mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2024-12-03 00:49:01 +08:00
8f7be2e72c
Signed-off-by: Stefan Weil <sw@weilnetz.de>
393 lines
19 KiB
C++
393 lines
19 KiB
C++
///////////////////////////////////////////////////////////////////////
|
|
// File: recodebeam.h
|
|
// Description: Beam search to decode from the re-encoded CJK as a sequence of
|
|
// smaller numbers in place of a single large code.
|
|
// Author: Ray Smith
|
|
// Created: Fri Mar 13 09:12:01 PDT 2015
|
|
//
|
|
// (C) Copyright 2015, Google Inc.
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////
|
|
|
|
#ifndef THIRD_PARTY_TESSERACT_LSTM_RECODEBEAM_H_
|
|
#define THIRD_PARTY_TESSERACT_LSTM_RECODEBEAM_H_
|
|
|
|
#include "dawg.h"
|
|
#include "dict.h"
|
|
#include "genericheap.h"
|
|
#include "kdpair.h"
|
|
#include "networkio.h"
|
|
#include "ratngs.h"
|
|
#include "unicharcompress.h"
|
|
|
|
namespace tesseract {
|
|
|
|
// Enum describing what can follow the current node.
|
|
// Consider the following softmax outputs:
|
|
// Timestep 0 1 2 3 4 5 6 7 8
|
|
// X-score 0.01 0.55 0.98 0.42 0.01 0.01 0.40 0.95 0.01
|
|
// Y-score 0.00 0.01 0.01 0.01 0.01 0.97 0.59 0.04 0.01
|
|
// Null-score 0.99 0.44 0.01 0.57 0.98 0.02 0.01 0.01 0.98
|
|
// Then the correct CTC decoding (in which adjacent equal classes are folded,
|
|
// and then all nulls are dropped) is clearly XYX, but simple decoding (taking
|
|
// the max at each timestep) leads to:
|
|
// Null@0.99 X@0.55 X@0.98 Null@0.57 Null@0.98 Y@0.97 Y@0.59 X@0.95 Null@0.98,
|
|
// which folds to the correct XYX. The conversion to Tesseract rating and
|
|
// certainty uses the sum of the log probs (log of the product of probabilities)
|
|
// for the Rating and the minimum log prob for the certainty, but that yields a
|
|
// minimum certainty of log(0.55), which is poor for such an obvious case.
|
|
// CTC says that the probability of the result is the SUM of the products of the
|
|
// probabilities over ALL PATHS that decode to the same result, which includes:
|
|
// NXXNNYYXN, NNXNNYYN, NXXXNYYXN, NNXXNYXXN, and others including XXXXXYYXX.
|
|
// That is intractable, so some compromise between simple and ideal is needed.
|
|
// Observing that evenly split timesteps rarely happen next to each other, we
|
|
// allow scores at a transition between classes to be added for decoding thus:
|
|
// N@0.99 (N+X)@0.99 X@0.98 (N+X)@0.99 N@0.98 Y@0.97 (X+Y+N)@1.00 X@0.95 N@0.98.
|
|
// This works because NNX and NXX both decode to X, so in the middle we can use
|
|
// N+X. Note that the classes either side of a sum must stand alone, i.e. use a
|
|
// single score, to force all paths to pass through them and decode to the same
|
|
// result. Also in the special case of a transition from X to Y, with only one
|
|
// timestep between, it is possible to add X+Y+N, since XXY, XYY, and XNY all
|
|
// decode to XY.
|
|
// An important condition is that we cannot combine X and Null between two
|
|
// stand-alone Xs, since that can decode as XNX->XX or XXX->X, so the scores for
|
|
// X and Null have to go in separate paths. Combining scores in this way
|
|
// provides a much better minimum certainty of log(0.95).
|
|
// In the implementation of the beam search, we have to place the possibilities
|
|
// X, X+N and X+Y+N in the beam under appropriate conditions of the previous
|
|
// node, and constrain what can follow, to enforce the rules explained above.
|
|
// We therefore have 3 different types of node determined by what can follow:
|
|
enum NodeContinuation {
|
|
NC_ANYTHING, // This node used just its own score, so anything can follow.
|
|
NC_ONLY_DUP, // The current node combined another score with the score for
|
|
// itself, without a stand-alone duplicate before, so must be
|
|
// followed by a stand-alone duplicate.
