mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2025-01-18 22:43:45 +08:00
7ec3dca968
Windows: use binary mode for fopen (issue 70); autotools: fixed cutil/Makefile.am, improved tessdata/Makefile.am; git-svn-id: https://tesseract-ocr.googlecode.com/svn/trunk@604 d0cd1f9f-072b-0410-8dd7-cf729c803f20
1931 lines
67 KiB
C++
1931 lines
67 KiB
C++
/**********************************************************************
|
|
* File: baseapi.cpp
|
|
* Description: Simple API for calling tesseract.
|
|
* Author: Ray Smith
|
|
* Created: Fri Oct 06 15:35:01 PDT 2006
|
|
*
|
|
* (C) Copyright 2006, Google Inc.
|
|
** Licensed under the Apache License, Version 2.0 (the "License");
|
|
** you may not use this file except in compliance with the License.
|
|
** You may obtain a copy of the License at
|
|
** http://www.apache.org/licenses/LICENSE-2.0
|
|
** Unless required by applicable law or agreed to in writing, software
|
|
** distributed under the License is distributed on an "AS IS" BASIS,
|
|
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
** See the License for the specific language governing permissions and
|
|
** limitations under the License.
|
|
*
|
|
**********************************************************************/
|
|
|
|
// Include automatically generated configuration file if running autoconf.
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config_auto.h"
|
|
#endif
|
|
|
|
#ifdef HAVE_LIBLEPT
|
|
// Include leptonica library only if autoconf (or makefile etc) tell us to.
|
|
#include "allheaders.h"
|
|
#else
|
|
#error "Sorry: Tesseract no longer compiles without leptonica!"
|
|
#endif
|
|
#ifdef USE_NLS
|
|
#include <libintl.h>
|
|
#include <locale.h>
|
|
#define _(x) gettext(x)
|
|
#else
|
|
#define _(x) (x)
|
|
#endif
|
|
|
|
#include "baseapi.h"
|
|
|
|
#include "resultiterator.h"
|
|
#include "thresholder.h"
|
|
#include "tesseractmain.h"
|
|
#include "tesseractclass.h"
|
|
#include "pageres.h"
|
|
#include "tessvars.h"
|
|
#include "control.h"
|
|
#include "pgedit.h"
|
|
#include "paramsd.h"
|
|
#include "output.h"
|
|
#include "globals.h"
|
|
#include "edgblob.h"
|
|
#include "tessbox.h"
|
|
#include "imgs.h"
|
|
#include "imgtiff.h"
|
|
#include "makerow.h"
|
|
#include "permute.h"
|
|
#include "otsuthr.h"
|
|
#include "osdetect.h"
|
|
|
|
#ifdef __MSW32__
|
|
#include "version.h"
|
|
#endif
|
|
|
|
namespace tesseract {
|
|
|
|
// Minimum sensible image size to be worth running tesseract.
|
|
const int kMinRectSize = 10;
|
|
// Character returned when Tesseract couldn't recognize as anything.
|
|
const char kTesseractReject = '~';
|
|
// Character used by UNLV error counter as a reject.
|
|
const char kUNLVReject = '~';
|
|
// Character used by UNLV as a suspect marker.
|
|
const char kUNLVSuspect = '^';
|
|
// Filename used for input image file, from which to derive a name to search
|
|
// for a possible UNLV zone file, if none is specified by SetInputName.
|
|
const char* kInputFile = "noname.tif";
|
|
// Temp file used for storing current parameters before applying retry values.
|
|
const char* kOldVarsFile = "failed_vars.txt";
|
|
// Max string length of an int.
|
|
const int kMaxIntSize = 22;
|
|
|
|
TessBaseAPI::TessBaseAPI()
|
|
: tesseract_(NULL),
|
|
osd_tesseract_(NULL),
|
|
// Thresholder is initialized to NULL here, but will be set before use by:
|
|
// A constructor of a derived API, SetThresholder(), or
|
|
// created implicitly when used in InternalSetImage.
|
|
thresholder_(NULL),
|
|
block_list_(NULL),
|
|
page_res_(NULL),
|
|
input_file_(NULL),
|
|
output_file_(NULL),
|
|
datapath_(NULL),
|
|
language_(NULL),
|
|
last_oem_requested_(OEM_DEFAULT),
|
|
recognition_done_(false),
|
|
truth_cb_(NULL),
|
|
rect_left_(0), rect_top_(0), rect_width_(0), rect_height_(0),
|
|
image_width_(0), image_height_(0) {
|
|
}
|
|
|
|
TessBaseAPI::~TessBaseAPI() {
|
|
End();
|
|
}
|
|
|
|
/**
|
|
* Returns the version identifier as a static string. Do not delete.
|
|
*/
|
|
const char* TessBaseAPI::Version() {
|
|
return VERSION;
|
|
}
|
|
|
|
// Set the name of the input file. Needed only for training and
|
|
// loading a UNLV zone file.
|
|
void TessBaseAPI::SetInputName(const char* name) {
|
|
if (input_file_ == NULL)
|
|
input_file_ = new STRING(name);
|
|
else
|
|
*input_file_ = name;
|
|
}
|
|
|
|
// Set the name of the output files. Needed only for debugging.
|
|
void TessBaseAPI::SetOutputName(const char* name) {
|
|
if (output_file_ == NULL)
|
|
output_file_ = new STRING(name);
|
|
else
|
|
*output_file_ = name;
|
|
}
|
|
|
|
bool TessBaseAPI::SetVariable(const char* name, const char* value) {
|
|
if (tesseract_ == NULL) tesseract_ = new Tesseract;
|
|
return ParamUtils::SetParam(name, value, false, tesseract_->params());
|
|
}
|
|
|
|
bool TessBaseAPI::GetIntVariable(const char *name, int *value) const {
|
|
IntParam *p = ParamUtils::FindParam<IntParam>(
|
|
name, GlobalParams()->int_params, tesseract_->params()->int_params);
|
|
if (p == NULL) return false;
|
|
*value = (inT32)(*p);
|
|
return true;
|
|
}
|
|
|
|
bool TessBaseAPI::GetBoolVariable(const char *name, bool *value) const {
|
|
BoolParam *p = ParamUtils::FindParam<BoolParam>(
|
|
name, GlobalParams()->bool_params, tesseract_->params()->bool_params);
|
|
if (p == NULL) return false;
|
|
*value = (BOOL8)(*p);
|
|
return true;
|
|
}
|
|
|
|
const char *TessBaseAPI::GetStringVariable(const char *name) const {
|
|
StringParam *p = ParamUtils::FindParam<StringParam>(
|
|
name, GlobalParams()->string_params, tesseract_->params()->string_params);
|
|
return (p != NULL) ? p->string() : NULL;
|
|
}
|
|
|
|
bool TessBaseAPI::GetDoubleVariable(const char *name, double *value) const {
|
|
DoubleParam *p = ParamUtils::FindParam<DoubleParam>(
|
|
name, GlobalParams()->double_params, tesseract_->params()->double_params);
|
|
if (p == NULL) return false;
|
|
*value = (double)(*p);
|
|
return true;
|
|
}
|
|
|
|
// Get value of named variable as a string, if it exists.
|
|
bool TessBaseAPI::GetVariableAsString(const char *name, STRING *val) {
|
|
return ParamUtils::GetParamAsString(name, tesseract_->params(), val);
|
|
}
|
|
|
|
// Print Tesseract parameters to the given file.
|
|
void TessBaseAPI::PrintVariables(FILE *fp) const {
|
|
ParamUtils::PrintParams(fp, tesseract_->params());
|
|
}
|
|
|
|
// The datapath must be the name of the data directory (no ending /) or
|
|
// some other file in which the data directory resides (for instance argv[0].)
|
|
// The language is (usually) an ISO 639-3 string or NULL will default to eng.
|
|
// If numeric_mode is true, then only digits and Roman numerals will
|
|
// be returned.
|
|
// Returns 0 on success and -1 on initialization failure.
|
|
int TessBaseAPI::Init(const char* datapath, const char* language,
|
|
OcrEngineMode oem, char **configs, int configs_size,
|
|
const GenericVector<STRING> *vars_vec,
|
|
const GenericVector<STRING> *vars_values,
|
|
bool set_only_init_params) {
|
|
// If the datapath, OcrEngineMode or the language have changed - start again.
|
|
// Note that the language_ field stores the last requested language that was
|
|
// initialized successfully, while tesseract_->lang stores the language
|
|
// actually used. They differ only if the requested language was NULL, in
|
|
// which case tesseract_->lang is set to the Tesseract default ("eng").
|
|
if (tesseract_ != NULL &&
|
|
(datapath_ == NULL || language_ == NULL ||
|
|
*datapath_ != datapath || last_oem_requested_ != oem ||
|
|
(*language_ != language && tesseract_->lang != language))) {
|
|
tesseract_->end_tesseract();
|
|
delete tesseract_;
|
|
tesseract_ = NULL;
|
|
}
|
|
|
|
bool reset_classifier = true;
|
|
if (tesseract_ == NULL) {
|
|
reset_classifier = false;
|
|
tesseract_ = new Tesseract;
|
|
if (tesseract_->init_tesseract(
|
|
datapath, output_file_ != NULL ? output_file_->string() : NULL,
|
|
language, oem, configs, configs_size, vars_vec, vars_values,
|
|
set_only_init_params) != 0) {
|
|
return -1;
|
|
}
|
|
}
|
|
// Update datapath and language requested for the last valid initialization.
