpl);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 3, sizeof(h), &h);
|
|
|
|
status = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue, rEnv.mpkKernel, 2,
|
|
nullptr, globalThreads, localThreads, 0,
|
|
nullptr, nullptr);
|
|
|
|
//Swap source and dest buffers
|
|
pixtemp = pixsCLBuffer;
|
|
pixsCLBuffer = pixdCLBuffer;
|
|
pixdCLBuffer = pixtemp;
|
|
|
|
//Vertical
|
|
gsize = (wpl + GROUPSIZE_X - 1)/ GROUPSIZE_X * GROUPSIZE_X;
|
|
globalThreads[0] = gsize;
|
|
gsize = (h + GROUPSIZE_Y - 1)/ GROUPSIZE_Y * GROUPSIZE_Y;
|
|
globalThreads[1] = gsize;
|
|
localThreads[0] = GROUPSIZE_X;
|
|
localThreads[1] = GROUPSIZE_Y;
|
|
|
|
rEnv.mpkKernel = clCreateKernel( rEnv.mpkProgram, "morphoErodeVer_5x5", &status );
|
|
CHECK_OPENCL(status, "clCreateKernel morphoErodeVer_5x5");
|
|
|
|
status = clSetKernelArg(rEnv.mpkKernel,
|
|
0,
|
|
sizeof(cl_mem),
|
|
&pixsCLBuffer);
|
|
status = clSetKernelArg(rEnv.mpkKernel,
|
|
1,
|
|
sizeof(cl_mem),
|
|
&pixdCLBuffer);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 2, sizeof(wpl), &wpl);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 3, sizeof(h), &h);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 4, sizeof(fwmask), &fwmask);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 5, sizeof(lwmask), &lwmask);
|
|
status = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue, rEnv.mpkKernel, 2,
|
|
nullptr, globalThreads, localThreads, 0,
|
|
nullptr, nullptr);
|
|
|
|
return status;
|
|
}
|
|
|
|
//Morphology Dilate operation. Invokes the relevant OpenCL kernels
|
|
cl_int
|
|
pixDilateCL(l_int32 hsize, l_int32 vsize, l_int32 wpl, l_int32 h)
|
|
{
|
|
l_int32 xp, yp, xn, yn;
|
|
SEL* sel;
|
|
size_t globalThreads[2];
|
|
cl_mem pixtemp;
|
|
cl_int status;
|
|
int gsize;
|
|
size_t localThreads[2];
|
|
char isEven;
|
|
|
|
OpenclDevice::SetKernelEnv( &rEnv );
|
|
|
|
if (hsize == 5 && vsize == 5)
|
|
{
|
|
//Specific case for 5x5
|
|
status = pixDilateCL_55(wpl, h);
|
|
return status;
|
|
}
|
|
|
|
sel = selCreateBrick(vsize, hsize, vsize / 2, hsize / 2, SEL_HIT);
|
|
|
|
selFindMaxTranslations(sel, &xp, &yp, &xn, &yn);
|
|
selDestroy(&sel);
|
|
//global and local work dimensions for Horizontal pass
|
|
gsize = (wpl + GROUPSIZE_X - 1)/ GROUPSIZE_X * GROUPSIZE_X;
|
|
globalThreads[0] = gsize;
|
|
gsize = (h + GROUPSIZE_Y - 1)/ GROUPSIZE_Y * GROUPSIZE_Y;
|
|
globalThreads[1] = gsize;
|
|
localThreads[0] = GROUPSIZE_X;
|
|
localThreads[1] = GROUPSIZE_Y;
|
|
|
|
if (xp > 31 || xn > 31)
|
|
{
|
|
// Generic case.
|
|
rEnv.mpkKernel =
|
|
clCreateKernel(rEnv.mpkProgram, "morphoDilateHor", &status);
|
|
CHECK_OPENCL(status, "clCreateKernel morphoDilateHor");
|
|
|
|
status = clSetKernelArg(rEnv.mpkKernel, 0, sizeof(cl_mem), &pixsCLBuffer);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 1, sizeof(cl_mem), &pixdCLBuffer);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 2, sizeof(xp), &xp);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 3, sizeof(xn), &xn);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 4, sizeof(wpl), &wpl);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 5, sizeof(h), &h);
|
|
status = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue, rEnv.mpkKernel, 2,
|
|
nullptr, globalThreads, localThreads, 0,
|
|
nullptr, nullptr);
|
|
|
|
if (yp > 0 || yn > 0) {
|
|
pixtemp = pixsCLBuffer;
|
|
pixsCLBuffer = pixdCLBuffer;
|
|
pixdCLBuffer = pixtemp;
|
|
}
|
|
}
|
|
else if (xp > 0 || xn > 0 )
|
|
{
|
|
// Specific Horizontal pass kernel for half width < 32
|
|
rEnv.mpkKernel =
|
|
clCreateKernel(rEnv.mpkProgram, "morphoDilateHor_32word", &status);
|
|
CHECK_OPENCL(status, "clCreateKernel morphoDilateHor_32word");
|
|
isEven = (xp != xn);
|
|
|
|
status = clSetKernelArg(rEnv.mpkKernel, 0, sizeof(cl_mem), &pixsCLBuffer);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 1, sizeof(cl_mem), &pixdCLBuffer);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 2, sizeof(xp), &xp);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 3, sizeof(wpl), &wpl);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 4, sizeof(h), &h);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 5, sizeof(isEven), &isEven);
|
|
status = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue, rEnv.mpkKernel, 2,
|
|
nullptr, globalThreads, localThreads, 0,
|
|
nullptr, nullptr);
|
|
|
|
if (yp > 0 || yn > 0) {
|
|
pixtemp = pixsCLBuffer;
|
|
pixsCLBuffer = pixdCLBuffer;
|
|
pixdCLBuffer = pixtemp;
|
|
}
|
|
}
|
|
|
|
if (yp > 0 || yn > 0)
|
|
{
|
|
rEnv.mpkKernel = clCreateKernel( rEnv.mpkProgram, "morphoDilateVer", &status );
|
|
CHECK_OPENCL(status, "clCreateKernel morphoDilateVer");
|
|
|
|
status = clSetKernelArg(rEnv.mpkKernel,
|
|
0,
|
|
sizeof(cl_mem),
|
|
&pixsCLBuffer);
|
|
status = clSetKernelArg(rEnv.mpkKernel,
|
|
1,
|
|
sizeof(cl_mem),
|
|
&pixdCLBuffer);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 2, sizeof(yp), &yp);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 3, sizeof(wpl), &wpl);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 4, sizeof(h), &h);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 5, sizeof(yn), &yn);
|
|
status = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue, rEnv.mpkKernel, 2,
|
|
nullptr, globalThreads, localThreads, 0,
|
|
nullptr, nullptr);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
//Morphology Erode operation. Invokes the relevant OpenCL kernels
|
|
cl_int pixErodeCL(l_int32 hsize, l_int32 vsize, l_uint32 wpl, l_uint32 h) {
|
|
l_int32 xp, yp, xn, yn;
|
|
SEL *sel;
|
|
size_t globalThreads[2];
|
|
size_t localThreads[2];
|
|
cl_mem pixtemp;
|
|
cl_int status;
|
|
int gsize;
|
|
char isAsymmetric = (MORPH_BC == ASYMMETRIC_MORPH_BC);
|
|
l_uint32 rwmask, lwmask;
|
|
char isEven;
|
|
|
|
sel = selCreateBrick(vsize, hsize, vsize / 2, hsize / 2, SEL_HIT);
|
|
|
|
selFindMaxTranslations(sel, &xp, &yp, &xn, &yn);
|
|
selDestroy(&sel);
|
|
OpenclDevice::SetKernelEnv(&rEnv);
|
|
|
|
if (hsize == 5 && vsize == 5 && isAsymmetric) {
|
|
// Specific kernel for 5x5
|
|
status = pixErodeCL_55(wpl, h);
|
|
return status;
|
|
}
|
|
|
|
lwmask = lmask32[31 - (xn & 31)];
|
|
rwmask = rmask32[31 - (xp & 31)];
|
|
|
|
// global and local work dimensions for Horizontal pass
|
|
gsize = (wpl + GROUPSIZE_X - 1) / GROUPSIZE_X * GROUPSIZE_X;
|
|
globalThreads[0] = gsize;
|
|
gsize = (h + GROUPSIZE_Y - 1) / GROUPSIZE_Y * GROUPSIZE_Y;
|
|
globalThreads[1] = gsize;
|
|
localThreads[0] = GROUPSIZE_X;
|
|
localThreads[1] = GROUPSIZE_Y;
|
|
|
|
// Horizontal Pass
|
|
if (xp > 31 || xn > 31) {
|
|
// Generic case.