|
|
NC_NO_DUP, // The current node combined another score with the score for
|
|
// itself, after a stand-alone, so can only be followed by
|
|
// something other than a duplicate of the current node.
|
|
NC_COUNT
|
|
};
|
|
|
|
// Enum describing the top-n status of a code.
|
|
enum TopNState {
|
|
TN_TOP2, // Winner or 2nd.
|
|
TN_TOPN, // Runner up in top-n, but not 1st or 2nd.
|
|
TN_ALSO_RAN, // Not in the top-n.
|
|
TN_COUNT
|
|
};
|
|
|
|
// Lattice element for Re-encode beam search.
|
|
struct RecodeNode {
|
|
RecodeNode()
|
|
: code(-1),
|
|
unichar_id(INVALID_UNICHAR_ID),
|
|
permuter(TOP_CHOICE_PERM),
|
|
start_of_dawg(false),
|
|
start_of_word(false),
|
|
end_of_word(false),
|
|
duplicate(false),
|
|
certainty(0.0f),
|
|
score(0.0f),
|
|
prev(nullptr),
|
|
dawgs(nullptr),
|
|
code_hash(0) {}
|
|
RecodeNode(int c, int uni_id, PermuterType perm, bool dawg_start,
|
|
bool word_start, bool end, bool dup, float cert, float s,
|
|
const RecodeNode* p, DawgPositionVector* d, uint64_t hash)
|
|
: code(c),
|
|
unichar_id(uni_id),
|
|
permuter(perm),
|
|
start_of_dawg(dawg_start),
|
|
start_of_word(word_start),
|
|
end_of_word(end),
|
|
duplicate(dup),
|
|
certainty(cert),
|
|
score(s),
|
|
prev(p),
|
|
dawgs(d),
|
|
code_hash(hash) {}
|
|
// NOTE: If we could use C++11, then this would be a move constructor.
|
|
// Instead we have copy constructor that does a move!! This is because we
|
|
// don't want to copy the whole DawgPositionVector each time, and true
|
|
// copying isn't necessary for this struct. It does get moved around a lot
|
|
// though inside the heap and during heap push, hence the move semantics.
|
|
RecodeNode(RecodeNode& src) : dawgs(nullptr) {
|
|
*this = src;
|
|
ASSERT_HOST(src.dawgs == nullptr);
|
|
}
|
|
RecodeNode& operator=(RecodeNode& src) {
|
|
delete dawgs;
|
|
memcpy(this, &src, sizeof(src));
|
|
src.dawgs = nullptr;
|
|
return *this;
|
|
}
|
|
~RecodeNode() { delete dawgs; }
|
|
// Prints details of the node.
|
|
void Print(int null_char, const UNICHARSET& unicharset, int depth) const;
|
|
|
|
// The re-encoded code here = index to network output.
|
|
int code;
|
|
// The decoded unichar_id is only valid for the final code of a sequence.
|
|
int unichar_id;
|
|
// The type of permuter active at this point. Intervals between start_of_word
|
|
// and end_of_word make valid words of type given by permuter where
|
|
// end_of_word is true. These aren't necessarily delimited by spaces.
|
|
PermuterType permuter;
|
|
// True if this is the initial dawg state. May be attached to a space or,
|
|
// in a non-space-delimited lang, the end of the previous word.
|
|
bool start_of_dawg;
|
|
// True if this is the first node in a dictionary word.
|
|
bool start_of_word;
|
|
// True if this represents a valid candidate end of word position. Does not
|
|
// necessarily mark the end of a word, since a word can be extended beyond a
|
|
// candidate end by a continuation, eg 'the' continues to 'these'.
|
|
bool end_of_word;
|
|
// True if this->code is a duplicate of prev->code. Some training modes
|
|
// allow the network to output duplicate characters and crush them with CTC,
|
|
// but that would mess up the dictionary search, so we just smash them
|
|
// together on the fly using the duplicate flag.
|
|
bool duplicate;
|
|
// Certainty (log prob) of (just) this position.
|
|
float certainty;
|
|
// Total certainty of the path to this position.
|
|
float score;
|
|
// The previous node in this chain. Borrowed pointer.
