tesseract/lstm/networkbuilder.h

161 lines
7.8 KiB
C++

///////////////////////////////////////////////////////////////////////
// File: networkbuilder.h
// Description: Class to parse the network description language and
// build a corresponding network.
// Author: Ray Smith
// Created: Wed Jul 16 18:35:38 PST 2014
//
// (C) Copyright 2014, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
///////////////////////////////////////////////////////////////////////
#ifndef TESSERACT_LSTM_NETWORKBUILDER_H_
#define TESSERACT_LSTM_NETWORKBUILDER_H_
#include "static_shape.h"
#include "stridemap.h"
class STRING;
class UNICHARSET;
namespace tesseract {
class Input;
class Network;
class Parallel;
class TRand;
class NetworkBuilder {
public:
explicit NetworkBuilder(int num_softmax_outputs)
: num_softmax_outputs_(num_softmax_outputs) {}
// Builds a network with a network_spec in the network description
// language, to recognize a character set of num_outputs size.
// If append_index is non-negative, then *network must be non-null and the
// given network_spec will be appended to *network AFTER append_index, with
// the top of the input *network discarded.
// Note that network_spec is call by value to allow a non-const char* pointer
// into the string for BuildFromString.
// net_flags control network behavior according to the NetworkFlags enum.
// The resulting network is returned via **network.
// Returns false if something failed.
static bool InitNetwork(int num_outputs, STRING network_spec,
int append_index, int net_flags, float weight_range,
TRand* randomizer, Network** network);
// Parses the given string and returns a network according to the following
// language:
// ============ Syntax of description below: ============
// <d> represents a number.
// <net> represents any single network element, including (recursively) a
// [...] series or (...) parallel construct.
// (s|t|r|l|m) (regex notation) represents a single required letter.
// NOTE THAT THROUGHOUT, x and y are REVERSED from conventional mathematics,
// to use the same convention as Tensor Flow. The reason TF adopts this
// convention is to eliminate the need to transpose images on input, since
// adjacent memory locations in images increase x and then y, while adjacent
// memory locations in tensors in TF, and NetworkIO in tesseract increase the
// rightmost index first, then the next-left and so-on, like C arrays.
// ============ INPUTS ============
// <b>,<h>,<w>,<d> A batch of b images with height h, width w, and depth d.
// b, h and/or w may be zero, to indicate variable size. Some network layer
// (summarizing LSTM) must be used to make a variable h known.
// d may be 1 for greyscale, 3 for color.
// NOTE that throughout the constructed network, the inputs/outputs are all of
// the same [batch,height,width,depth] dimensions, even if a different size.
// ============ PLUMBING ============
// [...] Execute ... networks in series (layers).
// (...) Execute ... networks in parallel, with their output depths added.
// R<d><net> Execute d replicas of net in parallel, with their output depths
// added.
// Rx<net> Execute <net> with x-dimension reversal.
// Ry<net> Execute <net> with y-dimension reversal.
// S<y>,<x> Rescale 2-D input by shrink factor x,y, rearranging the data by
// increasing the depth of the input by factor xy.
// Mp<y>,<x> Maxpool the input, reducing the size by an (x,y) rectangle.
// ============ FUNCTIONAL UNITS ============
// C(s|t|r|l|m)<y>,<x>,<d> Convolves using a (x,y) window, with no shrinkage,
// random infill, producing d outputs, then applies a non-linearity:
// s: Sigmoid, t: Tanh, r: Relu, l: Linear, m: Softmax.
// F(s|t|r|l|m)<d> Truly fully-connected with s|t|r|l|m non-linearity and d
// outputs. Connects to every x,y,depth position of the input, reducing
// height, width to 1, producing a single <d> vector as the output.
// Input height and width must be constant.
// For a sliding-window linear or non-linear map that connects just to the
// input depth, and leaves the input image size as-is, use a 1x1 convolution
// eg. Cr1,1,64 instead of Fr64.
// L(f|r|b)(x|y)[s]<n> LSTM cell with n states/outputs.
// The LSTM must have one of:
// f runs the LSTM forward only.
// r runs the LSTM reversed only.
// b runs the LSTM bidirectionally.
// It will operate on either the x- or y-dimension, treating the other
// dimension independently (as if part of the batch).
// s (optional) summarizes the output in the requested dimension,
// outputting only the final step, collapsing the dimension to a
// single element.
// LS<n> Forward-only LSTM cell in the x-direction, with built-in Softmax.
// LE<n> Forward-only LSTM cell in the x-direction, with built-in softmax,
// with binary Encoding.
// L2xy<n> Full 2-d LSTM operating in quad-directions (bidi in x and y) and
// all the output depths added.
// ============ OUTPUTS ============
// The network description must finish with an output specification:
// O(2|1|0)(l|s|c)<n> output layer with n classes
// 2 (heatmap) Output is a 2-d vector map of the input (possibly at
// different scale).
// 1 (sequence) Output is a 1-d sequence of vector values.
// 0 (category) Output is a 0-d single vector value.
// l uses a logistic non-linearity on the output, allowing multiple
// hot elements in any output vector value.
// s uses a softmax non-linearity, with one-hot output in each value.
// c uses a softmax with CTC. Can only be used with s (sequence).
// NOTE1: Only O1s and O1c are currently supported.
// NOTE2: n is totally ignored, and for compatibility purposes only. The
// output number of classes is obtained automatically from the
// unicharset.
Network* BuildFromString(const StaticShape& input_shape, char** str);
private:
// Parses an input specification and returns the result, which may include a
// series.
Network* ParseInput(char** str);
// Parses a sequential series of networks, defined by [<net><net>...].
Network* ParseSeries(const StaticShape& input_shape, Input* input_layer,
char** str);
// Parses a parallel set of networks, defined by (<net><net>...).
Network* ParseParallel(const StaticShape& input_shape, char** str);
// Parses a network that begins with 'R'.
Network* ParseR(const StaticShape& input_shape, char** str);
// Parses a network that begins with 'S'.
Network* ParseS(const StaticShape& input_shape, char** str);
// Parses a network that begins with 'C'.
Network* ParseC(const StaticShape& input_shape, char** str);
// Parses a network that begins with 'M'.
Network* ParseM(const StaticShape& input_shape, char** str);
// Parses an LSTM network, either individual, bi- or quad-directional.
Network* ParseLSTM(const StaticShape& input_shape, char** str);
// Builds a set of 4 lstms with t and y reversal, running in true parallel.
static Network* BuildLSTMXYQuad(int num_inputs, int num_states);
// Parses a Fully connected network.
Network* ParseFullyConnected(const StaticShape& input_shape, char** str);
// Parses an Output spec.
Network* ParseOutput(const StaticShape& input_shape, char** str);
private:
int num_softmax_outputs_;
};
} // namespace tesseract.
#endif // TESSERACT_LSTM_NETWORKBUILDER_H_