|
|
rEnv.mpkKernel = clCreateKernel(rEnv.mpkProgram, "morphoErodeHor", &status);
|
|
|
|
status = clSetKernelArg(rEnv.mpkKernel, 0, sizeof(cl_mem), &pixsCLBuffer);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 1, sizeof(cl_mem), &pixdCLBuffer);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 2, sizeof(xp), &xp);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 3, sizeof(xn), &xn);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 4, sizeof(wpl), &wpl);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 5, sizeof(h), &h);
|
|
status =
|
|
clSetKernelArg(rEnv.mpkKernel, 6, sizeof(isAsymmetric), &isAsymmetric);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 7, sizeof(rwmask), &rwmask);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 8, sizeof(lwmask), &lwmask);
|
|
status = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue, rEnv.mpkKernel, 2,
|
|
nullptr, globalThreads, localThreads, 0,
|
|
nullptr, nullptr);
|
|
|
|
if (yp > 0 || yn > 0) {
|
|
pixtemp = pixsCLBuffer;
|
|
pixsCLBuffer = pixdCLBuffer;
|
|
pixdCLBuffer = pixtemp;
|
|
}
|
|
} else if (xp > 0 || xn > 0) {
|
|
rEnv.mpkKernel =
|
|
clCreateKernel(rEnv.mpkProgram, "morphoErodeHor_32word", &status);
|
|
isEven = (xp != xn);
|
|
|
|
status = clSetKernelArg(rEnv.mpkKernel, 0, sizeof(cl_mem), &pixsCLBuffer);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 1, sizeof(cl_mem), &pixdCLBuffer);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 2, sizeof(xp), &xp);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 3, sizeof(wpl), &wpl);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 4, sizeof(h), &h);
|
|
status =
|
|
clSetKernelArg(rEnv.mpkKernel, 5, sizeof(isAsymmetric), &isAsymmetric);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 6, sizeof(rwmask), &rwmask);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 7, sizeof(lwmask), &lwmask);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 8, sizeof(isEven), &isEven);
|
|
status = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue, rEnv.mpkKernel, 2,
|
|
nullptr, globalThreads, localThreads, 0,
|
|
nullptr, nullptr);
|
|
|
|
if (yp > 0 || yn > 0) {
|
|
pixtemp = pixsCLBuffer;
|
|
pixsCLBuffer = pixdCLBuffer;
|
|
pixdCLBuffer = pixtemp;
|
|
}
|
|
}
|
|
|
|
// Vertical Pass
|
|
if (yp > 0 || yn > 0) {
|
|
rEnv.mpkKernel = clCreateKernel(rEnv.mpkProgram, "morphoErodeVer", &status);
|
|
CHECK_OPENCL(status, "clCreateKernel morphoErodeVer");
|
|
|
|
status = clSetKernelArg(rEnv.mpkKernel, 0, sizeof(cl_mem), &pixsCLBuffer);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 1, sizeof(cl_mem), &pixdCLBuffer);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 2, sizeof(yp), &yp);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 3, sizeof(wpl), &wpl);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 4, sizeof(h), &h);
|
|
status =
|
|
clSetKernelArg(rEnv.mpkKernel, 5, sizeof(isAsymmetric), &isAsymmetric);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 6, sizeof(yn), &yn);
|
|
status = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue, rEnv.mpkKernel, 2,
|
|
nullptr, globalThreads, localThreads, 0,
|
|
nullptr, nullptr);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
// OpenCL implementation of Morphology Dilate
|
|
//Note: Assumes the source and dest opencl buffer are initialized. No check done
|
|
PIX *OpenclDevice::pixDilateBrickCL(PIX *pixd, PIX *pixs, l_int32 hsize,
|
|
l_int32 vsize, bool reqDataCopy = false) {
|
|
l_uint32 wpl, h;
|
|
|
|
wpl = pixGetWpl(pixs);
|
|
h = pixGetHeight(pixs);
|
|
|
|
clStatus = pixDilateCL(hsize, vsize, wpl, h);
|
|
|
|
if (reqDataCopy) {
|
|
pixd = mapOutputCLBuffer(rEnv, pixdCLBuffer, pixd, pixs, wpl * h,
|
|
CL_MAP_READ, false);
|
|
}
|
|
|
|
return pixd;
|
|
}
|
|
|
|
// OpenCL implementation of Morphology Erode
|
|
//Note: Assumes the source and dest opencl buffer are initialized. No check done
|
|
PIX *OpenclDevice::pixErodeBrickCL(PIX *pixd, PIX *pixs, l_int32 hsize,
|
|
l_int32 vsize, bool reqDataCopy = false) {
|
|
l_uint32 wpl, h;
|
|
|
|
wpl = pixGetWpl(pixs);
|
|
h = pixGetHeight(pixs);
|
|
|
|
clStatus = pixErodeCL(hsize, vsize, wpl, h);
|
|
|
|
if (reqDataCopy) {
|
|
pixd =
|
|
mapOutputCLBuffer(rEnv, pixdCLBuffer, pixd, pixs, wpl * h, CL_MAP_READ);
|
|
}
|
|
|
|
return pixd;
|
|
}
|
|
|
|
//Morphology Open operation. Invokes the relevant OpenCL kernels
|
|
cl_int
|
|
pixOpenCL(l_int32 hsize, l_int32 vsize, l_int32 wpl, l_int32 h)
|
|
{
|
|
cl_int status;
|
|
cl_mem pixtemp;
|
|
|
|
//Erode followed by Dilate
|
|
status = pixErodeCL(hsize, vsize, wpl, h);
|
|
|
|
pixtemp = pixsCLBuffer;
|
|
pixsCLBuffer = pixdCLBuffer;
|
|
pixdCLBuffer = pixtemp;
|
|
|
|
status = pixDilateCL(hsize, vsize, wpl, h);
|
|
|
|
return status;
|
|
}
|
|
|
|
//Morphology Close operation. Invokes the relevant OpenCL kernels
|
|
cl_int
|
|
pixCloseCL(l_int32 hsize, l_int32 vsize, l_int32 wpl, l_int32 h)
|
|
{
|
|
cl_int status;
|
|
cl_mem pixtemp;
|
|
|
|
//Dilate followed by Erode
|
|
status = pixDilateCL(hsize, vsize, wpl, h);
|
|
|
|
pixtemp = pixsCLBuffer;
|
|
pixsCLBuffer = pixdCLBuffer;
|
|
pixdCLBuffer = pixtemp;
|
|
|
|
status = pixErodeCL(hsize, vsize, wpl, h);
|
|
|
|
return status;
|
|
}
|
|
|
|
// OpenCL implementation of Morphology Close
|
|
//Note: Assumes the source and dest opencl buffer are initialized. No check done
|
|
PIX *OpenclDevice::pixCloseBrickCL(PIX *pixd, PIX *pixs, l_int32 hsize,
|
|
l_int32 vsize, bool reqDataCopy = false) {
|
|
l_uint32 wpl, h;
|
|
|
|
wpl = pixGetWpl(pixs);
|
|
h = pixGetHeight(pixs);
|
|
|
|
clStatus = pixCloseCL(hsize, vsize, wpl, h);
|
|
|
|
if (reqDataCopy) {
|
|
pixd =
|
|
mapOutputCLBuffer(rEnv, pixdCLBuffer, pixd, pixs, wpl * h, CL_MAP_READ);
|
|
}
|
|
|
|
return pixd;
|
|
}
|
|
|
|
// OpenCL implementation of Morphology Open
|
|
//Note: Assumes the source and dest opencl buffer are initialized. No check done
|
|
PIX *OpenclDevice::pixOpenBrickCL(PIX *pixd, PIX *pixs, l_int32 hsize,
|
|
l_int32 vsize, bool reqDataCopy = false) {
|
|
l_uint32 wpl, h;
|
|
|
|
wpl = pixGetWpl(pixs);
|
|
h = pixGetHeight(pixs);
|
|
|
|
clStatus = pixOpenCL(hsize, vsize, wpl, h);
|
|
|
|
if (reqDataCopy) {
|
|
pixd =
|
|
mapOutputCLBuffer(rEnv, pixdCLBuffer, pixd, pixs, wpl * h, CL_MAP_READ);
|
|
}
|
|
|
|
return pixd;
|
|
}
|
|
|
|
//pix OR operation: outbuffer = buffer1 | buffer2
|
|
cl_int
|
|
pixORCL_work(l_uint32 wpl, l_uint32 h, cl_mem buffer1, cl_mem buffer2, cl_mem outbuffer)
|
|
{
|
|
cl_int status;
|
|
size_t globalThreads[2];
|
|
int gsize;
|
|
size_t localThreads[] = {GROUPSIZE_X, GROUPSIZE_Y};
|
|
|
|
gsize = (wpl + GROUPSIZE_X - 1)/ GROUPSIZE_X * GROUPSIZE_X;
|
|
globalThreads[0] = gsize;
|
|
gsize = (h + GROUPSIZE_Y - 1)/ GROUPSIZE_Y * GROUPSIZE_Y;
|
|
globalThreads[1] = gsize;
|
|
|
|
rEnv.mpkKernel = clCreateKernel( rEnv.mpkProgram, "pixOR", &status );
|
|
CHECK_OPENCL(status, "clCreateKernel pixOR");
|
|
|
|
status = clSetKernelArg(rEnv.mpkKernel,
|
|
0,
|
|
sizeof(cl_mem),
|
|
&buffer1);
|
|
status = clSetKernelArg(rEnv.mpkKernel,
|
|
1,
|
|
sizeof(cl_mem),
|
|
&buffer2);
|
|
status = clSetKernelArg(rEnv.mpkKernel,
|
|
2,
|
|
sizeof(cl_mem),
|
|
&outbuffer);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 3, sizeof(wpl), &wpl);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 4, sizeof(h), &h);
|
|
status = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue, rEnv.mpkKernel, 2,
|
|
nullptr, globalThreads, localThreads, 0,
|
|
nullptr, nullptr);
|
|
|
|
return status;
|
|
}
|
|
|
|
//pix AND operation: outbuffer = buffer1 & buffer2
|
|
cl_int
|
|
pixANDCL_work(l_uint32 wpl, l_uint32 h, cl_mem buffer1, cl_mem buffer2, cl_mem outbuffer)
|
|
{
|
|
cl_int status;
|
|
size_t globalThreads[2];
|
|
int gsize;
|
|
size_t localThreads[] = {GROUPSIZE_X, GROUPSIZE_Y};
|
|
|
|
gsize = (wpl + GROUPSIZE_X - 1)/ GROUPSIZE_X * GROUPSIZE_X;
|
|
globalThreads[0] = gsize;
|
|
gsize = (h + GROUPSIZE_Y - 1)/ GROUPSIZE_Y * GROUPSIZE_Y;
|
|
globalThreads[1] = gsize;
|
|
|
|
rEnv.mpkKernel = clCreateKernel( rEnv.mpkProgram, "pixAND", &status );
|
|
CHECK_OPENCL(status, "clCreateKernel pixAND");
|
|
|
|
// Enqueue a kernel run call.
|
|
status = clSetKernelArg(rEnv.mpkKernel,
|
|
0,
|
|
sizeof(cl_mem),
|
|
&buffer1);
|
|
status = clSetKernelArg(rEnv.mpkKernel,
|
|
1,
|
|
sizeof(cl_mem),
|
|
&buffer2);
|
|
status = clSetKernelArg(rEnv.mpkKernel,
|
|
2,
|
|
sizeof(cl_mem),
|
|
&outbuffer);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 3, sizeof(wpl), &wpl);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 4, sizeof(h), &h);
|
|
status = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue, rEnv.mpkKernel, 2,
|
|
nullptr, globalThreads, localThreads, 0,
|
|
nullptr, nullptr);
|
|
|
|
return status;
|
|
}
|
|
|
|
//output = buffer1 & ~(buffer2)
|
|
cl_int pixSubtractCL_work(l_uint32 wpl, l_uint32 h, cl_mem buffer1,
|
|
cl_mem buffer2, cl_mem outBuffer = nullptr) {
|
|
cl_int status;
|
|
size_t globalThreads[2];
|
|
int gsize;
|
|
size_t localThreads[] = {GROUPSIZE_X, GROUPSIZE_Y};
|
|
|
|
gsize = (wpl + GROUPSIZE_X - 1) / GROUPSIZE_X * GROUPSIZE_X;
|
|
globalThreads[0] = gsize;
|
|
gsize = (h + GROUPSIZE_Y - 1) / GROUPSIZE_Y * GROUPSIZE_Y;
|
|
globalThreads[1] = gsize;
|
|
|
|
if (outBuffer != nullptr) {
|
|
rEnv.mpkKernel = clCreateKernel(rEnv.mpkProgram, "pixSubtract", &status);
|
|
CHECK_OPENCL(status, "clCreateKernel pixSubtract");
|
|
} else {
|
|
rEnv.mpkKernel =
|
|
clCreateKernel(rEnv.mpkProgram, "pixSubtract_inplace", &status);
|
|
CHECK_OPENCL(status, "clCreateKernel pixSubtract_inplace");
|
|
}
|
|
|
|
// Enqueue a kernel run call.