|
|
const RecodeNode* prev;
|
|
// The currently active dawgs at this position. Owned pointer.
|
|
DawgPositionVector* dawgs;
|
|
// A hash of all codes in the prefix and this->code as well. Used for
|
|
// duplicate path removal.
|
|
uint64_t code_hash;
|
|
};
|
|
|
|
typedef KDPairInc<double, RecodeNode> RecodePair;
|
|
typedef GenericHeap<RecodePair> RecodeHeap;
|
|
|
|
// Class that holds the entire beam search for recognition of a text line.
|
|
class RecodeBeamSearch {
|
|
public:
|
|
// Borrows the pointer, which is expected to survive until *this is deleted.
|
|
RecodeBeamSearch(const UnicharCompress& recoder, int null_char,
|
|
bool simple_text, Dict* dict);
|
|
|
|
// Decodes the set of network outputs, storing the lattice internally.
|
|
// If charset is not null, it enables detailed debugging of the beam search.
|
|
void Decode(const NetworkIO& output, double dict_ratio, double cert_offset,
|
|
double worst_dict_cert, const UNICHARSET* charset);
|
|
void Decode(const GENERIC_2D_ARRAY<float>& output, double dict_ratio,
|
|
double cert_offset, double worst_dict_cert,
|
|
const UNICHARSET* charset);
|
|
|
|
// Returns the best path as labels/scores/xcoords similar to simple CTC.
|
|
void ExtractBestPathAsLabels(GenericVector<int>* labels,
|
|
GenericVector<int>* xcoords) const;
|
|
// Returns the best path as unichar-ids/certs/ratings/xcoords skipping
|
|
// duplicates, nulls and intermediate parts.
|
|
void ExtractBestPathAsUnicharIds(bool debug, const UNICHARSET* unicharset,
|
|
GenericVector<int>* unichar_ids,
|
|
GenericVector<float>* certs,
|
|
GenericVector<float>* ratings,
|
|
GenericVector<int>* xcoords) const;
|
|
|
|
// Returns the best path as a set of WERD_RES.
|
|
void ExtractBestPathAsWords(const TBOX& line_box, float scale_factor,
|
|
bool debug, const UNICHARSET* unicharset,
|
|
PointerVector<WERD_RES>* words);
|
|
|
|
// Generates debug output of the content of the beams after a Decode.
|
|
void DebugBeams(const UNICHARSET& unicharset) const;
|
|
|
|
// Clipping value for certainty inside Tesseract. Reflects the minimum value
|
|
// of certainty that will be returned by ExtractBestPathAsUnicharIds.
|
|
// Supposedly on a uniform scale that can be compared across languages and
|
|
// engines.
|
|
static const float kMinCertainty;
|
|
// Number of different code lengths for which we have a separate beam.
|
|
static const int kNumLengths = RecodedCharID::kMaxCodeLen + 1;
|
|
// Total number of beams: dawg/nodawg * number of NodeContinuation * number
|
|
// of different lengths.
|
|
static const int kNumBeams = 2 * NC_COUNT * kNumLengths;
|
|
// Returns the relevant factor in the beams_ index.
|
|
static int LengthFromBeamsIndex(int index) { return index % kNumLengths; }
|
|
static NodeContinuation ContinuationFromBeamsIndex(int index) {
|
|
return static_cast<NodeContinuation>((index / kNumLengths) % NC_COUNT);
|
|
}
|
|
static bool IsDawgFromBeamsIndex(int index) {
|
|
return index / (kNumLengths * NC_COUNT) > 0;
|
|
}
|
|
// Computes a beams_ index from the given factors.
|
|
static int BeamIndex(bool is_dawg, NodeContinuation cont, int length) {
|
|
return (is_dawg * NC_COUNT + cont) * kNumLengths + length;
|
|
}
|
|
|
|
private:
|
|
// Struct for the Re-encode beam search. This struct holds the data for
|
|
// a single time-step position of the output. Use a PointerVector<RecodeBeam>
|
|
// to hold all the timesteps and prevent reallocation of the individual heaps.
|
|
struct RecodeBeam {
|
|
// Resets to the initial state without deleting all the memory.