|
|
if (datapath_ == NULL)
|
|
datapath_ = new STRING(datapath);
|
|
else
|
|
*datapath_ = datapath;
|
|
if (language_ == NULL)
|
|
language_ = new STRING(language);
|
|
else
|
|
*language_ = language;
|
|
last_oem_requested_ = oem;
|
|
|
|
// For same language and datapath, just reset the adaptive classifier.
|
|
if (reset_classifier) tesseract_->ResetAdaptiveClassifier();
|
|
|
|
return 0;
|
|
}
|
|
|
|
// Init only the lang model component of Tesseract. The only functions
|
|
// that work after this init are SetVariable and IsValidWord.
|
|
// WARNING: temporary! This function will be removed from here and placed
|
|
// in a separate API at some future time.
|
|
int TessBaseAPI::InitLangMod(const char* datapath, const char* language) {
|
|
if (tesseract_ == NULL)
|
|
tesseract_ = new Tesseract;
|
|
return tesseract_->init_tesseract_lm(datapath, NULL, language);
|
|
}
|
|
|
|
// Init only for page layout analysis. Use only for calls to SetImage and
|
|
// AnalysePage. Calls that attempt recognition will generate an error.
|
|
void TessBaseAPI::InitForAnalysePage() {
|
|
if (tesseract_ == NULL) {
|
|
tesseract_ = new Tesseract;
|
|
tesseract_->InitAdaptiveClassifier(false);
|
|
}
|
|
}
|
|
|
|
// Read a "config" file containing a set of parameter name, value pairs.
|
|
// Searches the standard places: tessdata/configs, tessdata/tessconfigs
|
|
// and also accepts a relative or absolute path name.
|
|
void TessBaseAPI::ReadConfigFile(const char* filename, bool init_only) {
|
|
tesseract_->read_config_file(filename, init_only);
|
|
}
|
|
|
|
// Set the current page segmentation mode. Defaults to PSM_AUTO.
|
|
// The mode is stored as an IntParam so it can also be modified by
|
|
// ReadConfigFile or SetVariable("tessedit_pageseg_mode", mode as string).
|
|
void TessBaseAPI::SetPageSegMode(PageSegMode mode) {
|
|
if (tesseract_ == NULL)
|
|
tesseract_ = new Tesseract;
|
|
tesseract_->tessedit_pageseg_mode.set_value(mode);
|
|
}
|
|
|
|
// Return the current page segmentation mode.
|
|
PageSegMode TessBaseAPI::GetPageSegMode() const {
|
|
if (tesseract_ == NULL)
|
|
return PSM_SINGLE_BLOCK;
|
|
return static_cast<PageSegMode>(
|
|
static_cast<int>(tesseract_->tessedit_pageseg_mode));
|
|
}
|
|
|
|
// Recognize a rectangle from an image and return the result as a string.
|
|
// May be called many times for a single Init.
|
|
// Currently has no error checking.
|
|
// Greyscale of 8 and color of 24 or 32 bits per pixel may be given.
|
|
// Palette color images will not work properly and must be converted to
|
|
// 24 bit.
|
|
// Binary images of 1 bit per pixel may also be given but they must be
|
|
// byte packed with the MSB of the first byte being the first pixel, and a
|
|
// one pixel is WHITE. For binary images set bytes_per_pixel=0.
|
|
// The recognized text is returned as a char* which is coded
|
|
// as UTF8 and must be freed with the delete [] operator.
|
|
char* TessBaseAPI::TesseractRect(const unsigned char* imagedata,
|
|
int bytes_per_pixel,
|
|
int bytes_per_line,
|
|
int left, int top,
|
|
int width, int height) {
|
|
if (tesseract_ == NULL || width < kMinRectSize || height < kMinRectSize)
|
|
return NULL; // Nothing worth doing.
|
|
|
|
// Since this original api didn't give the exact size of the image,
|
|
// we have to invent a reasonable value.
|
|
int bits_per_pixel = bytes_per_pixel == 0 ? 1 : bytes_per_pixel * 8;
|
|
SetImage(imagedata, bytes_per_line * 8 / bits_per_pixel, height + top,
|
|
bytes_per_pixel, bytes_per_line);
|
|
SetRectangle(left, top, width, height);
|
|
|
|
return GetUTF8Text();
|
|
}
|
|
|
|
// Call between pages or documents etc to free up memory and forget
|
|
// adaptive data.
|
|
void TessBaseAPI::ClearAdaptiveClassifier() {
|
|
if (tesseract_ == NULL)
|
|
return;
|
|
tesseract_->ResetAdaptiveClassifier();
|
|
tesseract_->getDict().ResetDocumentDictionary();
|
|
}
|
|
|
|
// Provide an image for Tesseract to recognize. Format is as
|
|
// TesseractRect above. Does not copy the image buffer, or take
|
|
// ownership. The source image may be destroyed after Recognize is called,
|
|
// either explicitly or implicitly via one of the Get*Text functions.
|
|
// SetImage clears all recognition results, and sets the rectangle to the
|
|
// full image, so it may be followed immediately by a GetUTF8Text, and it
|
|
// will automatically perform recognition.
|
|
void TessBaseAPI::SetImage(const unsigned char* imagedata,
|
|
int width, int height,
|
|
int bytes_per_pixel, int bytes_per_line) {
|
|
if (InternalSetImage())
|
|
thresholder_->SetImage(imagedata, width, height,
|
|
bytes_per_pixel, bytes_per_line);
|
|
}
|
|
|
|
// Provide an image for Tesseract to recognize. As with SetImage above,
|
|
// Tesseract doesn't take a copy or ownership or pixDestroy the image, so
|
|
// it must persist until after Recognize.
|
|
// Pix vs raw, which to use?
|
|
// Use Pix where possible. A future version of Tesseract may choose to use Pix
|
|
// as its internal representation and discard IMAGE altogether.
|
|
// Because of that, an implementation that sources and targets Pix may end up
|
|
// with less copies than an implementation that does not.
|
|
void TessBaseAPI::SetImage(const Pix* pix) {
|
|
if (InternalSetImage())
|
|
thresholder_->SetImage(pix);
|
|
}
|
|
|
|
// Restrict recognition to a sub-rectangle of the image. Call after SetImage.
|
|
// Each SetRectangle clears the recogntion results so multiple rectangles
|
|
// can be recognized with the same image.
|
|
void TessBaseAPI::SetRectangle(int left, int top, int width, int height) {
|
|
if (thresholder_ == NULL)
|
|
return;
|
|
thresholder_->SetRectangle(left, top, width, height);
|
|
ClearResults();
|
|
}
|
|
|
|
// ONLY available if you have Leptonica installed.
|
|
// Get a copy of the internal thresholded image from Tesseract.
|
|
Pix* TessBaseAPI::GetThresholdedImage() {
|
|
if (tesseract_ == NULL)
|
|
return NULL;
|
|
if (tesseract_->pix_binary() == NULL)
|
|
Threshold(tesseract_->mutable_pix_binary());
|
|
return pixClone(tesseract_->pix_binary());
|
|
}
|
|
|
|
// Get the result of page layout analysis as a leptonica-style
|
|
// Boxa, Pixa pair, in reading order.
|
|
// Can be called before or after Recognize.
|
|
Boxa* TessBaseAPI::GetRegions(Pixa** pixa) {
|
|
return GetComponentImages(RIL_BLOCK, pixa, NULL);
|
|
}
|
|
|
|
// Get the textlines as a leptonica-style Boxa, Pixa pair, in reading order.
|
|
// Can be called before or after Recognize.
|
|
// If blockids is not NULL, the block-id of each line is also returned as an
|
|
// array of one element per line. delete [] after use.
|
|
Boxa* TessBaseAPI::GetTextlines(Pixa** pixa, int** blockids) {
|
|
return GetComponentImages(RIL_TEXTLINE, pixa, blockids);
|
|
}
|
|
|
|
// Gets the individual connected (text) components (created
|
|
// after pages segmentation step, but before recognition)
|
|
// as a leptonica-style Boxa, Pixa pair, in reading order.
|
|
// Can be called before or after Recognize.
|
|
Boxa* TessBaseAPI::GetConnectedComponents(Pixa** pixa) {
|
|
return GetComponentImages(RIL_SYMBOL, pixa, NULL);
|
|
}
|
|
|
|
// Get the words as a leptonica-style
|
|
// Boxa, Pixa pair, in reading order.
|
|
// Can be called before or after Recognize.
|
|
Boxa* TessBaseAPI::GetWords(Pixa** pixa) {
|
|
return GetComponentImages(RIL_WORD, pixa, NULL);
|
|
}
|
|
|
|
// Get the given level kind of components (block, textline, word etc.) as a
|
|
// leptonica-style Boxa, Pixa pair, in reading order.
|
|
// Can be called before or after Recognize.
|
|
// If blockids is not NULL, the block-id of each component is also returned
|
|
// as an array of one element per component. delete [] after use.
|
|
Boxa* TessBaseAPI::GetComponentImages(PageIteratorLevel level,
|
|
Pixa** pixa, int** blockids) {
|
|
PageIterator* page_it = GetIterator();
|
|
if (page_it == NULL)
|
|
page_it = AnalyseLayout();
|
|
if (page_it == NULL)
|
|
return NULL; // Failed.
|
|
|
|
// Count the components to get a size for the arrays.