|
|
status = clSetKernelArg(rEnv.mpkKernel, 0, sizeof(cl_mem), &buffer1);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 1, sizeof(cl_mem), &buffer2);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 2, sizeof(wpl), &wpl);
|
|
status = clSetKernelArg(rEnv.mpkKernel, 3, sizeof(h), &h);
|
|
if (outBuffer != nullptr) {
|
|
status = clSetKernelArg(rEnv.mpkKernel, 4, sizeof(cl_mem), &outBuffer);
|
|
}
|
|
status =
|
|
clEnqueueNDRangeKernel(rEnv.mpkCmdQueue, rEnv.mpkKernel, 2, nullptr,
|
|
globalThreads, localThreads, 0, nullptr, nullptr);
|
|
|
|
return status;
|
|
}
|
|
|
|
// OpenCL implementation of Subtract pix
|
|
//Note: Assumes the source and dest opencl buffer are initialized. No check done
|
|
PIX *OpenclDevice::pixSubtractCL(PIX *pixd, PIX *pixs1, PIX *pixs2,
|
|
bool reqDataCopy = false) {
|
|
l_uint32 wpl, h;
|
|
|
|
PROCNAME("pixSubtractCL");
|
|
|
|
if (!pixs1) return (PIX *)ERROR_PTR("pixs1 not defined", procName, pixd);
|
|
if (!pixs2) return (PIX *)ERROR_PTR("pixs2 not defined", procName, pixd);
|
|
if (pixGetDepth(pixs1) != pixGetDepth(pixs2))
|
|
return (PIX *)ERROR_PTR("depths of pixs* unequal", procName, pixd);
|
|
|
|
#if EQUAL_SIZE_WARNING
|
|
if (!pixSizesEqual(pixs1, pixs2))
|
|
L_WARNING("pixs1 and pixs2 not equal sizes", procName);
|
|
#endif /* EQUAL_SIZE_WARNING */
|
|
|
|
wpl = pixGetWpl(pixs1);
|
|
h = pixGetHeight(pixs1);
|
|
|
|
clStatus = pixSubtractCL_work(wpl, h, pixdCLBuffer, pixsCLBuffer);
|
|
|
|
if (reqDataCopy)
|
|
{
|
|
//Read back output data from OCL buffer to cpu
|
|
pixd = mapOutputCLBuffer(rEnv, pixdCLBuffer, pixd, pixs1, wpl*h, CL_MAP_READ);
|
|
}
|
|
|
|
return pixd;
|
|
}
|
|
|
|
// OpenCL implementation of Hollow pix
|
|
//Note: Assumes the source and dest opencl buffer are initialized. No check done
|
|
PIX *OpenclDevice::pixHollowCL(PIX *pixd, PIX *pixs, l_int32 close_hsize,
|
|
l_int32 close_vsize, l_int32 open_hsize,
|
|
l_int32 open_vsize, bool reqDataCopy = false) {
|
|
l_uint32 wpl, h;
|
|
cl_mem pixtemp;
|
|
|
|
wpl = pixGetWpl(pixs);
|
|
h = pixGetHeight(pixs);
|
|
|
|
// First step : Close Morph operation: Dilate followed by Erode
|
|
clStatus = pixCloseCL(close_hsize, close_vsize, wpl, h);
|
|
|
|
// Store the output of close operation in an intermediate buffer
|
|
// this will be later used for pixsubtract
|
|
clStatus =
|
|
clEnqueueCopyBuffer(rEnv.mpkCmdQueue, pixdCLBuffer, pixdCLIntermediate, 0,
|
|
0, sizeof(int) * wpl * h, 0, nullptr, nullptr);
|
|
|
|
// Second step: Open Operation - Erode followed by Dilate
|
|
pixtemp = pixsCLBuffer;
|
|
pixsCLBuffer = pixdCLBuffer;
|
|
pixdCLBuffer = pixtemp;
|
|
|
|
clStatus = pixOpenCL(open_hsize, open_vsize, wpl, h);
|
|
|
|
// Third step: Subtract : (Close - Open)
|
|
pixtemp = pixsCLBuffer;
|
|
pixsCLBuffer = pixdCLBuffer;
|
|
pixdCLBuffer = pixdCLIntermediate;
|
|
pixdCLIntermediate = pixtemp;
|
|
|
|
clStatus = pixSubtractCL_work(wpl, h, pixdCLBuffer, pixsCLBuffer);
|
|
|
|
if (reqDataCopy) {
|
|
// Read back output data from OCL buffer to cpu
|
|
pixd =
|
|
mapOutputCLBuffer(rEnv, pixdCLBuffer, pixd, pixs, wpl * h, CL_MAP_READ);
|
|
}
|
|
return pixd;
|
|
}
|
|
|
|
// OpenCL implementation of Get Lines from pix function
|
|
//Note: Assumes the source and dest opencl buffer are initialized. No check done
|
|
void OpenclDevice::pixGetLinesCL(PIX *pixd, PIX *pixs, PIX **pix_vline,
|
|
PIX **pix_hline, PIX **pixClosed,
|
|
bool getpixClosed, l_int32 close_hsize,
|
|
l_int32 close_vsize, l_int32 open_hsize,
|
|
l_int32 open_vsize, l_int32 line_hsize,
|
|
l_int32 line_vsize) {
|
|
l_uint32 wpl, h;
|
|
cl_mem pixtemp;
|
|
|
|
wpl = pixGetWpl(pixs);
|
|
h = pixGetHeight(pixs);
|
|
|
|
// First step : Close Morph operation: Dilate followed by Erode
|
|
clStatus = pixCloseCL(close_hsize, close_vsize, wpl, h);
|
|
|
|
// Copy the Close output to CPU buffer
|
|
if (getpixClosed) {
|
|
*pixClosed = mapOutputCLBuffer(rEnv, pixdCLBuffer, *pixClosed, pixs,
|
|
wpl * h, CL_MAP_READ, true, false);
|
|
}
|
|
|
|
// Store the output of close operation in an intermediate buffer
|
|
// this will be later used for pixsubtract
|
|
clStatus =
|
|
clEnqueueCopyBuffer(rEnv.mpkCmdQueue, pixdCLBuffer, pixdCLIntermediate, 0,
|
|
0, sizeof(int) * wpl * h, 0, nullptr, nullptr);
|
|
|
|
// Second step: Open Operation - Erode followed by Dilate
|
|
pixtemp = pixsCLBuffer;
|
|
pixsCLBuffer = pixdCLBuffer;
|
|
pixdCLBuffer = pixtemp;
|
|
|
|
clStatus = pixOpenCL(open_hsize, open_vsize, wpl, h);
|
|
|
|
// Third step: Subtract : (Close - Open)
|
|
pixtemp = pixsCLBuffer;
|
|
pixsCLBuffer = pixdCLBuffer;
|
|
pixdCLBuffer = pixdCLIntermediate;
|
|
pixdCLIntermediate = pixtemp;
|
|
|
|
clStatus = pixSubtractCL_work(wpl, h, pixdCLBuffer, pixsCLBuffer);
|
|
|
|
// Store the output of Hollow operation in an intermediate buffer
|
|
// this will be later used
|
|
clStatus =
|
|
clEnqueueCopyBuffer(rEnv.mpkCmdQueue, pixdCLBuffer, pixdCLIntermediate, 0,
|
|
0, sizeof(int) * wpl * h, 0, nullptr, nullptr);
|
|
|
|
pixtemp = pixsCLBuffer;
|
|
pixsCLBuffer = pixdCLBuffer;
|
|
pixdCLBuffer = pixtemp;
|
|
|
|
// Fourth step: Get vertical line
|
|
// pixOpenBrick(nullptr, pix_hollow, 1, min_line_length);
|
|
clStatus = pixOpenCL(1, line_vsize, wpl, h);
|
|
|
|
// Copy the vertical line output to CPU buffer
|
|
*pix_vline = mapOutputCLBuffer(rEnv, pixdCLBuffer, *pix_vline, pixs, wpl * h,
|
|
CL_MAP_READ, true, false);
|
|
|
|
pixtemp = pixsCLBuffer;
|
|
pixsCLBuffer = pixdCLIntermediate;
|
|
pixdCLIntermediate = pixtemp;
|
|
|
|
// Fifth step: Get horizontal line
|
|
// pixOpenBrick(nullptr, pix_hollow, min_line_length, 1);
|
|
clStatus = pixOpenCL(line_hsize, 1, wpl, h);
|
|
|
|
// Copy the horizontal line output to CPU buffer
|
|
*pix_hline = mapOutputCLBuffer(rEnv, pixdCLBuffer, *pix_hline, pixs, wpl * h,
|
|
CL_MAP_READ, true, true);
|
|
|
|
return;
|
|
}
|
|
|
|
/*************************************************************************
|
|
* HistogramRect
|
|
* Otsu Thresholding Operations
|
|
* histogramAllChannels is laid out as all channel 0, then all channel 1...
|
|
* only supports 1 or 4 channels (bytes_per_pixel)
|
|
************************************************************************/
|
|
int OpenclDevice::HistogramRectOCL(unsigned char *imageData,
|
|
int bytes_per_pixel, int bytes_per_line,
|
|
int left, // always 0
|
|
int top, // always 0
|
|
int width, int height, int kHistogramSize,
|
|
int *histogramAllChannels) {
|
|
PERF_COUNT_START("HistogramRectOCL")
|
|
cl_int clStatus;
|
|
int retVal = 0;
|
|
KernelEnv histKern;
|
|
SetKernelEnv(&histKern);
|
|
KernelEnv histRedKern;
|
|
SetKernelEnv(&histRedKern);
|
|
/* map imagedata to device as read only */
|
|
// USE_HOST_PTR uses onion+ bus which is slowest option; also happens to be
|
|
// coherent which we don't need.