|
|
void Clear() {
|
|
for (int i = 0; i < kNumBeams; ++i) {
|
|
beams_[i].clear();
|
|
}
|
|
RecodeNode empty;
|
|
for (int i = 0; i < NC_COUNT; ++i) {
|
|
best_initial_dawgs_[i] = empty;
|
|
}
|
|
}
|
|
|
|
// A separate beam for each combination of code length,
|
|
// NodeContinuation, and dictionary flag. Separating out all these types
|
|
// allows the beam to be quite narrow, and yet still have a low chance of
|
|
// losing the best path.
|
|
// We have to keep all these beams separate, since the highest scoring paths
|
|
// come from the paths that are most likely to dead-end at any time, like
|
|
// dawg paths, NC_ONLY_DUP etc.
|
|
// Each heap is stored with the WORST result at the top, so we can quickly
|
|
// get the top-n values.
|
|
RecodeHeap beams_[kNumBeams];
|
|
// While the language model is only a single word dictionary, we can use
|
|
// word starts as a choke point in the beam, and keep only a single dict
|
|
// start node at each step (for each NodeContinuation type), so we find the
|
|
// best one here and push it on the heap, if it qualifies, after processing
|
|
// all of the step.
|
|
RecodeNode best_initial_dawgs_[NC_COUNT];
|
|
};
|
|
typedef KDPairInc<float, int> TopPair;
|
|
|
|
// Generates debug output of the content of a single beam position.
|
|
void DebugBeamPos(const UNICHARSET& unicharset, const RecodeHeap& heap) const;
|
|
|
|
// Returns the given best_nodes as unichar-ids/certs/ratings/xcoords skipping
|
|
// duplicates, nulls and intermediate parts.
|
|
static void ExtractPathAsUnicharIds(
|
|
const GenericVector<const RecodeNode*>& best_nodes,
|
|
GenericVector<int>* unichar_ids, GenericVector<float>* certs,
|
|
GenericVector<float>* ratings, GenericVector<int>* xcoords);
|
|
|
|
// Sets up a word with the ratings matrix and fake blobs with boxes in the
|
|
// right places.
|
|
WERD_RES* InitializeWord(bool leading_space, const TBOX& line_box,
|
|
int word_start, int word_end, float space_certainty,
|
|
const UNICHARSET* unicharset,
|
|
const GenericVector<int>& xcoords,
|
|
float scale_factor);
|
|
|
|
// Fills top_n_flags_ with bools that are true iff the corresponding output
|
|
// is one of the top_n.
|
|
void ComputeTopN(const float* outputs, int num_outputs, int top_n);
|
|
|
|
// Adds the computation for the current time-step to the beam. Call at each
|
|
// time-step in sequence from left to right. outputs is the activation vector
|
|
// for the current timestep.
|
|
void DecodeStep(const float* outputs, int t, double dict_ratio,
|
|
double cert_offset, double worst_dict_cert,
|
|
const UNICHARSET* charset);
|
|
|
|
// Adds to the appropriate beams the legal (according to recoder)
|
|
// continuations of context prev, which is from the given index to beams_,
|
|
// using the given network outputs to provide scores to the choices. Uses only
|
|
// those choices for which top_n_flags[code] == top_n_flag.
|
|
void ContinueContext(const RecodeNode* prev, int index, const float* outputs,
|
|
TopNState top_n_flag, double dict_ratio,
|
|
double cert_offset, double worst_dict_cert,
|
|
RecodeBeam* step);
|
|
// Continues for a new unichar, using dawg or non-dawg as per flag.
|
|
void ContinueUnichar(int code, int unichar_id, float cert,
|
|
float worst_dict_cert, float dict_ratio, bool use_dawgs,
|
|
NodeContinuation cont, const RecodeNode* prev,
|
|
RecodeBeam* step);
|
|
// Adds a RecodeNode composed of the args to the correct heap in step if
|
|
// unichar_id is a valid dictionary continuation of whatever is in prev.
|
|
void ContinueDawg(int code, int unichar_id, float cert, NodeContinuation cont,
|
|
const RecodeNode* prev, RecodeBeam* step);
|
|
// Sets the correct best_initial_dawgs_ with a RecodeNode composed of the args
|
|
// if better than what is already there.