|
|
int component_count = 0;
|
|
int left, top, right, bottom;
|
|
do {
|
|
if (page_it->BoundingBox(level, &left, &top, &right, &bottom))
|
|
++component_count;
|
|
} while (page_it->Next(level));
|
|
|
|
Boxa* boxa = boxaCreate(component_count);
|
|
if (pixa != NULL)
|
|
*pixa = pixaCreate(component_count);
|
|
if (blockids != NULL)
|
|
*blockids = new int[component_count];
|
|
|
|
int blockid = 0;
|
|
int component_index = 0;
|
|
page_it->Begin();
|
|
do {
|
|
if (page_it->BoundingBox(level, &left, &top, &right, &bottom)) {
|
|
Box* lbox = boxCreate(left, top, right - left, bottom - top);
|
|
boxaAddBox(boxa, lbox, L_INSERT);
|
|
if (pixa != NULL) {
|
|
Pix* pix = page_it->GetBinaryImage(level);
|
|
pixaAddPix(*pixa, pix, L_INSERT);
|
|
pixaAddBox(*pixa, lbox, L_CLONE);
|
|
}
|
|
if (blockids != NULL) {
|
|
(*blockids)[component_index] = blockid;
|
|
if (page_it->IsAtFinalElement(RIL_BLOCK, level))
|
|
++blockid;
|
|
}
|
|
++component_index;
|
|
}
|
|
} while (page_it->Next(level));
|
|
delete page_it;
|
|
return boxa;
|
|
}
|
|
|
|
// Dump the internal binary image to a PGM file.
|
|
void TessBaseAPI::DumpPGM(const char* filename) {
|
|
if (tesseract_ == NULL)
|
|
return;
|
|
FILE *fp = fopen(filename, "wb");
|
|
Pix* pix = tesseract_->pix_binary();
|
|
int width = pixGetWidth(pix);
|
|
int height = pixGetHeight(pix);
|
|
l_uint32* data = pixGetData(pix);
|
|
fprintf(fp, "P5 %d %d 255\n", width, height);
|
|
for (int y = 0; y < height; ++y, data += pixGetWpl(pix)) {
|
|
for (int x = 0; x < width; ++x) {
|
|
uinT8 b = GET_DATA_BIT(data, x) ? 0 : 255;
|
|
fwrite(&b, 1, 1, fp);
|
|
}
|
|
}
|
|
fclose(fp);
|
|
}
|
|
|
|
// Placeholder for call to Cube and test that the input data is correct.
|
|
// reskew is the direction of baselines in the skewed image in
|
|
// normalized (cos theta, sin theta) form, so (0.866, 0.5) would represent
|
|
// a 30 degree anticlockwise skew.
|
|
int CubeAPITest(Boxa* boxa_blocks, Pixa* pixa_blocks,
|
|
Boxa* boxa_words, Pixa* pixa_words,
|
|
const FCOORD& reskew, Pix* page_pix,
|
|
PAGE_RES* page_res) {
|
|
int block_count = boxaGetCount(boxa_blocks);
|
|
ASSERT_HOST(block_count == pixaGetCount(pixa_blocks));
|
|
// Write each block to the current directory as junk_write_display.nnn.png.
|
|
for (int i = 0; i < block_count; ++i) {
|
|
Pix* pix = pixaGetPix(pixa_blocks, i, L_CLONE);
|
|
pixDisplayWrite(pix, 1);
|
|
}
|
|
int word_count = boxaGetCount(boxa_words);
|
|
ASSERT_HOST(word_count == pixaGetCount(pixa_words));
|
|
int pr_word = 0;
|
|
PAGE_RES_IT page_res_it(page_res);
|
|
for (page_res_it.restart_page(); page_res_it.word () != NULL;
|
|
page_res_it.forward(), ++pr_word) {
|
|
WERD_RES *word = page_res_it.word();
|
|
WERD_CHOICE* choice = word->best_choice;
|
|
// Write the first 100 words to files names wordims/<wordstring>.tif.
|
|
if (pr_word < 100) {
|
|
STRING filename("wordims/");
|
|
if (choice != NULL) {
|
|
filename += choice->unichar_string();
|
|
} else {
|
|
char numbuf[32];
|
|
filename += "unclassified";
|
|
snprintf(numbuf, 32, "%03d", pr_word);
|
|
filename += numbuf;
|
|
}
|
|
filename += ".tif";
|
|
Pix* pix = pixaGetPix(pixa_words, pr_word, L_CLONE);
|
|
pixWrite(filename.string(), pix, IFF_TIFF_G4);
|
|
}
|
|
}
|
|
ASSERT_HOST(pr_word == word_count);
|
|
return 0;
|
|
}
|
|
|
|
// Runs page layout analysis in the mode set by SetPageSegMode.
|
|
// May optionally be called prior to Recognize to get access to just
|
|
// the page layout results. Returns an iterator to the results.
|
|
// Returns NULL on error or an empty page.
|
|
// The returned iterator must be deleted after use.
|
|
// WARNING! This class points to data held within the TessBaseAPI class, and
|
|
// therefore can only be used while the TessBaseAPI class still exists and
|
|
// has not been subjected to a call of Init, SetImage, Recognize, Clear, End
|
|
// DetectOS, or anything else that changes the internal PAGE_RES.
|
|
PageIterator* TessBaseAPI::AnalyseLayout() {
|
|
if (FindLines() == 0) {
|
|
if (block_list_->empty())
|
|
return NULL; // The page was empty.
|
|
page_res_ = new PAGE_RES(block_list_, NULL);
|
|
return new PageIterator(page_res_, tesseract_,
|
|
thresholder_->GetScaleFactor(),
|
|
thresholder_->GetScaledYResolution(),
|
|
rect_left_, rect_top_, rect_width_, rect_height_);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
// Recognize the tesseract global image and return the result as Tesseract
|
|
// internal structures.
|
|
int TessBaseAPI::Recognize(ETEXT_DESC* monitor) {
|
|
if (tesseract_ == NULL)
|
|
return -1;
|
|
if (FindLines() != 0)
|
|
return -1;
|
|
if (page_res_ != NULL)
|
|
delete page_res_;
|
|
|
|
tesseract_->SetBlackAndWhitelist();
|
|
recognition_done_ = true;
|
|
if (tesseract_->tessedit_resegment_from_line_boxes)
|
|
page_res_ = tesseract_->ApplyBoxes(*input_file_, true, block_list_);
|
|
else if (tesseract_->tessedit_resegment_from_boxes)
|
|
page_res_ = tesseract_->ApplyBoxes(*input_file_, false, block_list_);
|
|
else
|
|
page_res_ = new PAGE_RES(block_list_, &tesseract_->prev_word_best_choice_);
|
|
if (tesseract_->tessedit_make_boxes_from_boxes) {
|
|
tesseract_->CorrectClassifyWords(page_res_);
|
|
return 0;
|
|
}
|
|
if (truth_cb_ != NULL) truth_cb_->Run(image_height_, page_res_);
|
|
|
|
if (tesseract_->interactive_mode) {
|
|
tesseract_->pgeditor_main(rect_width_, rect_height_, page_res_);
|
|
// The page_res is invalid after an interactive session, so cleanup
|
|
// in a way that lets us continue to the next page without crashing.
|
|
delete page_res_;
|
|
page_res_ = NULL;
|
|
return -1;
|
|
} else if (tesseract_->tessedit_train_from_boxes) {
|
|
tesseract_->ApplyBoxTraining(*output_file_, page_res_);
|
|
} else if (tesseract_->tessedit_ambigs_training) {
|
|
FILE *training_output_file = tesseract_->init_recog_training(*input_file_);
|
|
// OCR the page segmented into words by tesseract.
|
|
tesseract_->recog_training_segmented(
|
|
*input_file_, page_res_, monitor, training_output_file);
|
|
fclose(training_output_file);
|
|
} else {
|
|
// Now run the main recognition.
|
|
tesseract_->recog_all_words(page_res_, monitor, NULL, NULL, 0);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Tests the chopper by exhaustively running chop_one_blob.
|
|
int TessBaseAPI::RecognizeForChopTest(ETEXT_DESC* monitor) {
|
|
if (tesseract_ == NULL)
|
|
return -1;
|
|
if (thresholder_ == NULL || thresholder_->IsEmpty()) {
|
|
tprintf("Please call SetImage before attempting recognition.");
|
|
return -1;
|
|
}
|
|
if (page_res_ != NULL)
|
|
ClearResults();
|
|
if (FindLines() != 0)
|
|
return -1;
|
|
// Additional conditions under which chopper test cannot be run
|
|
if (tesseract_->interactive_mode) return -1;
|
|
|
|
recognition_done_ = true;
|
|
|
|
page_res_ = new PAGE_RES(block_list_, &(tesseract_->prev_word_best_choice_));
|
|
|
|
PAGE_RES_IT page_res_it(page_res_);
|
|
|
|
while (page_res_it.word() != NULL) {
|
|
WERD_RES *word_res = page_res_it.word();
|
|
tesseract_->MaximallyChopWord(page_res_it.block()->block,
|
|
page_res_it.row()->row,
|
|
word_res);
|
|
page_res_it.forward();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
// Recognizes all the pages in the named file, as a multi-page tiff or
|
|
// list of filenames, or single image, and gets the appropriate kind of text
|
|
// according to parameters: tessedit_create_boxfile,
|
|
// tessedit_make_boxes_from_boxes, tessedit_write_unlv, tessedit_create_hocr.