|
|
// faster option would be to allocate initial image buffer
|
|
// using a garlic bus memory type
|
|
cl_mem imageBuffer = clCreateBuffer(
|
|
histKern.mpkContext, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR,
|
|
width * height * bytes_per_pixel * sizeof(char), imageData, &clStatus);
|
|
CHECK_OPENCL(clStatus, "clCreateBuffer imageBuffer");
|
|
|
|
/* setup work group size parameters */
|
|
int block_size = 256;
|
|
cl_uint numCUs;
|
|
clStatus = clGetDeviceInfo(gpuEnv.mpDevID, CL_DEVICE_MAX_COMPUTE_UNITS,
|
|
sizeof(numCUs), &numCUs, nullptr);
|
|
CHECK_OPENCL(clStatus, "clCreateBuffer imageBuffer");
|
|
|
|
int requestedOccupancy = 10;
|
|
int numWorkGroups = numCUs * requestedOccupancy;
|
|
int numThreads = block_size * numWorkGroups;
|
|
size_t local_work_size[] = {static_cast<size_t>(block_size)};
|
|
size_t global_work_size[] = {static_cast<size_t>(numThreads)};
|
|
size_t red_global_work_size[] = {
|
|
static_cast<size_t>(block_size * kHistogramSize * bytes_per_pixel)};
|
|
|
|
/* map histogramAllChannels as write only */
|
|
int numBins = kHistogramSize * bytes_per_pixel * numWorkGroups;
|
|
|
|
cl_mem histogramBuffer = clCreateBuffer(
|
|
histKern.mpkContext, CL_MEM_READ_WRITE | CL_MEM_USE_HOST_PTR,
|
|
kHistogramSize * bytes_per_pixel * sizeof(int), histogramAllChannels,
|
|
&clStatus);
|
|
CHECK_OPENCL(clStatus, "clCreateBuffer histogramBuffer");
|
|
|
|
/* intermediate histogram buffer */
|
|
int histRed = 256;
|
|
int tmpHistogramBins = kHistogramSize * bytes_per_pixel * histRed;
|
|
|
|
cl_mem tmpHistogramBuffer =
|
|
clCreateBuffer(histKern.mpkContext, CL_MEM_READ_WRITE,
|
|
tmpHistogramBins * sizeof(cl_uint), nullptr, &clStatus);
|
|
CHECK_OPENCL(clStatus, "clCreateBuffer tmpHistogramBuffer");
|
|
|
|
/* atomic sync buffer */
|
|
int *zeroBuffer = new int[1];
|
|
zeroBuffer[0] = 0;
|
|
cl_mem atomicSyncBuffer = clCreateBuffer(
|
|
histKern.mpkContext, CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR,
|
|
sizeof(cl_int), zeroBuffer, &clStatus);
|
|
CHECK_OPENCL(clStatus, "clCreateBuffer atomicSyncBuffer");
|
|
delete[] zeroBuffer;
|
|
// Create kernel objects based on bytes_per_pixel
|
|
if (bytes_per_pixel == 1) {
|
|
histKern.mpkKernel = clCreateKernel(
|
|
histKern.mpkProgram, "kernel_HistogramRectOneChannel", &clStatus);
|
|
CHECK_OPENCL(clStatus, "clCreateKernel kernel_HistogramRectOneChannel");
|
|
|
|
histRedKern.mpkKernel =
|
|
clCreateKernel(histRedKern.mpkProgram,
|
|
"kernel_HistogramRectOneChannelReduction", &clStatus);
|
|
CHECK_OPENCL(clStatus,
|
|
"clCreateKernel kernel_HistogramRectOneChannelReduction");
|
|
} else {
|
|
histKern.mpkKernel = clCreateKernel( histKern.mpkProgram, "kernel_HistogramRectAllChannels", &clStatus );
|
|
CHECK_OPENCL( clStatus, "clCreateKernel kernel_HistogramRectAllChannels");
|
|
|
|
histRedKern.mpkKernel = clCreateKernel( histRedKern.mpkProgram, "kernel_HistogramRectAllChannelsReduction", &clStatus );
|
|
CHECK_OPENCL( clStatus, "clCreateKernel kernel_HistogramRectAllChannelsReduction");
|
|
}
|
|
|
|
void *ptr;
|
|
|
|
//Initialize tmpHistogramBuffer buffer
|
|
ptr = clEnqueueMapBuffer(
|
|
histKern.mpkCmdQueue, tmpHistogramBuffer, CL_TRUE, CL_MAP_WRITE, 0,
|
|
tmpHistogramBins * sizeof(cl_uint), 0, nullptr, nullptr, &clStatus);
|
|
CHECK_OPENCL( clStatus, "clEnqueueMapBuffer tmpHistogramBuffer");
|
|
|
|
memset(ptr, 0, tmpHistogramBins*sizeof(cl_uint));
|
|
clEnqueueUnmapMemObject(histKern.mpkCmdQueue, tmpHistogramBuffer, ptr, 0,
|
|
nullptr, nullptr);
|
|
|
|
/* set kernel 1 arguments */
|
|
clStatus =
|
|
clSetKernelArg(histKern.mpkKernel, 0, sizeof(cl_mem), &imageBuffer);
|
|
CHECK_OPENCL( clStatus, "clSetKernelArg imageBuffer");
|
|
cl_uint numPixels = width*height;
|
|
clStatus =
|
|
clSetKernelArg(histKern.mpkKernel, 1, sizeof(cl_uint), &numPixels);
|
|
CHECK_OPENCL( clStatus, "clSetKernelArg numPixels" );
|
|
clStatus = clSetKernelArg(histKern.mpkKernel, 2, sizeof(cl_mem),
|
|
&tmpHistogramBuffer);
|
|
CHECK_OPENCL( clStatus, "clSetKernelArg tmpHistogramBuffer");
|
|
|
|
/* set kernel 2 arguments */
|
|
int n = numThreads/bytes_per_pixel;
|
|
clStatus = clSetKernelArg(histRedKern.mpkKernel, 0, sizeof(cl_int), &n);
|
|
CHECK_OPENCL( clStatus, "clSetKernelArg imageBuffer");
|
|
clStatus = clSetKernelArg(histRedKern.mpkKernel, 1, sizeof(cl_mem),
|
|
&tmpHistogramBuffer);
|
|
CHECK_OPENCL( clStatus, "clSetKernelArg tmpHistogramBuffer");
|
|
clStatus = clSetKernelArg(histRedKern.mpkKernel, 2, sizeof(cl_mem),
|
|
&histogramBuffer);
|
|
CHECK_OPENCL( clStatus, "clSetKernelArg histogramBuffer");
|
|
|
|
/* launch histogram */
|
|
PERF_COUNT_SUB("before")
|
|
clStatus = clEnqueueNDRangeKernel(histKern.mpkCmdQueue, histKern.mpkKernel, 1,
|
|
nullptr, global_work_size, local_work_size, 0,
|
|
nullptr, nullptr);
|
|
CHECK_OPENCL(clStatus,
|
|
"clEnqueueNDRangeKernel kernel_HistogramRectAllChannels");
|
|
clFinish(histKern.mpkCmdQueue);
|
|
if (clStatus != 0) {
|
|
retVal = -1;
|
|
}
|
|
/* launch histogram */
|
|
clStatus = clEnqueueNDRangeKernel(
|
|
histRedKern.mpkCmdQueue, histRedKern.mpkKernel, 1, nullptr,
|
|
red_global_work_size, local_work_size, 0, nullptr, nullptr);
|
|
CHECK_OPENCL( clStatus, "clEnqueueNDRangeKernel kernel_HistogramRectAllChannelsReduction" );
|
|
clFinish( histRedKern.mpkCmdQueue );
|
|
if (clStatus != 0) {
|
|
retVal = -1;
|
|
}
|
|
PERF_COUNT_SUB("redKernel")
|
|
|
|
/* map results back from gpu */
|
|
ptr = clEnqueueMapBuffer(histRedKern.mpkCmdQueue, histogramBuffer, CL_TRUE,
|
|
CL_MAP_READ, 0,
|
|
kHistogramSize * bytes_per_pixel * sizeof(int), 0,
|
|
nullptr, nullptr, &clStatus);
|
|
CHECK_OPENCL( clStatus, "clEnqueueMapBuffer histogramBuffer");
|
|
if (clStatus != 0) {
|
|
retVal = -1;
|
|
}
|
|
clEnqueueUnmapMemObject(histRedKern.mpkCmdQueue, histogramBuffer, ptr, 0,
|
|
nullptr, nullptr);
|
|
|
|
clReleaseMemObject(histogramBuffer);
|
|
clReleaseMemObject(imageBuffer);
|
|
PERF_COUNT_SUB("after")
|
|
PERF_COUNT_END
|
|
return retVal;
|
|
}
|
|
|
|
/*************************************************************************
|
|
* Threshold the rectangle, taking everything except the image buffer pointer
|
|
* from the class, using thresholds/hi_values to the output IMAGE.
|
|
* only supports 1 or 4 channels
|
|
************************************************************************/
|
|
int OpenclDevice::ThresholdRectToPixOCL(unsigned char *imageData,
|
|
int bytes_per_pixel, int bytes_per_line,
|
|
int *thresholds, int *hi_values,
|
|
Pix **pix, int height, int width,
|
|
int top, int left) {
|
|
PERF_COUNT_START("ThresholdRectToPixOCL")
|
|
int retVal = 0;
|
|
/* create pix result buffer */
|
|
*pix = pixCreate(width, height, 1);
|
|
uint32_t *pixData = pixGetData(*pix);
|
|
int wpl = pixGetWpl(*pix);
|
|
int pixSize = wpl * height * sizeof(uint32_t); // number of pixels
|
|
|
|
cl_int clStatus;
|
|
KernelEnv rEnv;
|
|
SetKernelEnv(&rEnv);
|
|
|
|
/* setup work group size parameters */
|
|
int block_size = 256;
|
|
cl_uint numCUs = 6;
|
|
clStatus = clGetDeviceInfo(gpuEnv.mpDevID, CL_DEVICE_MAX_COMPUTE_UNITS,
|
|
sizeof(numCUs), &numCUs, nullptr);
|
|
CHECK_OPENCL(clStatus, "clCreateBuffer imageBuffer");
|
|
|
|
int requestedOccupancy = 10;
|
|
int numWorkGroups = numCUs * requestedOccupancy;
|
|
int numThreads = block_size * numWorkGroups;
|
|
size_t local_work_size[] = {(size_t)block_size};
|
|
size_t global_work_size[] = {(size_t)numThreads};
|
|
|
|
/* map imagedata to device as read only */
|
|
// USE_HOST_PTR uses onion+ bus which is slowest option; also happens to be
|
|
// coherent which we don't need.
|
|
// faster option would be to allocate initial image buffer
|
|
// using a garlic bus memory type
|
|
cl_mem imageBuffer = clCreateBuffer(
|
|
rEnv.mpkContext, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR,
|
|
width * height * bytes_per_pixel * sizeof(char), imageData, &clStatus);
|
|
CHECK_OPENCL(clStatus, "clCreateBuffer imageBuffer");
|
|
|
|
/* map pix as write only */
|
|
pixThBuffer =
|
|
clCreateBuffer(rEnv.mpkContext, CL_MEM_READ_WRITE | CL_MEM_USE_HOST_PTR,
|
|
pixSize, pixData, &clStatus);
|
|
CHECK_OPENCL(clStatus, "clCreateBuffer pix");
|
|
|
|
/* map thresholds and hi_values */
|
|
cl_mem thresholdsBuffer =
|
|
clCreateBuffer(rEnv.mpkContext, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR,
|
|
bytes_per_pixel * sizeof(int), thresholds, &clStatus);
|
|
CHECK_OPENCL(clStatus, "clCreateBuffer thresholdBuffer");
|
|
cl_mem hiValuesBuffer =
|
|
clCreateBuffer(rEnv.mpkContext, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR,
|
|
bytes_per_pixel * sizeof(int), hi_values, &clStatus);
|
|
CHECK_OPENCL(clStatus, "clCreateBuffer hiValuesBuffer");
|
|
|
|
/* compile kernel */
|
|
if (bytes_per_pixel == 4) {
|
|
rEnv.mpkKernel =