|
|
void PushInitialDawgIfBetter(int code, int unichar_id, PermuterType permuter,
|
|
bool start, bool end, float cert,
|
|
NodeContinuation cont, const RecodeNode* prev,
|
|
RecodeBeam* step);
|
|
// Adds a RecodeNode composed of the args to the correct heap in step for
|
|
// partial unichar or duplicate if there is room or if better than the
|
|
// current worst element if already full.
|
|
void PushDupOrNoDawgIfBetter(int length, bool dup, int code, int unichar_id,
|
|
float cert, float worst_dict_cert,
|
|
float dict_ratio, bool use_dawgs,
|
|
NodeContinuation cont, const RecodeNode* prev,
|
|
RecodeBeam* step);
|
|
// Adds a RecodeNode composed of the args to the correct heap in step if there
|
|
// is room or if better than the current worst element if already full.
|
|
void PushHeapIfBetter(int max_size, int code, int unichar_id,
|
|
PermuterType permuter, bool dawg_start, bool word_start,
|
|
bool end, bool dup, float cert, const RecodeNode* prev,
|
|
DawgPositionVector* d, RecodeHeap* heap);
|
|
// Adds a RecodeNode to heap if there is room
|
|
// or if better than the current worst element if already full.
|
|
void PushHeapIfBetter(int max_size, RecodeNode* node, RecodeHeap* heap);
|
|
// Searches the heap for an entry matching new_node, and updates the entry
|
|
// with reshuffle if needed. Returns true if there was a match.
|
|
bool UpdateHeapIfMatched(RecodeNode* new_node, RecodeHeap* heap);
|
|
// Computes and returns the code-hash for the given code and prev.
|
|
uint64_t ComputeCodeHash(int code, bool dup, const RecodeNode* prev) const;
|
|
// Backtracks to extract the best path through the lattice that was built
|
|
// during Decode. On return the best_nodes vector essentially contains the set
|
|
// of code, score pairs that make the optimal path with the constraint that
|
|
// the recoder can decode the code sequence back to a sequence of unichar-ids.
|
|
void ExtractBestPaths(GenericVector<const RecodeNode*>* best_nodes,
|
|
GenericVector<const RecodeNode*>* second_nodes) const;
|
|
// Helper backtracks through the lattice from the given node, storing the
|
|
// path and reversing it.
|
|
void ExtractPath(const RecodeNode* node,
|
|
GenericVector<const RecodeNode*>* path) const;
|
|
// Helper prints debug information on the given lattice path.
|
|
void DebugPath(const UNICHARSET* unicharset,
|
|
const GenericVector<const RecodeNode*>& path) const;
|
|
// Helper prints debug information on the given unichar path.
|
|
void DebugUnicharPath(const UNICHARSET* unicharset,
|
|
const GenericVector<const RecodeNode*>& path,
|
|
const GenericVector<int>& unichar_ids,
|
|
const GenericVector<float>& certs,
|
|
const GenericVector<float>& ratings,
|
|
const GenericVector<int>& xcoords) const;
|
|
|
|
static const int kBeamWidths[RecodedCharID::kMaxCodeLen + 1];
|
|
|
|
// The encoder/decoder that we will be using.
|
|
const UnicharCompress& recoder_;
|
|
// The beam for each timestep in the output.
|
|
PointerVector<RecodeBeam> beam_;
|
|
// The number of timesteps valid in beam_;
|
|
int beam_size_;
|
|
// A flag to indicate which outputs are the top-n choices. Current timestep
|
|
// only.
|
|
GenericVector<TopNState> top_n_flags_;
|
|
// A record of the highest and second scoring codes.
|
|
int top_code_;
|
|
int second_code_;
|
|
// Heap used to compute the top_n_flags_.
|
|
GenericHeap<TopPair> top_heap_;
|
|
// Borrowed pointer to the dictionary to use in the search.
|
|
Dict* dict_;
|
|
// True if the language is space-delimited, which is true for most languages
|
|
// except chi*, jpn, tha.
|
|
bool space_delimited_;
|
|
// True if the input is simple text, ie adjacent equal chars are not to be
|
|
// eliminated.
|
|
bool is_simple_text_;
|
|
// The encoded (class label) of the null/reject character.
|
|
int null_char_;
|
|
};
|
|
|
|
} // namespace tesseract.
|
|
|
|
#endif // THIRD_PARTY_TESSERACT_LSTM_RECODEBEAM_H_
|