|
|
// Calls ProcessPage on each page in the input file, which may be a
|
|
// multi-page tiff, single-page other file format, or a plain text list of
|
|
// images to read. If tessedit_page_number is non-negative, processing begins
|
|
// at that page of a multi-page tiff file, or filelist.
|
|
// The text is returned in text_out. Returns false on error.
|
|
// If non-zero timeout_millisec terminates processing after the timeout on
|
|
// a single page.
|
|
// If non-NULL and non-empty, and some page fails for some reason,
|
|
// the page is reprocessed with the retry_config config file. Useful
|
|
// for interactively debugging a bad page.
|
|
bool TessBaseAPI::ProcessPages(const char* filename,
|
|
const char* retry_config, int timeout_millisec,
|
|
STRING* text_out) {
|
|
int page = tesseract_->tessedit_page_number;
|
|
if (page < 0)
|
|
page = 0;
|
|
FILE* fp = fopen(filename, "rb");
|
|
if (fp == NULL) {
|
|
tprintf(_("Image file %s cannot be opened!\n"), filename);
|
|
return false;
|
|
}
|
|
// Find the number of pages if a tiff file, or zero otherwise.
|
|
int npages = CountTiffPages(fp);
|
|
fclose(fp);
|
|
|
|
if (tesseract_->tessedit_create_hocr) {
|
|
*text_out =
|
|
"<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01 Transitional//EN\""
|
|
" \"http://www.w3.org/TR/html4/loose.dtd\">\n"
|
|
"<html>\n<head>\n<title></title>\n"
|
|
"<meta http-equiv=\"Content-Type\" content=\"text/html;"
|
|
"charset=utf-8\" />\n<meta name='ocr-system' content='tesseract'/>\n"
|
|
"</head>\n<body>\n";
|
|
} else {
|
|
*text_out = "";
|
|
}
|
|
|
|
bool success = true;
|
|
Pix *pix;
|
|
if (npages > 0) {
|
|
for (; page < npages && (pix = pixReadTiff(filename, page)) != NULL;
|
|
++page) {
|
|
if (page >= 0)
|
|
tprintf(_("Page %d\n"), page);
|
|
char page_str[kMaxIntSize];
|
|
snprintf(page_str, kMaxIntSize - 1, "%d", page);
|
|
SetVariable("applybox_page", page_str);
|
|
success &= ProcessPage(pix, page, filename, retry_config,
|
|
timeout_millisec, text_out);
|
|
pixDestroy(&pix);
|
|
if (tesseract_->tessedit_page_number >= 0 || npages == 1) {
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
// The file is not a tiff file, so use the general pixRead function.
|
|
pix = pixRead(filename);
|
|
if (pix != NULL) {
|
|
success &= ProcessPage(pix, 0, filename, retry_config,
|
|
timeout_millisec, text_out);
|
|
pixDestroy(&pix);
|
|
} else {
|
|
// The file is not an image file, so try it as a list of filenames.
|
|
FILE* fimg = fopen(filename, "rb");
|
|
if (fimg == NULL) {
|
|
tprintf(_("File %s cannot be opened!\n"), filename);
|
|
return false;
|
|
}
|
|
tprintf(_("Reading %s as a list of filenames...\n"), filename);
|
|
char pagename[MAX_PATH];
|
|
// Skip to the requested page number.
|
|
for (int i = 0; i < page &&
|
|
fgets(pagename, sizeof(pagename), fimg) != NULL;
|
|
++i);
|
|
while (fgets(pagename, sizeof(pagename), fimg) != NULL) {
|
|
chomp_string(pagename);
|
|
pix = pixRead(pagename);
|
|
if (pix == NULL) {
|
|
tprintf(_("Image file %s cannot be read!\n"), pagename);
|
|
fclose(fimg);
|
|
return false;
|
|
}
|
|
tprintf(_("Page %d : %s\n"), page, pagename);
|
|
success &= ProcessPage(pix, page, pagename, retry_config,
|
|
timeout_millisec, text_out);
|
|
pixDestroy(&pix);
|
|
++page;
|
|
}
|
|
fclose(fimg);
|
|
}
|
|
}
|
|
if (tesseract_->tessedit_create_hocr)
|
|
*text_out += "</body>\n</html>\n";
|
|
return success;
|
|
}
|
|
|
|
|
|
// Recognizes a single page for ProcessPages, appending the text to text_out.
|
|
// The pix is the image processed - filename and page_index are metadata
|
|
// used by side-effect processes, such as reading a box file or formatting
|
|
// as hOCR.
|
|
// If non-zero timeout_millisec terminates processing after the timeout.
|
|
// If non-NULL and non-empty, and some page fails for some reason,
|
|
// the page is reprocessed with the retry_config config file. Useful
|
|
// for interactively debugging a bad page.
|
|
// The text is returned in text_out. Returns false on error.
|
|
bool TessBaseAPI::ProcessPage(Pix* pix, int page_index, const char* filename,
|
|
const char* retry_config, int timeout_millisec,
|
|
STRING* text_out) {
|
|
SetInputName(filename);
|
|
SetImage(pix);
|
|
bool failed = false;
|
|
if (timeout_millisec > 0) {
|
|
// Running with a timeout.
|
|
ETEXT_DESC monitor;
|
|
monitor.cancel = NULL;
|
|
monitor.cancel_this = NULL;
|
|
monitor.set_deadline_msecs(timeout_millisec);
|
|
// Now run the main recognition.
|
|
failed = Recognize(&monitor) < 0;
|
|
} else if (tesseract_->tessedit_pageseg_mode == PSM_OSD_ONLY ||
|
|
tesseract_->tessedit_pageseg_mode == PSM_AUTO_ONLY) {
|
|
// Disabled character recognition.
|
|
PageIterator* it = AnalyseLayout();
|
|
if (it == NULL) {
|
|
failed = true;
|
|
} else {
|
|
delete it;
|
|
return true;
|
|
}
|
|
} else {
|
|
// Normal layout and character recognition with no timeout.
|
|
failed = Recognize(NULL) < 0;
|
|
}
|
|
if (tesseract_->tessedit_write_images) {
|
|
Pix* page_pix = GetThresholdedImage();
|
|
pixWrite("tessinput.tif", page_pix, IFF_TIFF_G4);
|
|
}
|
|
if (failed && retry_config != NULL && retry_config[0] != '\0') {
|
|
// Save current config variables before switching modes.
|
|
FILE* fp = fopen(kOldVarsFile, "wb");
|
|
PrintVariables(fp);
|
|
fclose(fp);
|
|
// Switch to alternate mode for retry.
|
|
ReadConfigFile(retry_config, false);
|
|
SetImage(pix);
|
|
Recognize(NULL);
|
|
// Restore saved config variables.
|
|
ReadConfigFile(kOldVarsFile, false);
|
|
}
|
|
// Get text only if successful.
|
|
if (!failed) {
|
|
char* text;
|
|
if (tesseract_->tessedit_create_boxfile ||
|
|
tesseract_->tessedit_make_boxes_from_boxes) {
|
|
text = GetBoxText(page_index);
|
|
} else if (tesseract_->tessedit_write_unlv) {
|
|
text = GetUNLVText();
|
|
} else if (tesseract_->tessedit_create_hocr) {
|
|
text = GetHOCRText(page_index);
|
|
} else {
|
|
text = GetUTF8Text();
|
|
}
|
|
*text_out += text;
|
|
delete [] text;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Get an iterator to the results of LayoutAnalysis and/or Recognize.
|
|
// The returned iterator must be deleted after use.
|
|
// WARNING! This class points to data held within the TessBaseAPI class, and
|
|
// therefore can only be used while the TessBaseAPI class still exists and
|
|
// has not been subjected to a call of Init, SetImage, Recognize, Clear, End
|
|
// DetectOS, or anything else that changes the internal PAGE_RES.
|
|
ResultIterator* TessBaseAPI::GetIterator() {
|
|
if (tesseract_ == NULL || page_res_ == NULL)
|
|
return NULL;
|
|
return new ResultIterator(page_res_, tesseract_,
|
|
thresholder_->GetScaleFactor(),
|
|
thresholder_->GetScaledYResolution(),
|
|
rect_left_, rect_top_, rect_width_, rect_height_);
|
|
}
|
|
|
|
// Make a text string from the internal data structures.
|
|
char* TessBaseAPI::GetUTF8Text() {
|
|
if (tesseract_ == NULL ||
|
|
(!recognition_done_ && Recognize(NULL) < 0))
|
|
return NULL;
|
|
int total_length = TextLength(NULL);
|
|
PAGE_RES_IT page_res_it(page_res_);
|
|
char* result = new char[total_length];
|
|
char* ptr = result;
|
|
for (page_res_it.restart_page(); page_res_it.word () != NULL;
|
|
page_res_it.forward()) {
|
|
WERD_RES *word = page_res_it.word();
|
|
WERD_CHOICE* choice = word->best_choice;
|
|
if (choice != NULL) {
|
|
strcpy(ptr, choice->unichar_string().string());
|
|
ptr += choice->unichar_string().length();
|
|
if (word->word->flag(W_EOL))
|
|
*ptr++ = '\n';
|
|
else
|
|
*ptr++ = ' ';
|
|
}
|
|
}
|
|
*ptr++ = '\n';
|
|
*ptr = '\0';
|
|
return result;
|
|
}
|
|
|
|
// Helper returns true if there is a paragraph break between bbox_cur,
|
|
// and bbox_prev.
|
|
// TODO(rays) improve and incorporate deeper into tesseract, so other
|
|
// output methods get the benefit.