|
|
clCreateKernel(rEnv.mpkProgram, "kernel_ThresholdRectToPix", &clStatus);
|
|
CHECK_OPENCL(clStatus, "clCreateKernel kernel_ThresholdRectToPix");
|
|
} else {
|
|
rEnv.mpkKernel = clCreateKernel(
|
|
rEnv.mpkProgram, "kernel_ThresholdRectToPix_OneChan", &clStatus);
|
|
CHECK_OPENCL(clStatus, "clCreateKernel kernel_ThresholdRectToPix_OneChan");
|
|
}
|
|
|
|
/* set kernel arguments */
|
|
clStatus = clSetKernelArg(rEnv.mpkKernel, 0, sizeof(cl_mem), &imageBuffer);
|
|
CHECK_OPENCL(clStatus, "clSetKernelArg imageBuffer");
|
|
cl_uint numPixels = width * height;
|
|
clStatus = clSetKernelArg(rEnv.mpkKernel, 1, sizeof(int), &height);
|
|
CHECK_OPENCL(clStatus, "clSetKernelArg height");
|
|
clStatus = clSetKernelArg(rEnv.mpkKernel, 2, sizeof(int), &width);
|
|
CHECK_OPENCL(clStatus, "clSetKernelArg width");
|
|
clStatus = clSetKernelArg(rEnv.mpkKernel, 3, sizeof(int), &wpl);
|
|
CHECK_OPENCL(clStatus, "clSetKernelArg wpl");
|
|
clStatus =
|
|
clSetKernelArg(rEnv.mpkKernel, 4, sizeof(cl_mem), &thresholdsBuffer);
|
|
CHECK_OPENCL(clStatus, "clSetKernelArg thresholdsBuffer");
|
|
clStatus = clSetKernelArg(rEnv.mpkKernel, 5, sizeof(cl_mem), &hiValuesBuffer);
|
|
CHECK_OPENCL(clStatus, "clSetKernelArg hiValuesBuffer");
|
|
clStatus = clSetKernelArg(rEnv.mpkKernel, 6, sizeof(cl_mem), &pixThBuffer);
|
|
CHECK_OPENCL(clStatus, "clSetKernelArg pixThBuffer");
|
|
|
|
/* launch kernel & wait */
|
|
PERF_COUNT_SUB("before")
|
|
clStatus = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue, rEnv.mpkKernel, 1,
|
|
nullptr, global_work_size, local_work_size,
|
|
0, nullptr, nullptr);
|
|
CHECK_OPENCL(clStatus, "clEnqueueNDRangeKernel kernel_ThresholdRectToPix");
|
|
clFinish(rEnv.mpkCmdQueue);
|
|
PERF_COUNT_SUB("kernel")
|
|
if (clStatus != 0) {
|
|
printf("Setting return value to -1\n");
|
|
retVal = -1;
|
|
}
|
|
/* map results back from gpu */
|
|
void *ptr =
|
|
clEnqueueMapBuffer(rEnv.mpkCmdQueue, pixThBuffer, CL_TRUE, CL_MAP_READ, 0,
|
|
pixSize, 0, nullptr, nullptr, &clStatus);
|
|
CHECK_OPENCL(clStatus, "clEnqueueMapBuffer histogramBuffer");
|
|
clEnqueueUnmapMemObject(rEnv.mpkCmdQueue, pixThBuffer, ptr, 0, nullptr,
|
|
nullptr);
|
|
|
|
clReleaseMemObject(imageBuffer);
|
|
clReleaseMemObject(thresholdsBuffer);
|
|
clReleaseMemObject(hiValuesBuffer);
|
|
|
|
PERF_COUNT_SUB("after")
|
|
PERF_COUNT_END
|
|
return retVal;
|
|
}
|
|
|
|
|
|
|
|
/******************************************************************************
|
|
* Data Types for Device Selection
|
|
*****************************************************************************/
|
|
|
|
typedef struct _TessScoreEvaluationInputData {
|
|
int height;
|
|
int width;
|
|
int numChannels;
|
|
unsigned char *imageData;
|
|
Pix *pix;
|
|
} TessScoreEvaluationInputData;
|
|
|
|
void populateTessScoreEvaluationInputData( TessScoreEvaluationInputData *input ) {
|
|
srand(1);
|
|
// 8.5x11 inches @ 300dpi rounded to clean multiples
|
|
int height = 3328; // %256
|
|
int width = 2560; // %512
|
|
int numChannels = 4;
|
|
input->height = height;
|
|
input->width = width;
|
|
input->numChannels = numChannels;
|
|
unsigned char (*imageData4)[4] = (unsigned char (*)[4]) malloc(height*width*numChannels*sizeof(unsigned char)); // new unsigned char[4][height*width];
|
|
input->imageData = (unsigned char *) &imageData4[0];
|
|
|
|
// zero out image
|
|
unsigned char pixelWhite[4] = { 0, 0, 0, 255};
|
|
unsigned char pixelBlack[4] = {255, 255, 255, 255};
|
|
for (int p = 0; p < height*width; p++) {
|
|
//unsigned char tmp[4] = imageData4[0];
|
|
imageData4[p][0] = pixelWhite[0];
|
|
imageData4[p][1] = pixelWhite[1];
|
|
imageData4[p][2] = pixelWhite[2];
|
|
imageData4[p][3] = pixelWhite[3];
|
|
}
|
|
// random lines to be eliminated
|
|
int maxLineWidth = 64; // pixels wide
|
|
int numLines = 10;
|
|
// vertical lines
|
|
for (int i = 0; i < numLines; i++) {
|
|
int lineWidth = rand()%maxLineWidth;
|
|
int vertLinePos = lineWidth + rand()%(width-2*lineWidth);
|
|
//printf("[PI] VerticalLine @ %i (w=%i)\n", vertLinePos, lineWidth);
|
|
for (int row = vertLinePos-lineWidth/2; row < vertLinePos+lineWidth/2; row++) {
|
|
for (int col = 0; col < height; col++) {
|
|
//imageData4[row*width+col] = pixelBlack;
|
|
imageData4[row*width+col][0] = pixelBlack[0];
|
|
imageData4[row*width+col][1] = pixelBlack[1];
|
|
imageData4[row*width+col][2] = pixelBlack[2];
|
|
imageData4[row*width+col][3] = pixelBlack[3];
|
|
}
|
|
}
|
|
}
|
|
// horizontal lines
|
|
for (int i = 0; i < numLines; i++) {
|
|
int lineWidth = rand()%maxLineWidth;
|
|
int horLinePos = lineWidth + rand()%(height-2*lineWidth);
|
|
//printf("[PI] HorizontalLine @ %i (w=%i)\n", horLinePos, lineWidth);
|
|
for (int row = 0; row < width; row++) {
|
|
for (int col = horLinePos-lineWidth/2; col < horLinePos+lineWidth/2; col++) { // for (int row = vertLinePos-lineWidth/2; row < vertLinePos+lineWidth/2; row++) {
|
|
//printf("[PI] HoizLine pix @ (%3i, %3i)\n", row, col);
|
|
//imageData4[row*width+col] = pixelBlack;
|
|
imageData4[row*width+col][0] = pixelBlack[0];
|
|
imageData4[row*width+col][1] = pixelBlack[1];
|
|
imageData4[row*width+col][2] = pixelBlack[2];
|
|
imageData4[row*width+col][3] = pixelBlack[3];
|
|
}
|
|
}
|
|
}
|
|
// spots (noise, squares)
|
|
float fractionBlack = 0.1; // how much of the image should be blackened
|
|
int numSpots = (height*width)*fractionBlack/(maxLineWidth*maxLineWidth/2/2);
|
|
for (int i = 0; i < numSpots; i++) {
|
|
int lineWidth = rand()%maxLineWidth;
|
|
int col = lineWidth + rand()%(width-2*lineWidth);
|
|
int row = lineWidth + rand()%(height-2*lineWidth);
|
|
//printf("[PI] Spot[%i/%i] @ (%3i, %3i)\n", i, numSpots, row, col );
|
|
for (int r = row-lineWidth/2; r < row+lineWidth/2; r++) {
|
|
for (int c = col-lineWidth/2; c < col+lineWidth/2; c++) {
|
|
//printf("[PI] \tSpot[%i/%i] @ (%3i, %3i)\n", i, numSpots, r, c );
|
|
//imageData4[row*width+col] = pixelBlack;
|
|
imageData4[r*width+c][0] = pixelBlack[0];
|
|
imageData4[r*width+c][1] = pixelBlack[1];
|
|
imageData4[r*width+c][2] = pixelBlack[2];
|
|
imageData4[r*width+c][3] = pixelBlack[3];
|
|
}
|
|
}
|
|
}
|
|
|
|
input->pix = pixCreate(input->width, input->height, 1);
|
|
}
|
|
|
|
typedef struct _TessDeviceScore {
|
|
float time; // small time means faster device
|
|
bool clError; // were there any opencl errors
|
|
bool valid; // was the correct response generated
|
|
} TessDeviceScore;
|
|
|
|
/******************************************************************************
|
|
* Micro Benchmarks for Device Selection
|
|
*****************************************************************************/
|
|
|
|
double composeRGBPixelMicroBench( GPUEnv *env, TessScoreEvaluationInputData input, ds_device_type type ) {
|
|
double time = 0;
|
|
#if ON_WINDOWS
|
|
LARGE_INTEGER freq, time_funct_start, time_funct_end;
|
|
QueryPerformanceFrequency(&freq);
|
|
#elif ON_APPLE
|
|
mach_timebase_info_data_t info = {0, 0};
|
|
mach_timebase_info(&info);
|
|
long long start, stop;
|
|
#else
|
|
timespec time_funct_start, time_funct_end;
|
|
#endif
|
|
// input data
|
|
l_uint32 *tiffdata = (l_uint32 *)input.imageData;// same size and random data; data doesn't change workload
|
|
|
|
// function call
|
|
if (type == DS_DEVICE_OPENCL_DEVICE) {
|
|
#if ON_WINDOWS
|
|
QueryPerformanceCounter(&time_funct_start);
|
|
#elif ON_APPLE
|
|
start = mach_absolute_time();
|
|
#else
|
|
clock_gettime( CLOCK_MONOTONIC, &time_funct_start );
|
|
#endif
|
|
|
|
OpenclDevice::gpuEnv = *env;
|
|
int wpl = pixGetWpl(input.pix);
|
|
OpenclDevice::pixReadFromTiffKernel(tiffdata, input.width, input.height,
|
|
wpl, nullptr);
|
|
#if ON_WINDOWS
|
|
QueryPerformanceCounter(&time_funct_end);
|
|
time = (time_funct_end.QuadPart-time_funct_start.QuadPart)/(double)(freq.QuadPart);
|
|
#elif ON_APPLE
|
|
stop = mach_absolute_time();
|
|
time = ((stop - start) * (double)info.numer / info.denom) / 1.0E9;
|
|
#else
|
|
clock_gettime( CLOCK_MONOTONIC, &time_funct_end );
|
|
time = (time_funct_end.tv_sec - time_funct_start.tv_sec)*1.0 + (time_funct_end.tv_nsec - time_funct_start.tv_nsec)/1000000000.0;
|
|
#endif
|
|
|
|
} else {
|
|
#if ON_WINDOWS
|
|
QueryPerformanceCounter(&time_funct_start);
|
|
#elif ON_APPLE
|
|
start = mach_absolute_time();
|
|
#else
|
|
clock_gettime( CLOCK_MONOTONIC, &time_funct_start );
|
|
#endif
|
|
Pix *pix = pixCreate(input.width, input.height, 32);
|
|
l_uint32 *pixData = pixGetData(pix);
|
|
int wpl = pixGetWpl(pix);
|
|
//l_uint32* output_gpu=pixReadFromTiffKernel(tiffdata,w,h,wpl,line);
|
|
//pixSetData(pix, output_gpu);
|
|
int i, j;
|
|
int idx = 0;
|
|
for (i = 0; i < input.height ; i++) {
|
|
for (j = 0; j < input.width; j++) {
|
|
l_uint32 tiffword = tiffdata[i * input.width + j];
|
|