|
|
static bool IsParagraphBreak(TBOX bbox_cur, TBOX bbox_prev,
|
|
int right, int line_height) {
|
|
// Check if the distance between lines is larger than the normal leading,
|
|
if (fabs((float)(bbox_cur.bottom() - bbox_prev.bottom())) > line_height * 2)
|
|
return true;
|
|
|
|
// Check if the distance between left bounds of the two lines is nearly the
|
|
// same as between their right bounds (if so, then both lines probably belong
|
|
// to the same paragraph, maybe a centered one).
|
|
if (fabs((float)((bbox_cur.left() - bbox_prev.left()) -
|
|
(bbox_prev.right() - bbox_cur.right()))) < line_height)
|
|
return false;
|
|
|
|
// Check if there is a paragraph indent at this line (either -ve or +ve).
|
|
if (fabs((float)(bbox_cur.left() - bbox_prev.left())) > line_height)
|
|
return true;
|
|
|
|
// Check if both current and previous line don't reach the right bound of the
|
|
// block, but the distance is different. This will cause all lines in a verse
|
|
// to be treated as separate paragraphs, but most probably will not split
|
|
// block-quotes to separate lines (at least if the text is justified).
|
|
if (fabs((float)(bbox_cur.right() - bbox_prev.right())) > line_height &&
|
|
right - bbox_cur.right() > line_height &&
|
|
right - bbox_prev.right() > line_height)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
// Helper to add the hOCR for a box to the given hocr_str.
|
|
static void AddBoxTohOCR(const TBOX& box, int image_height, STRING* hocr_str) {
|
|
hocr_str->add_str_int("' title=\"bbox ", box.left());
|
|
hocr_str->add_str_int(" ", image_height - box.top());
|
|
hocr_str->add_str_int(" ", box.right());
|
|
hocr_str->add_str_int(" ", image_height - box.bottom());
|
|
*hocr_str += "\">";
|
|
}
|
|
|
|
// Make a HTML-formatted string with hOCR markup from the internal
|
|
// data structures.
|
|
// page_number is 0-based but will appear in the output as 1-based.
|
|
// STL removed from original patch submission and refactored by rays.
|
|
char* TessBaseAPI::GetHOCRText(int page_number) {
|
|
if (tesseract_ == NULL ||
|
|
(page_res_ == NULL && Recognize(NULL) < 0))
|
|
return NULL;
|
|
|
|
PAGE_RES_IT page_res_it(page_res_);
|
|
ROW_RES *row = NULL; // current row
|
|
ROW *real_row = NULL, *prev_row = NULL;
|
|
BLOCK_RES *block = NULL; // current row
|
|
BLOCK *real_block = NULL;
|
|
int lcnt = 1, bcnt = 1, wcnt = 1;
|
|
int page_id = page_number + 1; // hOCR uses 1-based page numbers.
|
|
|
|
STRING hocr_str;
|
|
|
|
hocr_str.add_str_int("<div class='ocr_page' id='page_", page_id);
|
|
hocr_str += "' title='image \"";
|
|
hocr_str += *input_file_;
|
|
hocr_str.add_str_int("\"; bbox ", rect_left_);
|
|
hocr_str.add_str_int(" ", rect_top_);
|
|
hocr_str.add_str_int(" ", rect_width_);
|
|
hocr_str.add_str_int(" ", rect_height_);
|
|
hocr_str += "'>\n";
|
|
|
|
for (page_res_it.restart_page(); page_res_it.word () != NULL;
|
|
page_res_it.forward()) {
|
|
if (block != page_res_it.block()) {
|
|
if (block != NULL) {
|
|
hocr_str += "</span>\n</p>\n</div>\n";
|
|
}
|
|
|
|
block = page_res_it.block(); // current row
|
|
real_block = block->block;
|
|
real_row = NULL;
|
|
row = NULL;
|
|
|
|
hocr_str.add_str_int("<div class='ocr_carea' id='block_", page_id);
|
|
hocr_str.add_str_int("_", bcnt++);
|
|
AddBoxTohOCR(real_block->bounding_box(), image_height_, &hocr_str);
|
|
hocr_str += "\n<p class='ocr_par'>\n";
|
|
}
|
|
if (row != page_res_it.row()) {
|
|
if (row != NULL) {
|
|
hocr_str += "</span>\n";
|
|
}
|
|
prev_row = real_row;
|
|
|
|
row = page_res_it.row(); // current row
|
|
real_row = row->row;
|
|
|
|
if (prev_row != NULL &&
|
|
IsParagraphBreak(real_row->bounding_box(), prev_row->bounding_box(),
|
|
real_block->bounding_box().right(),
|
|
real_row->x_height() + real_row->ascenders()))
|
|
hocr_str += "</p>\n<p class='ocr_par'>\n";
|
|
|
|
hocr_str.add_str_int("<span class='ocr_line' id='line_", page_id);
|
|
hocr_str.add_str_int("_", lcnt++);
|
|
AddBoxTohOCR(real_row->bounding_box(), image_height_, &hocr_str);
|
|
}
|
|
|
|
WERD_RES *word = page_res_it.word();
|
|
WERD_CHOICE* choice = word->best_choice;
|
|
if (choice != NULL) {
|
|
hocr_str.add_str_int("<span class='ocr_word' id='word_", page_id);
|
|
hocr_str.add_str_int("_", wcnt);
|
|
AddBoxTohOCR(word->word->bounding_box(), image_height_, &hocr_str);
|
|
hocr_str.add_str_int("<span class='ocrx_word' id='xword_", page_id);
|
|
hocr_str.add_str_int("_", wcnt++);
|
|
hocr_str.add_str_int("' title=\"x_wconf ", choice->certainty());
|
|
hocr_str += "\">";
|
|
if (word->bold > 0)
|
|
hocr_str += "<strong>";
|
|
if (word->italic > 0)
|
|
hocr_str += "<em>";
|
|
int i;
|
|
// escape special characters
|
|
for (i = 0; choice->unichar_string()[i] != '\0'; i++) {
|
|
if (choice->unichar_string()[i] == '<') hocr_str += "<";
|
|
else if (choice->unichar_string()[i] == '>') hocr_str += ">";
|
|
else if (choice->unichar_string()[i] == '&') hocr_str += "&";
|
|
else if (choice->unichar_string()[i] == '"') hocr_str += """;
|
|
else if (choice->unichar_string()[i] == '\'') hocr_str += "'";
|
|
else hocr_str += choice->unichar_string()[i];
|
|
}
|
|
if (word->italic > 0)
|
|
hocr_str += "</em>";
|
|
if (word->bold > 0)
|
|
hocr_str += "</strong>";
|
|
hocr_str += "</span></span>";
|
|
if (!word->word->flag(W_EOL))
|
|
hocr_str += " ";
|
|
}
|
|
}
|
|
if (block != NULL)
|
|
hocr_str += "</span>\n</p>\n</div>\n";
|
|
hocr_str += "</div>\n";
|
|
|
|
char *ret = new char[hocr_str.length() + 1];
|
|
strcpy(ret, hocr_str.string());
|
|
return ret;
|
|
}
|
|
|
|
// The 5 numbers output for each box (the usual 4 and a page number.)
|
|
const int kNumbersPerBlob = 5;
|
|
// The number of bytes taken by each number. Since we use inT16 for ICOORD,
|
|
// assume only 5 digits max.
|
|
const int kBytesPerNumber = 5;
|
|
// Multiplier for max expected textlength assumes (kBytesPerNumber + space)
|
|
// * kNumbersPerBlob plus the newline. Add to this the
|
|
// original UTF8 characters, and one kMaxBytesPerLine for safety.
|
|
const int kBytesPerBlob = kNumbersPerBlob * (kBytesPerNumber + 1) + 1;
|
|
const int kBytesPerBoxFileLine = (kBytesPerNumber + 1) * kNumbersPerBlob + 1;
|
|
// Max bytes in the decimal representation of inT64.
|
|
const int kBytesPer64BitNumber = 20;
|
|
// A maximal single box could occupy kNumbersPerBlob numbers at
|
|
// kBytesPer64BitNumber digits (if someone sneaks in a 64 bit value) and a
|
|
// space plus the newline and the maximum length of a UNICHAR.
|
|
// Test against this on each iteration for safety.
|
|
const int kMaxBytesPerLine = kNumbersPerBlob * (kBytesPer64BitNumber + 1) + 1 +
|
|
UNICHAR_LEN;
|
|
|
|
// The recognized text is returned as a char* which is coded
|
|
// as a UTF8 box file and must be freed with the delete [] operator.
|
|
// page_number is a 0-base page index that will appear in the box file.
|
|
char* TessBaseAPI::GetBoxText(int page_number) {
|
|
if (tesseract_ == NULL ||
|
|
(!recognition_done_ && Recognize(NULL) < 0))
|
|
return NULL;
|
|
int blob_count;
|
|
int utf8_length = TextLength(&blob_count);
|
|
int total_length = blob_count * kBytesPerBoxFileLine + utf8_length +
|
|
kMaxBytesPerLine;
|
|
char* result = new char[total_length];
|
|
int output_length = 0;
|
|
ResultIterator* it = GetIterator();
|
|
do {
|
|
int left, top, right, bottom;
|
|
if (it->BoundingBox(RIL_SYMBOL, &left, &top, &right, &bottom)) {
|
|
char* text = it->GetUTF8Text(RIL_SYMBOL);
|
|
// Tesseract uses space for recognition failure. Fix to a reject
|
|
// character, kTesseractReject so we don't create illegal box files.
|
|
for (int i = 0; text[i] != '\0'; ++i) {
|
|
if (text[i] == ' ')
|
|
text[i] = kTesseractReject;
|
|
}
|
|
snprintf(result + output_length, total_length - output_length,
|
|
"%s %d %d %d %d %d\n",
|
|
text, left, image_height_ - bottom,
|
|
right, image_height_ - top, page_number);
|
|
output_length += strlen(result + output_length);
|
|
delete [] text;
|
|
// Just in case...
|
|
if (output_length + kMaxBytesPerLine > total_length)
|
|
break;
|
|
}
|
|
} while (it->Next(RIL_SYMBOL));
|
|
delete it;
|
|
return result;
|
|
}
|
|
|
|
// Conversion table for non-latin characters.
|
|
// Maps characters out of the latin set into the latin set.
|
|
// TODO(rays) incorporate this translation into unicharset.
|
|
const int kUniChs[] = {
|
|
0x20ac, 0x201c, 0x201d, 0x2018, 0x2019, 0x2022, 0x2014, 0
|
|
};
|
|
// Latin chars corresponding to the unicode chars above.
|
|
const int kLatinChs[] = {
|
|
0x00a2, 0x0022, 0x0022, 0x0027, 0x0027, 0x00b7, 0x002d, 0
|
|
};
|
|
|
|
// The recognized text is returned as a char* which is coded
|
|
// as UNLV format Latin-1 with specific reject and suspect codes
|
|
// and must be freed with the delete [] operator.
|
|
char* TessBaseAPI::GetUNLVText() {
|
|
if (tesseract_ == NULL ||
|
|
(!recognition_done_ && Recognize(NULL) < 0))
|
|
return NULL;
|
|
bool tilde_crunch_written = false;
|
|
bool last_char_was_newline = true;
|
|
bool last_char_was_tilde = false;
|
|
|
|
int total_length = TextLength(NULL);
|
|
PAGE_RES_IT page_res_it(page_res_);
|
|
char* result = new char[total_length];
|
|
char* ptr = result;
|
|
for (page_res_it.restart_page(); page_res_it.word () != NULL;
|
|
page_res_it.forward()) {
|
|
WERD_RES *word = page_res_it.word();
|
|
// Process the current word.
|
|
if (word->unlv_crunch_mode != CR_NONE) {
|
|
if (word->unlv_crunch_mode != CR_DELETE &&
|
|
(!tilde_crunch_written ||
|
|
(word->unlv_crunch_mode == CR_KEEP_SPACE &&
|
|
word->word->space() > 0 &&
|
|
!word->word->flag(W_FUZZY_NON) &&
|
|
!word->word->flag(W_FUZZY_SP)))) {
|
|
if (!word->word->flag(W_BOL) &&
|
|
word->word->space() > 0 &&
|
|
!word->word->flag(W_FUZZY_NON) &&
|
|
!word->word->flag(W_FUZZY_SP)) {
|
|
/* Write a space to separate from preceeding good text */
|
|
*ptr++ = ' ';
|
|
last_char_was_tilde = false;
|
|
}
|
|
if (!last_char_was_tilde) {
|
|
// Write a reject char.
|
|
last_char_was_tilde = true;
|
|
*ptr++ = kUNLVReject;
|
|
tilde_crunch_written = true;
|
|
last_char_was_newline = false;
|
|
}
|
|
}
|
|
} else {
|
|
// NORMAL PROCESSING of non tilde crunched words.
|
|
tilde_crunch_written = false;
|
|
tesseract_->set_unlv_suspects(word);
|
|
const char* wordstr = word->best_choice->unichar_string().string();
|
|
const STRING& lengths = word->best_choice->unichar_lengths();
|
|
int length = lengths.length();
|
|
int i = 0;
|
|
int offset = 0;
|
|
|
|
if (last_char_was_tilde &&
|
|
word->word->space() == 0 && wordstr[offset] == ' ') {
|
|
// Prevent adjacent tilde across words - we know that adjacent tildes
|
|
// within words have been removed.
|
|
// Skip the first character.
|
|
offset = lengths[i++];
|
|
}
|
|
if (i < length && wordstr[offset] != 0) {
|
|
if (!last_char_was_newline)
|
|
*ptr++ = ' ';
|
|
else
|
|
last_char_was_newline = false;
|
|
for (; i < length; offset += lengths[i++]) {
|
|
if (wordstr[offset] == ' ' ||
|
|
wordstr[offset] == kTesseractReject) {
|
|
*ptr++ = kUNLVReject;
|
|
last_char_was_tilde = true;
|
|
} else {
|
|
if (word->reject_map[i].rejected())
|
|
*ptr++ = kUNLVSuspect;
|
|
UNICHAR ch(wordstr + offset, lengths[i]);
|
|
int uni_ch = ch.first_uni();
|
|
for (int j = 0; kUniChs[j] != 0; ++j) {
|
|
if (kUniChs[j] == uni_ch) {
|
|
uni_ch = kLatinChs[j];
|
|
break;
|
|
}
|
|
}
|
|
if (uni_ch <= 0xff) {
|
|
*ptr++ = static_cast<char>(uni_ch);
|
|
last_char_was_tilde = false;
|
|
} else {
|
|
*ptr++ = kUNLVReject;
|
|
last_char_was_tilde = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (word->word->flag(W_EOL) && !last_char_was_newline) {
|
|
/* Add a new line output */
|
|
*ptr++ = '\n';
|
|
tilde_crunch_written = false;
|
|
last_char_was_newline = true;
|
|
last_char_was_tilde = false;
|
|
}
|
|
}
|
|
*ptr++ = '\n';
|
|
*ptr = '\0';
|
|
return result;
|
|
}
|
|
|
|
// Returns the average word confidence for Tesseract page result.
|
|
int TessBaseAPI::MeanTextConf() {
|
|
int* conf = AllWordConfidences();
|
|
if (!conf) return 0;
|
|
int sum = 0;
|
|
int *pt = conf;
|
|
while (*pt >= 0) sum += *pt++;
|
|
if (pt != conf) sum /= pt - conf;
|
|
delete [] conf;
|
|
return sum;
|
|
}
|
|
|
|
// Returns an array of all word confidences, terminated by -1.
|
|
int* TessBaseAPI::AllWordConfidences() {
|
|
if (tesseract_ == NULL ||
|
|
(!recognition_done_ && Recognize(NULL) < 0))
|
|
return NULL;
|
|
int n_word = 0;
|
|
PAGE_RES_IT res_it(page_res_);
|
|
for (res_it.restart_page(); res_it.word() != NULL; res_it.forward())
|
|
n_word++;
|
|
|
|
int* conf = new int[n_word+1];
|
|
n_word = 0;
|
|
for (res_it.restart_page(); res_it.word() != NULL; res_it.forward()) {
|
|
WERD_RES *word = res_it.word();
|
|
WERD_CHOICE* choice = word->best_choice;
|
|
int w_conf = static_cast<int>(100 + 5 * choice->certainty());
|
|
// This is the eq for converting Tesseract confidence to 1..100
|
|
if (w_conf < 0) w_conf = 0;
|
|
if (w_conf > 100) w_conf = 100;
|
|
conf[n_word++] = w_conf;
|
|
}
|
|
conf[n_word] = -1;
|
|
return conf;
|
|
}
|
|
|
|
/**
|
|
* Applies the given word to the adaptive classifier if possible.
|
|
* The word must be SPACE-DELIMITED UTF-8 - l i k e t h i s , so it can
|
|
* tell the boundaries of the graphemes.
|
|
* Assumes that SetImage/SetRectangle have been used to set the image
|
|
* to the given word. The mode arg should be PSM_SINGLE_WORD or
|
|
* PSM_CIRCLE_WORD, as that will be used to control layout analysis.
|
|
* The currently set PageSegMode is preserved.
|
|
* Returns false if adaption was not possible for some reason.
|
|
*/
|
|
bool TessBaseAPI::AdaptToWordStr(PageSegMode mode, const char* wordstr) {
|
|
bool success = true;
|
|
PageSegMode current_psm = GetPageSegMode();
|
|
SetPageSegMode(mode);
|
|
SetVariable("classify_enable_learning", "0");
|
|
char* text = GetUTF8Text();
|
|
if (text != NULL) {
|
|
PAGE_RES_IT it(page_res_);
|
|
WERD_RES* word_res = it.word();
|
|
if (word_res != NULL) {
|
|
word_res->word->set_text(wordstr);
|
|
} else {
|
|
success = false;
|
|
}
|
|
// Check to see if text matches wordstr.
|
|
int w = 0;
|
|
int t = 0;
|
|
for (t = 0; text[t] != '\0'; ++t) {
|
|
if (text[t] == '\n' || text[t] == ' ')
|
|
continue;
|
|
while (wordstr[w] != '\0' && wordstr[w] == ' ')
|
|
++w;
|
|
if (text[t] != wordstr[w])
|
|
break;
|
|
++w;
|
|
}
|
|
if (text[t] != '\0' || wordstr[w] != '\0') {
|
|
// No match.