l_int32 rval = ((tiffword) & 0xff);
|
|
l_int32 gval = (((tiffword) >> 8) & 0xff);
|
|
l_int32 bval = (((tiffword) >> 16) & 0xff);
|
|
l_uint32 value = (rval << 24) | (gval << 16) | (bval << 8);
|
|
pixData[idx] = value;
|
|
idx++;
|
|
}
|
|
}
|
|
#if ON_WINDOWS
|
|
QueryPerformanceCounter(&time_funct_end);
|
|
time = (time_funct_end.QuadPart-time_funct_start.QuadPart)/(double)(freq.QuadPart);
|
|
#elif ON_APPLE
|
|
stop = mach_absolute_time();
|
|
time = ((stop - start) * (double)info.numer / info.denom) / 1.0E9;
|
|
#else
|
|
clock_gettime( CLOCK_MONOTONIC, &time_funct_end );
|
|
time = (time_funct_end.tv_sec - time_funct_start.tv_sec)*1.0 + (time_funct_end.tv_nsec - time_funct_start.tv_nsec)/1000000000.0;
|
|
#endif
|
|
pixDestroy(&pix);
|
|
}
|
|
|
|
|
|
// cleanup
|
|
|
|
return time;
|
|
}
|
|
|
|
double histogramRectMicroBench( GPUEnv *env, TessScoreEvaluationInputData input, ds_device_type type ) {
|
|
double time;
|
|
#if ON_WINDOWS
|
|
LARGE_INTEGER freq, time_funct_start, time_funct_end;
|
|
QueryPerformanceFrequency(&freq);
|
|
#elif ON_APPLE
|
|
mach_timebase_info_data_t info = {0, 0};
|
|
mach_timebase_info(&info);
|
|
long long start, stop;
|
|
#else
|
|
timespec time_funct_start, time_funct_end;
|
|
#endif
|
|
|
|
unsigned char pixelHi = (unsigned char)255;
|
|
|
|
int left = 0;
|
|
int top = 0;
|
|
int kHistogramSize = 256;
|
|
int bytes_per_line = input.width*input.numChannels;
|
|
int *histogramAllChannels = new int[kHistogramSize*input.numChannels];
|
|
int retVal = 0;
|
|
// function call
|
|
if (type == DS_DEVICE_OPENCL_DEVICE) {
|
|
#if ON_WINDOWS
|
|
QueryPerformanceCounter(&time_funct_start);
|
|
#elif ON_APPLE
|
|
start = mach_absolute_time();
|
|
#else
|
|
clock_gettime( CLOCK_MONOTONIC, &time_funct_start );
|
|
#endif
|
|
|
|
OpenclDevice::gpuEnv = *env;
|
|
int wpl = pixGetWpl(input.pix);
|
|
retVal = OpenclDevice::HistogramRectOCL(
|
|
input.imageData, input.numChannels, bytes_per_line, top, left,
|
|
input.width, input.height, kHistogramSize, histogramAllChannels);
|
|
|
|
#if ON_WINDOWS
|
|
QueryPerformanceCounter(&time_funct_end);
|
|
time = (time_funct_end.QuadPart-time_funct_start.QuadPart)/(double)(freq.QuadPart);
|
|
#elif ON_APPLE
|
|
stop = mach_absolute_time();
|
|
if (retVal == 0) {
|
|
time = ((stop - start) * (double)info.numer / info.denom) / 1.0E9;
|
|
} else {
|
|
time = FLT_MAX;
|
|
}
|
|
#else
|
|
clock_gettime( CLOCK_MONOTONIC, &time_funct_end );
|
|
time = (time_funct_end.tv_sec - time_funct_start.tv_sec)*1.0 + (time_funct_end.tv_nsec - time_funct_start.tv_nsec)/1000000000.0;
|
|
#endif
|
|
} else {
|
|
int *histogram = new int[kHistogramSize];
|
|
#if ON_WINDOWS
|
|
QueryPerformanceCounter(&time_funct_start);
|
|
#elif ON_APPLE
|
|
start = mach_absolute_time();
|
|
#else
|
|
clock_gettime( CLOCK_MONOTONIC, &time_funct_start );
|
|
#endif
|
|
for (int ch = 0; ch < input.numChannels; ++ch) {
|
|
tesseract::HistogramRect(input.pix, input.numChannels, left, top,
|
|
input.width, input.height, histogram);
|
|
}
|
|
#if ON_WINDOWS
|
|
QueryPerformanceCounter(&time_funct_end);
|
|
time = (time_funct_end.QuadPart-time_funct_start.QuadPart)/(double)(freq.QuadPart);
|
|
#elif ON_APPLE
|
|
stop = mach_absolute_time();
|
|
time = ((stop - start) * (double)info.numer / info.denom) / 1.0E9;
|
|
#else
|
|
clock_gettime( CLOCK_MONOTONIC, &time_funct_end );
|
|
time = (time_funct_end.tv_sec - time_funct_start.tv_sec)*1.0 + (time_funct_end.tv_nsec - time_funct_start.tv_nsec)/1000000000.0;
|
|
#endif
|
|
delete[] histogram;
|
|
}
|
|
|
|
// cleanup
|
|
delete[] histogramAllChannels;
|
|
return time;
|
|
}
|
|
|
|
//Reproducing the ThresholdRectToPix native version
|
|
void ThresholdRectToPix_Native(const unsigned char* imagedata,
|
|
int bytes_per_pixel,
|
|
int bytes_per_line,
|
|
const int* thresholds,
|
|
const int* hi_values,
|
|
Pix** pix) {
|
|
int top = 0;
|
|
int left = 0;
|
|
int width = pixGetWidth(*pix);
|
|
int height = pixGetHeight(*pix);
|
|
|
|
*pix = pixCreate(width, height, 1);
|
|
uint32_t *pixdata = pixGetData(*pix);
|
|
int wpl = pixGetWpl(*pix);
|
|
const unsigned char* srcdata = imagedata + top * bytes_per_line +
|
|
left * bytes_per_pixel;
|
|
for (int y = 0; y < height; ++y) {
|
|
const uint8_t *linedata = srcdata;
|
|
uint32_t *pixline = pixdata + y * wpl;
|
|
for (int x = 0; x < width; ++x, linedata += bytes_per_pixel) {
|
|
bool white_result = true;
|
|
for (int ch = 0; ch < bytes_per_pixel; ++ch) {
|
|
if (hi_values[ch] >= 0 &&
|
|
(linedata[ch] > thresholds[ch]) == (hi_values[ch] == 0)) {
|
|
white_result = false;
|
|
break;
|
|
}
|
|
}
|
|
if (white_result)
|
|
CLEAR_DATA_BIT(pixline, x);
|
|
else
|
|
SET_DATA_BIT(pixline, x);
|
|
}
|
|
srcdata += bytes_per_line;
|
|
}
|
|
}
|
|
|
|
double thresholdRectToPixMicroBench( GPUEnv *env, TessScoreEvaluationInputData input, ds_device_type type ) {
|
|
double time;
|
|
int retVal = 0;
|
|
#if ON_WINDOWS
|
|
LARGE_INTEGER freq, time_funct_start, time_funct_end;
|
|
QueryPerformanceFrequency(&freq);
|
|
#elif ON_APPLE
|
|
mach_timebase_info_data_t info = {0, 0};
|
|
mach_timebase_info(&info);
|
|
long long start, stop;
|
|
#else
|
|
timespec time_funct_start, time_funct_end;
|
|
#endif
|
|
|
|
// input data
|
|
unsigned char pixelHi = (unsigned char)255;
|
|
int* thresholds = new int[4];
|
|
thresholds[0] = pixelHi/2;
|
|
thresholds[1] = pixelHi/2;
|
|
thresholds[2] = pixelHi/2;
|
|
thresholds[3] = pixelHi/2;
|
|
int *hi_values = new int[4];
|
|
thresholds[0] = pixelHi;
|
|
thresholds[1] = pixelHi;
|
|
thresholds[2] = pixelHi;
|
|
thresholds[3] = pixelHi;
|
|
//Pix* pix = pixCreate(width, height, 1);
|
|
int top = 0;
|
|
int left = 0;
|
|
int bytes_per_line = input.width*input.numChannels;
|
|
|
|
// function call
|
|
if (type == DS_DEVICE_OPENCL_DEVICE) {
|
|
#if ON_WINDOWS
|
|
QueryPerformanceCounter(&time_funct_start);
|
|
#elif ON_APPLE
|
|
start = mach_absolute_time();
|
|
#else
|
|
clock_gettime( CLOCK_MONOTONIC, &time_funct_start );
|
|
#endif
|
|
|
|
OpenclDevice::gpuEnv = *env;
|
|
int wpl = pixGetWpl(input.pix);
|
|
retVal = OpenclDevice::ThresholdRectToPixOCL(
|
|
input.imageData, input.numChannels, bytes_per_line, thresholds,
|
|
hi_values, &input.pix, input.height, input.width, top, left);
|
|
|
|
#if ON_WINDOWS
|
|
QueryPerformanceCounter(&time_funct_end);
|
|
time = (time_funct_end.QuadPart-time_funct_start.QuadPart)/(double)(freq.QuadPart);
|
|
#elif ON_APPLE
|
|
stop = mach_absolute_time();
|
|
if (retVal == 0) {
|
|
time = ((stop - start) * (double)info.numer / info.denom) / 1.0E9;
|
|
;
|
|
} else {
|
|
time = FLT_MAX;
|
|
}
|
|
|
|
#else
|
|
clock_gettime( CLOCK_MONOTONIC, &time_funct_end );
|
|
time = (time_funct_end.tv_sec - time_funct_start.tv_sec)*1.0 + (time_funct_end.tv_nsec - time_funct_start.tv_nsec)/1000000000.0;
|
|
#endif
|
|
} else {
|
|
|
|
|
|
tesseract::ImageThresholder thresholder;
|
|
thresholder.SetImage( input.pix );
|
|
#if ON_WINDOWS
|
|
QueryPerformanceCounter(&time_funct_start);
|
|
#elif ON_APPLE
|
|
start = mach_absolute_time();
|
|
#else
|
|
clock_gettime( CLOCK_MONOTONIC, &time_funct_start );
|
|
#endif
|
|
ThresholdRectToPix_Native( input.imageData, input.numChannels, bytes_per_line,
|
|
thresholds, hi_values, &input.pix );
|
|
|
|
#if ON_WINDOWS
|
|
QueryPerformanceCounter(&time_funct_end);
|
|
time = (time_funct_end.QuadPart-time_funct_start.QuadPart)/(double)(freq.QuadPart);
|
|
#elif ON_APPLE
|
|
stop = mach_absolute_time();
|
|
time = ((stop - start) * (double)info.numer / info.denom) / 1.0E9;
|
|
#else
|
|
clock_gettime( CLOCK_MONOTONIC, &time_funct_end );
|
|
time = (time_funct_end.tv_sec - time_funct_start.tv_sec)*1.0 + (time_funct_end.tv_nsec - time_funct_start.tv_nsec)/1000000000.0;
|
|
#endif
|
|
}
|
|
|
|
// cleanup
|
|
delete[] thresholds;
|
|
delete[] hi_values;
|
|
return time;
|
|
}
|
|
|
|
double getLineMasksMorphMicroBench( GPUEnv *env, TessScoreEvaluationInputData input, ds_device_type type ) {
|
|
|
|
double time = 0;
|
|
#if ON_WINDOWS
|
|
LARGE_INTEGER freq, time_funct_start, time_funct_end;
|
|
QueryPerformanceFrequency(&freq);
|
|
#elif ON_APPLE
|
|
mach_timebase_info_data_t info = {0, 0};
|
|
mach_timebase_info(&info);
|
|
long long start, stop;
|
|
#else
|
|
timespec time_funct_start, time_funct_end;
|
|
#endif
|
|
|
|
// input data
|
|
int resolution = 300;
|
|
int wpl = pixGetWpl(input.pix);
|
|
int kThinLineFraction = 20; // tess constant
|
|
int kMinLineLengthFraction = 4; // tess constant
|
|
int max_line_width = resolution / kThinLineFraction;
|
|
int min_line_length = resolution / kMinLineLengthFraction;
|
|
int closing_brick = max_line_width / 3;
|
|
|
|
// function call
|
|
if (type == DS_DEVICE_OPENCL_DEVICE) {
|
|
#if ON_WINDOWS
|
|
QueryPerformanceCounter(&time_funct_start);
|
|