|
|
delete page_res_;
|
|
page_res_ = tesseract_->SetupApplyBoxes(block_list_);
|
|
tesseract_->ReSegmentByClassification(page_res_);
|
|
tesseract_->TidyUp(page_res_);
|
|
PAGE_RES_IT pr_it(page_res_);
|
|
if (pr_it.word() == NULL)
|
|
success = false;
|
|
else
|
|
word_res = pr_it.word();
|
|
} else {
|
|
word_res->BestChoiceToCorrectText(tesseract_->unicharset);
|
|
}
|
|
if (success) {
|
|
tesseract_->EnableLearning = true;
|
|
tesseract_->LearnWord(NULL, NULL, word_res);
|
|
}
|
|
delete [] text;
|
|
} else {
|
|
success = false;
|
|
}
|
|
SetPageSegMode(current_psm);
|
|
return success;
|
|
}
|
|
|
|
// Free up recognition results and any stored image data, without actually
|
|
// freeing any recognition data that would be time-consuming to reload.
|
|
// Afterwards, you must call SetImage or TesseractRect before doing
|
|
// any Recognize or Get* operation.
|
|
void TessBaseAPI::Clear() {
|
|
if (thresholder_ != NULL)
|
|
thresholder_->Clear();
|
|
ClearResults();
|
|
}
|
|
|
|
// Close down tesseract and free up all memory. End() is equivalent to
|
|
// destructing and reconstructing your TessBaseAPI.
|
|
// Once End() has been used, none of the other API functions may be used
|
|
// other than Init and anything declared above it in the class definition.
|
|
void TessBaseAPI::End() {
|
|
if (thresholder_ != NULL) {
|
|
delete thresholder_;
|
|
thresholder_ = NULL;
|
|
}
|
|
if (page_res_ != NULL) {
|
|
delete page_res_;
|
|
page_res_ = NULL;
|
|
}
|
|
if (block_list_ != NULL) {
|
|
delete block_list_;
|
|
block_list_ = NULL;
|
|
}
|
|
if (tesseract_ != NULL) {
|
|
tesseract_->end_tesseract();
|
|
delete tesseract_;
|
|
if (osd_tesseract_ == tesseract_)
|
|
osd_tesseract_ = NULL;
|
|
tesseract_ = NULL;
|
|
}
|
|
if (osd_tesseract_ != NULL) {
|
|
osd_tesseract_->end_tesseract();
|
|
delete osd_tesseract_;
|
|
osd_tesseract_ = NULL;
|
|
}
|
|
if (input_file_ != NULL) {
|
|
delete input_file_;
|
|
input_file_ = NULL;
|
|
}
|
|
if (output_file_ != NULL) {
|
|
delete output_file_;
|
|
output_file_ = NULL;
|
|
}
|
|
if (datapath_ != NULL) {
|
|
delete datapath_;
|
|
datapath_ = NULL;
|
|
}
|
|
if (language_ != NULL) {
|
|
delete language_;
|
|
language_ = NULL;
|
|
}
|
|
}
|
|
|
|
// Check whether a word is valid according to Tesseract's language model
|
|
// returns 0 if the word is invalid, non-zero if valid
|
|
int TessBaseAPI::IsValidWord(const char *word) {
|
|
return tesseract_->getDict().valid_word(word);
|
|
}
|
|
|
|
|
|
bool TessBaseAPI::GetTextDirection(int* out_offset, float* out_slope) {
|
|
if (page_res_ == NULL)
|
|
FindLines();
|
|
if (block_list_->length() < 1) {
|
|
return false;
|
|
}
|
|
|
|
// Get first block
|
|
BLOCK_IT block_it(block_list_);
|
|
block_it.move_to_first();
|
|
ROW_LIST* rows = block_it.data()->row_list();
|
|
if (rows->length() < 1) {
|
|
return false;
|
|
}
|
|
|
|
// Get first line of block
|
|
ROW_IT row_it(rows);
|
|
row_it.move_to_first();
|
|
ROW* row = row_it.data();
|
|
|
|
// Calculate offset and slope (NOTE: Kind of ugly)
|
|
*out_offset = static_cast<int>(row->base_line(0.0));
|
|
*out_slope = row->base_line(1.0) - row->base_line(0.0);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Sets Dict::letter_is_okay_ function to point to the given function.
|
|
void TessBaseAPI::SetDictFunc(DictFunc f) {
|
|
if (tesseract_ != NULL) {
|
|
tesseract_->getDict().letter_is_okay_ = f;
|
|
}
|
|
}
|
|
|
|
// Sets Dict::probability_in_context_ function to point to the given function.
|
|
void TessBaseAPI::SetProbabilityInContextFunc(ProbabilityInContextFunc f) {
|
|
if (tesseract_ != NULL) {
|
|
tesseract_->getDict().probability_in_context_ = f;
|
|
}
|
|
}
|
|
|
|
// Common code for setting the image.
|
|
bool TessBaseAPI::InternalSetImage() {
|
|
if (tesseract_ == NULL) {
|
|
tprintf("Please call Init before attempting to send an image.");
|
|
return false;
|
|
}
|
|
if (thresholder_ == NULL)
|
|
thresholder_ = new ImageThresholder;
|
|
ClearResults();
|
|
return true;
|
|
}
|
|
|
|
// Run the thresholder to make the thresholded image, returned in pix,
|
|
// which must not be NULL. *pix must be initialized to NULL, or point
|
|
// to an existing pixDestroyable Pix.
|
|
// The usual argument to Threshold is Tesseract::mutable_pix_binary().
|
|
void TessBaseAPI::Threshold(Pix** pix) {
|
|
ASSERT_HOST(pix != NULL);
|
|
if (!thresholder_->IsBinary()) {
|
|
tesseract_->set_pix_grey(thresholder_->GetPixRectGrey());
|
|
}
|
|
if (*pix != NULL)
|
|
pixDestroy(pix);
|
|
thresholder_->ThresholdToPix(pix);
|
|
thresholder_->GetImageSizes(&rect_left_, &rect_top_,
|
|
&rect_width_, &rect_height_,
|
|
&image_width_, &image_height_);
|
|
}
|
|
|
|
// Find lines from the image making the BLOCK_LIST.
|
|
int TessBaseAPI::FindLines() {
|
|
if (thresholder_ == NULL || thresholder_->IsEmpty()) {
|
|
tprintf("Please call SetImage before attempting recognition.");
|
|
return -1;
|
|
}
|
|
if (recognition_done_)
|
|
ClearResults();
|
|
if (!block_list_->empty()) {
|
|
return 0;
|
|
}
|
|
if (tesseract_ == NULL) {
|
|
tesseract_ = new Tesseract;
|
|
tesseract_->InitAdaptiveClassifier(false);
|
|
}
|
|
if (tesseract_->pix_binary() == NULL)
|
|
Threshold(tesseract_->mutable_pix_binary());
|
|
if (tesseract_->ImageWidth() > MAX_INT16 ||
|
|
tesseract_->ImageHeight() > MAX_INT16) {
|
|
tprintf("Image too large: (%d, %d)\n",
|
|
tesseract_->ImageWidth(), tesseract_->ImageHeight());
|
|
return -1;
|
|
}
|
|
|
|
tesseract_->PrepareForPageseg();
|
|
|
|
Tesseract* osd_tess = osd_tesseract_;
|
|
OSResults osr;
|
|
if (PSM_OSD_ENABLED(tesseract_->tessedit_pageseg_mode) && osd_tess == NULL) {
|
|
if (strcmp(language_->string(), "osd") == 0) {
|
|
osd_tess = tesseract_;
|
|
} else {
|
|
osd_tesseract_ = new Tesseract;
|
|
if (osd_tesseract_->init_tesseract(
|
|
datapath_->string(), NULL, "osd", OEM_TESSERACT_ONLY,
|
|
NULL, 0, NULL, NULL, false) == 0) {
|
|
osd_tess = osd_tesseract_;
|
|
} else {
|
|
tprintf("Warning: Auto orientation and script detection requested,"
|
|
" but osd language failed to load\n");
|
|
delete osd_tesseract_;
|
|
osd_tesseract_ = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (tesseract_->SegmentPage(input_file_, block_list_, osd_tess, &osr) < 0)
|
|
return -1;
|
|
// If OCR is to be run using Tesseract, OCR-able blobs are required for
|
|
// training, or interactive mode is needed, prepare data and images for ocr.
|
|
if (tesseract_->interactive_mode ||
|
|
tesseract_->tessedit_train_from_boxes ||
|
|
tesseract_->tessedit_ambigs_training ||
|
|
tesseract_->tessedit_ocr_engine_mode == OEM_TESSERACT_ONLY ||
|
|
tesseract_->tessedit_ocr_engine_mode ==
|
|
OEM_TESSERACT_CUBE_COMBINED) {
|
|
tesseract_->PrepareForTessOCR(block_list_, osd_tess, &osr);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Delete the pageres and clear the block list ready for a new page.
|
|
void TessBaseAPI::ClearResults() {
|
|
if (tesseract_ != NULL) {
|
|
tesseract_->Clear();
|
|
tesseract_->ResetFeaturesHaveBeenExtracted();
|
|
}
|
|
if (page_res_ != NULL) {
|
|
delete page_res_;
|
|
page_res_ = NULL;
|
|
}
|
|
recognition_done_ = false;
|
|
if (block_list_ == NULL)
|
|
block_list_ = new BLOCK_LIST;
|
|
else
|
|
block_list_->clear();
|
|
}
|
|
|
|
// Return the length of the output text string, as UTF8, assuming
|
|
// one newline per line and one per block, with a terminator,
|
|
// and assuming a single character reject marker for each rejected character.
|
|
// Also return the number of recognized blobs in blob_count.