#elif ON_APPLE
|
|
start = mach_absolute_time();
|
|
#else
|
|
clock_gettime( CLOCK_MONOTONIC, &time_funct_start );
|
|
#endif
|
|
Pix *src_pix = input.pix;
|
|
OpenclDevice::gpuEnv = *env;
|
|
OpenclDevice::initMorphCLAllocations(wpl, input.height, input.pix);
|
|
Pix *pix_vline = nullptr, *pix_hline = nullptr, *pix_closed = nullptr;
|
|
OpenclDevice::pixGetLinesCL(
|
|
nullptr, input.pix, &pix_vline, &pix_hline, &pix_closed, true,
|
|
closing_brick, closing_brick, max_line_width, max_line_width,
|
|
min_line_length, min_line_length);
|
|
|
|
OpenclDevice::releaseMorphCLBuffers();
|
|
|
|
#if ON_WINDOWS
|
|
QueryPerformanceCounter(&time_funct_end);
|
|
time = (time_funct_end.QuadPart-time_funct_start.QuadPart)/(double)(freq.QuadPart);
|
|
#elif ON_APPLE
|
|
stop = mach_absolute_time();
|
|
time = ((stop - start) * (double)info.numer / info.denom) / 1.0E9;
|
|
#else
|
|
clock_gettime( CLOCK_MONOTONIC, &time_funct_end );
|
|
time = (time_funct_end.tv_sec - time_funct_start.tv_sec)*1.0 + (time_funct_end.tv_nsec - time_funct_start.tv_nsec)/1000000000.0;
|
|
#endif
|
|
} else {
|
|
#if ON_WINDOWS
|
|
QueryPerformanceCounter(&time_funct_start);
|
|
#elif ON_APPLE
|
|
start = mach_absolute_time();
|
|
#else
|
|
clock_gettime( CLOCK_MONOTONIC, &time_funct_start );
|
|
#endif
|
|
|
|
// native serial code
|
|
Pix *src_pix = input.pix;
|
|
Pix *pix_closed =
|
|
pixCloseBrick(nullptr, src_pix, closing_brick, closing_brick);
|
|
Pix *pix_solid =
|
|
pixOpenBrick(nullptr, pix_closed, max_line_width, max_line_width);
|
|
Pix *pix_hollow = pixSubtract(nullptr, pix_closed, pix_solid);
|
|
pixDestroy(&pix_solid);
|
|
Pix *pix_vline = pixOpenBrick(nullptr, pix_hollow, 1, min_line_length);
|
|
Pix *pix_hline = pixOpenBrick(nullptr, pix_hollow, min_line_length, 1);
|
|
pixDestroy(&pix_hollow);
|
|
|
|
#if ON_WINDOWS
|
|
QueryPerformanceCounter(&time_funct_end);
|
|
time = (time_funct_end.QuadPart-time_funct_start.QuadPart)/(double)(freq.QuadPart);
|
|
#elif ON_APPLE
|
|
stop = mach_absolute_time();
|
|
time = ((stop - start) * (double)info.numer / info.denom) / 1.0E9;
|
|
#else
|
|
clock_gettime( CLOCK_MONOTONIC, &time_funct_end );
|
|
time = (time_funct_end.tv_sec - time_funct_start.tv_sec)*1.0 + (time_funct_end.tv_nsec - time_funct_start.tv_nsec)/1000000000.0;
|
|
#endif
|
|
}
|
|
|
|
return time;
|
|
}
|
|
|
|
|
|
|
|
/******************************************************************************
|
|
* Device Selection
|
|
*****************************************************************************/
|
|
|
|
#include "stdlib.h"
|
|
|
|
// encode score object as byte string
|
|
ds_status serializeScore( ds_device* device, void **serializedScore, unsigned int* serializedScoreSize ) {
|
|
*serializedScoreSize = sizeof(TessDeviceScore);
|
|
*serializedScore = new unsigned char[*serializedScoreSize];
|
|
memcpy(*serializedScore, device->score, *serializedScoreSize);
|
|
return DS_SUCCESS;
|
|
}
|
|
|
|
// parses byte string and stores in score object
|
|
ds_status deserializeScore( ds_device* device, const unsigned char* serializedScore, unsigned int serializedScoreSize ) {
|
|
// check that serializedScoreSize == sizeof(TessDeviceScore);
|
|
device->score = new TessDeviceScore;
|
|
memcpy(device->score, serializedScore, serializedScoreSize);
|
|
return DS_SUCCESS;
|
|
}
|
|
|
|
ds_status releaseScore(void *score) {
|
|
delete (TessDeviceScore *)score;
|
|
return DS_SUCCESS;
|
|
}
|
|
|
|
// evaluate devices
|
|
ds_status evaluateScoreForDevice( ds_device *device, void *inputData) {
|
|
// overwrite statuc gpuEnv w/ current device
|
|
// so native opencl calls can be used; they use static gpuEnv
|
|
printf("\n[DS] Device: \"%s\" (%s) evaluation...\n", device->oclDeviceName, device->type==DS_DEVICE_OPENCL_DEVICE ? "OpenCL" : "Native" );
|
|
GPUEnv *env = nullptr;
|
|
if (device->type == DS_DEVICE_OPENCL_DEVICE) {
|
|
env = new GPUEnv;
|
|
//printf("[DS] populating tmp GPUEnv from device\n");
|
|
populateGPUEnvFromDevice( env, device->oclDeviceID);
|
|
env->mnFileCount = 0; //argc;
|
|
env->mnKernelCount = 0UL;
|
|
//printf("[DS] compiling kernels for tmp GPUEnv\n");
|
|
OpenclDevice::gpuEnv = *env;
|
|
OpenclDevice::CompileKernelFile(env, "");
|
|
}
|
|
|
|
TessScoreEvaluationInputData *input = (TessScoreEvaluationInputData *)inputData;
|
|
|
|
// pixReadTiff
|
|
double composeRGBPixelTime = composeRGBPixelMicroBench( env, *input, device->type );
|
|
|
|
// HistogramRect
|
|
double histogramRectTime = histogramRectMicroBench( env, *input, device->type );
|
|
|
|
// ThresholdRectToPix
|
|
double thresholdRectToPixTime = thresholdRectToPixMicroBench( env, *input, device->type );
|
|
|
|
// getLineMasks
|
|
double getLineMasksMorphTime = getLineMasksMorphMicroBench( env, *input, device->type );
|
|
|
|
|
|
// weigh times (% of cpu time)
|
|
// these weights should be the % execution time that the native cpu code took
|
|
float composeRGBPixelWeight = 1.2f;
|
|
float histogramRectWeight = 2.4f;
|
|
float thresholdRectToPixWeight = 4.5f;
|
|
float getLineMasksMorphWeight = 5.0f;
|
|
|
|
float weightedTime = composeRGBPixelWeight * composeRGBPixelTime +
|
|
histogramRectWeight * histogramRectTime +
|
|
thresholdRectToPixWeight * thresholdRectToPixTime +
|
|
getLineMasksMorphWeight * getLineMasksMorphTime;
|
|
device->score = new TessDeviceScore;
|
|
((TessDeviceScore *)device->score)->time = weightedTime;
|
|
|
|
printf("[DS] Device: \"%s\" (%s) evaluated\n", device->oclDeviceName, device->type==DS_DEVICE_OPENCL_DEVICE ? "OpenCL" : "Native" );
|
|
printf("[DS]%25s: %f (w=%.1f)\n", "composeRGBPixel", composeRGBPixelTime, composeRGBPixelWeight );
|
|
printf("[DS]%25s: %f (w=%.1f)\n", "HistogramRect", histogramRectTime, histogramRectWeight );
|
|
printf("[DS]%25s: %f (w=%.1f)\n", "ThresholdRectToPix", thresholdRectToPixTime, thresholdRectToPixWeight );
|
|
printf("[DS]%25s: %f (w=%.1f)\n", "getLineMasksMorph", getLineMasksMorphTime, getLineMasksMorphWeight );
|
|
printf("[DS]%25s: %f\n", "Score", ((TessDeviceScore *)device->score)->time );
|
|
return DS_SUCCESS;
|
|
}
|
|
|
|
// initial call to select device
|
|
ds_device OpenclDevice::getDeviceSelection( ) {
|
|
if (!deviceIsSelected) {
|
|
PERF_COUNT_START("getDeviceSelection")
|
|
// check if opencl is available at runtime
|
|
if (1 == LoadOpencl()) {
|
|
// opencl is available
|
|
// PERF_COUNT_SUB("LoadOpencl")
|
|
// setup devices
|
|
ds_status status;
|
|
ds_profile *profile;
|
|
status = initDSProfile(&profile, "v0.1");
|
|
PERF_COUNT_SUB("initDSProfile")
|
|
// try reading scores from file
|
|
const char *fileName = "tesseract_opencl_profile_devices.dat";
|
|
status = readProfileFromFile(profile, deserializeScore, fileName);
|
|
if (status != DS_SUCCESS) {
|
|
// need to run evaluation
|
|
printf("[DS] Profile file not available (%s); performing profiling.\n",
|
|
fileName);
|
|
|
|
// create input data
|
|
TessScoreEvaluationInputData input;
|
|
populateTessScoreEvaluationInputData(&input);
|
|
// PERF_COUNT_SUB("populateTessScoreEvaluationInputData")
|
|
// perform evaluations
|
|
unsigned int numUpdates;
|
|
status = profileDevices(profile, DS_EVALUATE_ALL,
|
|
evaluateScoreForDevice, &input, &numUpdates);
|
|
PERF_COUNT_SUB("profileDevices")
|
|
// write scores to file
|
|
if (status == DS_SUCCESS) {
|
|
status = writeProfileToFile(profile, serializeScore, fileName);
|
|
PERF_COUNT_SUB("writeProfileToFile")
|
|
if (status == DS_SUCCESS) {
|
|
printf("[DS] Scores written to file (%s).\n", fileName);
|
|
} else {
|
|
printf(
|
|
"[DS] Error saving scores to file (%s); scores not written to "
|
|
"file.\n",
|
|
fileName);
|
|
}
|
|
} else {
|
|
printf(
|
|
"[DS] Unable to evaluate performance; scores not written to "
|
|
"file.\n");
|
|
}
|
|
} else {
|
|
PERF_COUNT_SUB("readProfileFromFile")
|
|
printf("[DS] Profile read from file (%s).\n", fileName);
|
|
}
|
|
|
|
// we now have device scores either from file or evaluation
|
|
// select fastest using custom Tesseract selection algorithm
|
|
float bestTime = FLT_MAX; // begin search with worst possible time
|
|
int bestDeviceIdx = -1;
|
|
for (int d = 0; d < profile->numDevices; d++) {
|
|
ds_device device = profile->devices[d];
|
|
TessDeviceScore score = *(TessDeviceScore *)device.score;
|
|
|
|
float time = score.time;
|
|
printf("[DS] Device[%i] %i:%s score is %f\n", d + 1, device.type,
|
|
device.oclDeviceName, time);
|
|
if (time < bestTime) {
|
|
bestTime = time;
|
|
bestDeviceIdx = d;
|
|
}
|
|
}
|
|
printf("[DS] Selected Device[%i]: \"%s\" (%s)\n", bestDeviceIdx + 1,
|
|
profile->devices[bestDeviceIdx].oclDeviceName,
|
|
profile->devices[bestDeviceIdx].type == DS_DEVICE_OPENCL_DEVICE
|
|
? "OpenCL"
|
|
: "Native");
|
|
// cleanup
|
|
// TODO: call destructor for profile object?
|
|
|
|
bool overridden = false;
|
|
char *overrideDeviceStr = getenv("TESSERACT_OPENCL_DEVICE");
|
|
if (overrideDeviceStr != nullptr) {
|
|
int overrideDeviceIdx = atoi(overrideDeviceStr);
|
|
if (overrideDeviceIdx > 0 && overrideDeviceIdx <= profile->numDevices) {
|
|
printf(
|
|
"[DS] Overriding Device Selection (TESSERACT_OPENCL_DEVICE=%s, "
|
|
"%i)\n",
|
|
overrideDeviceStr, overrideDeviceIdx);
|
|
bestDeviceIdx = overrideDeviceIdx - 1;
|
|
overridden = true;
|
|
} else {
|
|
printf(
|
|
"[DS] Ignoring invalid TESSERACT_OPENCL_DEVICE=%s ([1,%i] are "
|
|
"valid devices).\n",
|
|
overrideDeviceStr, profile->numDevices);
|
|
}
|
|
}
|
|
|
|
if (overridden) {
|
|
printf("[DS] Overridden Device[%i]: \"%s\" (%s)\n", bestDeviceIdx + 1,
|
|
profile->devices[bestDeviceIdx].oclDeviceName,
|
|
profile->devices[bestDeviceIdx].type == DS_DEVICE_OPENCL_DEVICE
|
|
? "OpenCL"
|
|
: "Native");
|
|
}
|
|
selectedDevice = profile->devices[bestDeviceIdx];
|
|
// cleanup
|
|
releaseDSProfile(profile, releaseScore);
|
|
} else {
|
|
// opencl isn't available at runtime, select native cpu device
|
|
printf("[DS] OpenCL runtime not available.\n");
|
|
selectedDevice.type = DS_DEVICE_NATIVE_CPU;
|
|
selectedDevice.oclDeviceName = "(null)";
|
|
selectedDevice.score = nullptr;
|
|
selectedDevice.oclDeviceID = nullptr;
|
|
selectedDevice.oclDriverVersion = nullptr;
|
|
}
|
|
deviceIsSelected = true;
|
|
PERF_COUNT_SUB("select from Profile")
|
|
PERF_COUNT_END
|
|
}
|
|
// PERF_COUNT_END
|
|
return selectedDevice;
|
|
}
|
|
|
|
|
|
bool OpenclDevice::selectedDeviceIsOpenCL() {
|
|
ds_device device = getDeviceSelection();
|
|
return (device.type == DS_DEVICE_OPENCL_DEVICE);
|
|
}
|
|
|
|
bool OpenclDevice::selectedDeviceIsNativeCPU() {
|
|
ds_device device = getDeviceSelection();
|
|
return (device.type == DS_DEVICE_NATIVE_CPU);
|
|
}
|
|
|
|
/*!
|
|
* pixConvertRGBToGray() from leptonica, converted to opencl kernel
|
|
*
|
|
* Input: pix (32 bpp RGB)
|
|
* rwt, gwt, bwt (non-negative; these should add to 1.0,
|
|
* or use 0.0 for default)
|
|
* Return: 8 bpp pix, or null on error
|
|
*
|
|
* Notes:
|
|
* (1) Use a weighted average of the RGB values.
|
|
*/
|
|
#define SET_DATA_BYTE(pdata, n, val) \
|
|
(*(l_uint8 *)((l_uintptr_t)((l_uint8 *)(pdata) + (n)) ^ 3) = (val))
|
|
|
|
Pix *OpenclDevice::pixConvertRGBToGrayOCL(Pix *srcPix, // 32-bit source
|
|
float rwt, float gwt, float bwt) {
|
|
PERF_COUNT_START("pixConvertRGBToGrayOCL")
|
|
Pix *dstPix; // 8-bit destination
|
|
|
|
if (rwt < 0.0 || gwt < 0.0 || bwt < 0.0) return nullptr;
|
|
|
|
if (rwt == 0.0 && gwt == 0.0 && bwt == 0.0) {
|
|
// magic numbers from leptonica
|
|
rwt = 0.3;
|
|
gwt = 0.5;
|
|
bwt = 0.2;
|
|
}
|
|
// normalize
|
|
float sum = rwt + gwt + bwt;
|
|
rwt /= sum;
|
|
gwt /= sum;
|
|
bwt /= sum;
|
|
|
|
// source pix
|
|
int w, h;
|
|
pixGetDimensions(srcPix, &w, &h, nullptr);
|
|
// printf("Image is %i x %i\n", w, h);
|
|
unsigned int *srcData = pixGetData(srcPix);
|
|
int srcWPL = pixGetWpl(srcPix);
|
|
int srcSize = srcWPL * h * sizeof(unsigned int);
|
|
|
|
// destination pix
|
|
if ((dstPix = pixCreate(w, h, 8)) == nullptr) return nullptr;
|
|
pixCopyResolution(dstPix, srcPix);
|
|
unsigned int *dstData = pixGetData(dstPix);
|
|
int dstWPL = pixGetWpl(dstPix);
|
|
int dstWords = dstWPL * h;
|
|
int dstSize = dstWords * sizeof(unsigned int);
|
|
// printf("dstSize = %i\n", dstSize);
|
|
PERF_COUNT_SUB("pix setup")
|
|
|
|
// opencl objects
|
|
cl_int clStatus;
|
|
KernelEnv kEnv;
|
|
SetKernelEnv(&kEnv);
|
|
|
|
// source buffer
|
|
cl_mem srcBuffer =
|
|
clCreateBuffer(kEnv.mpkContext, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR,
|
|
srcSize, srcData, &clStatus);
|
|
CHECK_OPENCL(clStatus, "clCreateBuffer srcBuffer");
|
|
|
|
// destination buffer
|
|
cl_mem dstBuffer =
|
|
clCreateBuffer(kEnv.mpkContext, CL_MEM_WRITE_ONLY | CL_MEM_USE_HOST_PTR,
|
|
dstSize, dstData, &clStatus);
|
|
CHECK_OPENCL(clStatus, "clCreateBuffer dstBuffer");
|
|
|
|
// setup work group size parameters
|
|
int block_size = 256;
|
|
int numWorkGroups = ((h * w + block_size - 1) / block_size);
|
|
int numThreads = block_size * numWorkGroups;
|
|
size_t local_work_size[] = {static_cast<size_t>(block_size)};
|
|
size_t global_work_size[] = {static_cast<size_t>(numThreads)};
|
|
// printf("Enqueueing %i threads for %i output pixels\n", numThreads, w*h);
|
|
|
|
/* compile kernel */
|
|
kEnv.mpkKernel =
|
|
clCreateKernel(kEnv.mpkProgram, "kernel_RGBToGray", &clStatus);
|
|
CHECK_OPENCL(clStatus, "clCreateKernel kernel_RGBToGray");
|
|
|
|
/* set kernel arguments */
|
|
clStatus = clSetKernelArg(kEnv.mpkKernel, 0, sizeof(cl_mem), &srcBuffer);
|
|
CHECK_OPENCL(clStatus, "clSetKernelArg srcBuffer");
|
|
clStatus = clSetKernelArg(kEnv.mpkKernel, 1, sizeof(cl_mem), &dstBuffer);
|
|
CHECK_OPENCL(clStatus, "clSetKernelArg dstBuffer");
|
|
clStatus = clSetKernelArg(kEnv.mpkKernel, 2, sizeof(int), &srcWPL);
|
|
CHECK_OPENCL(clStatus, "clSetKernelArg srcWPL");
|
|
clStatus = clSetKernelArg(kEnv.mpkKernel, 3, sizeof(int), &dstWPL);
|
|
CHECK_OPENCL(clStatus, "clSetKernelArg dstWPL");
|
|
clStatus = clSetKernelArg(kEnv.mpkKernel, 4, sizeof(int), &h);
|
|
CHECK_OPENCL(clStatus, "clSetKernelArg height");
|
|
clStatus = clSetKernelArg(kEnv.mpkKernel, 5, sizeof(int), &w);
|
|
CHECK_OPENCL(clStatus, "clSetKernelArg width");
|
|
clStatus = clSetKernelArg(kEnv.mpkKernel, 6, sizeof(float), &rwt);
|
|
CHECK_OPENCL(clStatus, "clSetKernelArg rwt");
|
|
clStatus = clSetKernelArg(kEnv.mpkKernel, 7, sizeof(float), &gwt);
|
|
CHECK_OPENCL(clStatus, "clSetKernelArg gwt");
|
|
clStatus = clSetKernelArg(kEnv.mpkKernel, 8, sizeof(float), &bwt);
|
|
CHECK_OPENCL(clStatus, "clSetKernelArg bwt");
|
|
|
|
/* launch kernel & wait */
|
|
PERF_COUNT_SUB("before")
|
|
clStatus = clEnqueueNDRangeKernel(kEnv.mpkCmdQueue, kEnv.mpkKernel, 1,
|
|
nullptr, global_work_size, local_work_size,
|
|
0, nullptr, nullptr);
|
|
CHECK_OPENCL(clStatus, "clEnqueueNDRangeKernel kernel_RGBToGray");
|
|
clFinish(kEnv.mpkCmdQueue);
|
|
PERF_COUNT_SUB("kernel")
|
|
|
|
/* map results back from gpu */
|
|
void *ptr =
|
|
clEnqueueMapBuffer(kEnv.mpkCmdQueue, dstBuffer, CL_TRUE, CL_MAP_READ, 0,
|
|
dstSize, 0, nullptr, nullptr, &clStatus);
|
|
CHECK_OPENCL(clStatus, "clEnqueueMapBuffer dstBuffer");
|
|
clEnqueueUnmapMemObject(rEnv.mpkCmdQueue, dstBuffer, ptr, 0, nullptr,
|
|
nullptr);
|
|
|
|
#if 0
|
|
// validate: compute on cpu
|
|
Pix *cpuPix = pixCreate(w, h, 8);
|
|
pixCopyResolution(cpuPix, srcPix);
|
|
unsigned int *cpuData = pixGetData(cpuPix);
|
|
int cpuWPL = pixGetWpl(cpuPix);
|
|
unsigned int *cpuLine, *srcLine;
|
|
int i, j;
|
|
for (i = 0, srcLine = srcData, cpuLine = cpuData; i < h; i++) {
|
|
for (j = 0; j < w; j++) {
|
|
unsigned int word = *(srcLine + j);
|
|
int val = (l_int32)(rwt * ((word >> L_RED_SHIFT) & 0xff) +
|
|
gwt * ((word >> L_GREEN_SHIFT) & 0xff) +
|
|
bwt * ((word >> L_BLUE_SHIFT) & 0xff) + 0.5);
|
|
SET_DATA_BYTE(cpuLine, j, val);
|
|
}
|
|
srcLine += srcWPL;
|
|
cpuLine += cpuWPL;
|
|
}
|
|
|
|
// validate: compare
|
|
printf("converted 32-bit -> 8-bit image\n");
|
|
for (int row = 0; row < h; row++) {
|
|
for (int col = 0; col < w; col++) {
|
|
int idx = row*w + col;
|
|
unsigned int srcVal = srcData[idx];
|
|
unsigned char cpuVal = ((unsigned char *)cpuData)[idx];
|
|
unsigned char oclVal = ((unsigned char *)dstData)[idx];
|
|
if (srcVal > 0) {
|
|
printf("%4i,%4i: %u, %u, %u\n", row, col, srcVal, cpuVal, oclVal);
|
|
}
|
|
}
|
|
//printf("\n");
|
|
}
|
|
#endif
|
|
// release opencl objects
|
|
clReleaseMemObject(srcBuffer);
|
|
clReleaseMemObject(dstBuffer);
|
|
|
|
PERF_COUNT_END
|
|
// success
|
|
return dstPix;
|
|
}
|
|
#endif
|