|
|
int TessBaseAPI::TextLength(int* blob_count) {
|
|
if (tesseract_ == NULL || page_res_ == NULL)
|
|
return 0;
|
|
|
|
PAGE_RES_IT page_res_it(page_res_);
|
|
int total_length = 2;
|
|
int total_blobs = 0;
|
|
// Iterate over the data structures to extract the recognition result.
|
|
for (page_res_it.restart_page(); page_res_it.word () != NULL;
|
|
page_res_it.forward()) {
|
|
WERD_RES *word = page_res_it.word();
|
|
WERD_CHOICE* choice = word->best_choice;
|
|
if (choice != NULL) {
|
|
total_blobs += choice->length() + 1;
|
|
total_length += choice->unichar_string().length() + 1;
|
|
for (int i = 0; i < word->reject_map.length(); ++i) {
|
|
if (word->reject_map[i].rejected())
|
|
++total_length;
|
|
}
|
|
}
|
|
}
|
|
if (blob_count != NULL)
|
|
*blob_count = total_blobs;
|
|
return total_length;
|
|
}
|
|
|
|
// Estimates the Orientation And Script of the image.
|
|
// Returns true if the image was processed successfully.
|
|
bool TessBaseAPI::DetectOS(OSResults* osr) {
|
|
if (tesseract_ == NULL)
|
|
return false;
|
|
ClearResults();
|
|
if (tesseract_->pix_binary() == NULL)
|
|
Threshold(tesseract_->mutable_pix_binary());
|
|
if (input_file_ == NULL)
|
|
input_file_ = new STRING(kInputFile);
|
|
return orientation_and_script_detection(*input_file_, osr, tesseract_);
|
|
}
|
|
|
|
void TessBaseAPI::set_min_orientation_margin(double margin) {
|
|
tesseract_->min_orientation_margin.set_value(margin);
|
|
}
|
|
|
|
// Return text orientation of each block as determined in an earlier page layout
|
|
// analysis operation. Orientation is returned as the number of ccw 90-degree
|
|
// rotations (in [0..3]) required to make the text in the block upright
|
|
// (readable). Note that this may not necessary be the block orientation
|
|
// preferred for recognition (such as the case of vertical CJK text).
|
|
//
|
|
// Also returns whether the text in the block is believed to have vertical
|
|
// writing direction (when in an upright page orientation).
|
|
//
|
|
// The returned array is of length equal to the number of text blocks, which may
|
|
// be less than the total number of blocks. The ordering is intended to be
|
|
// consistent with GetTextLines().
|
|
void TessBaseAPI::GetBlockTextOrientations(int** block_orientation,
|
|
bool** vertical_writing) {
|
|
delete[] *block_orientation;
|
|
*block_orientation = NULL;
|
|
delete[] *vertical_writing;
|
|
*vertical_writing = NULL;
|
|
BLOCK_IT block_it(block_list_);
|
|
|
|
block_it.move_to_first();
|
|
int num_blocks = 0;
|
|
for (block_it.mark_cycle_pt(); !block_it.cycled_list(); block_it.forward()) {
|
|
if (!block_it.data()->poly_block()->IsText()) {
|
|
continue;
|
|
}
|
|
++num_blocks;
|
|
}
|
|
if (!num_blocks) {
|
|
tprintf("WARNING: Found no blocks\n");
|
|
return;
|
|
}
|
|
*block_orientation = new int[num_blocks];
|
|
*vertical_writing = new bool[num_blocks];
|
|
block_it.move_to_first();
|
|
int i = 0;
|
|
for (block_it.mark_cycle_pt(); !block_it.cycled_list();
|
|
block_it.forward()) {
|
|
if (!block_it.data()->poly_block()->IsText()) {
|
|
continue;
|
|
}
|
|
FCOORD re_rotation = block_it.data()->re_rotation();
|
|
float re_theta = re_rotation.angle();
|
|
FCOORD classify_rotation = block_it.data()->classify_rotation();
|
|
float classify_theta = classify_rotation.angle();
|
|
double rot_theta = - (re_theta - classify_theta) * 2.0 / PI;
|
|
if (rot_theta < 0) rot_theta += 4;
|
|
int num_rotations = static_cast<int>(rot_theta + 0.5);
|
|
(*block_orientation)[i] = num_rotations;
|
|
// The classify_rotation is non-zero only if the text has vertical
|
|
// writing direction.
|
|
(*vertical_writing)[i] = classify_rotation.y() != 0.0f;
|
|
++i;
|
|
}
|
|
}
|
|
|
|
// ____________________________________________________________________________
|
|
// Ocropus add-ons.
|
|
|
|
// Find lines from the image making the BLOCK_LIST.
|
|
BLOCK_LIST* TessBaseAPI::FindLinesCreateBlockList() {
|
|
FindLines();
|
|
BLOCK_LIST* result = block_list_;
|
|
block_list_ = NULL;
|
|
return result;
|
|
}
|
|
|
|
// Delete a block list.
|
|
// This is to keep BLOCK_LIST pointer opaque
|
|
// and let go of including the other headers.
|
|
void TessBaseAPI::DeleteBlockList(BLOCK_LIST *block_list) {
|
|
delete block_list;
|
|
}
|
|
|
|
|
|
ROW *TessBaseAPI::MakeTessOCRRow(float baseline,
|
|
float xheight,
|
|
float descender,
|
|
float ascender) {
|
|
inT32 xstarts[] = {-32000};
|
|
double quad_coeffs[] = {0, 0, baseline};
|
|
return new ROW(1,
|
|
xstarts,
|
|
quad_coeffs,
|
|
xheight,
|
|
ascender - (baseline + xheight),
|
|
descender - baseline,
|
|
0,
|
|
0);
|
|
}
|
|
|
|
// Creates a TBLOB* from the whole pix.
|
|
TBLOB *TessBaseAPI::MakeTBLOB(Pix *pix) {
|
|
int width = pixGetWidth(pix);
|
|
int height = pixGetHeight(pix);
|
|
BLOCK block("a character", TRUE, 0, 0, 0, 0, width, height);
|
|
|
|
// Create C_BLOBs from the page
|
|
extract_edges(pix, &block);
|
|
|
|
// Merge all C_BLOBs
|
|
C_BLOB_LIST *list = block.blob_list();
|
|
C_BLOB_IT c_blob_it(list);
|
|
if (c_blob_it.empty())
|
|
return NULL;
|
|
// Move all the outlines to the first blob.
|
|
C_OUTLINE_IT ol_it(c_blob_it.data()->out_list());
|
|
for (c_blob_it.forward();
|
|
!c_blob_it.at_first();
|
|
c_blob_it.forward()) {
|
|
C_BLOB *c_blob = c_blob_it.data();
|
|
ol_it.add_list_after(c_blob->out_list());
|
|
}
|
|
// Convert the first blob to the output TBLOB.
|
|
return TBLOB::PolygonalCopy(c_blob_it.data());
|
|
}
|
|
|
|
// This method baseline normalizes a TBLOB in-place. The input row is used
|
|
// for normalization. The denorm is an optional parameter in which the
|
|
// normalization-antidote is returned.
|
|
void TessBaseAPI::NormalizeTBLOB(TBLOB *tblob, ROW *row,
|
|
bool numeric_mode, DENORM *denorm) {
|
|
TWERD word;
|
|
word.blobs = tblob;
|
|
if (denorm != NULL) {
|
|
word.SetupBLNormalize(NULL, row, row->x_height(), numeric_mode, denorm);
|
|
word.Normalize(*denorm);
|
|
} else {
|
|
DENORM normer;
|
|
word.SetupBLNormalize(NULL, row, row->x_height(), numeric_mode, &normer);
|
|
word.Normalize(normer);
|
|
}
|
|
word.blobs = NULL;
|
|
}
|
|
|
|
// Return a TBLOB * from the whole pix.
|
|
// To be freed later with delete.
|
|
TBLOB *make_tesseract_blob(float baseline, float xheight,
|
|
float descender, float ascender,
|
|
bool numeric_mode, Pix* pix) {
|
|
TBLOB *tblob = TessBaseAPI::MakeTBLOB(pix);
|
|
|
|
// Normalize TBLOB
|
|
ROW *row =
|
|
TessBaseAPI::MakeTessOCRRow(baseline, xheight, descender, ascender);
|
|
TessBaseAPI::NormalizeTBLOB(tblob, row, numeric_mode, NULL);
|
|
delete row;
|
|
return tblob;
|
|
}
|
|
|
|
|
|
// Adapt to recognize the current image as the given character.
|
|
// The image must be preloaded into pix_binary_ and be just an image
|
|
// of a single character.
|
|
void TessBaseAPI::AdaptToCharacter(const char *unichar_repr,
|
|
int length,
|
|
float baseline,
|
|
float xheight,
|
|
float descender,
|
|
float ascender) {
|
|
UNICHAR_ID id = tesseract_->unicharset.unichar_to_id(unichar_repr, length);
|
|
TBLOB *blob = make_tesseract_blob(baseline, xheight, descender, ascender,
|
|
tesseract_->classify_bln_numeric_mode,
|
|
tesseract_->pix_binary());
|
|
float threshold;
|
|
UNICHAR_ID best_class = 0;
|
|
float best_rating = -100;
|
|
|
|
|
|
// Classify to get a raw choice.
|
|
BLOB_CHOICE_LIST choices;
|
|
DENORM denorm;
|
|
tesseract_->set_denorm(&denorm);
|
|
tesseract_->AdaptiveClassifier(blob, &choices, NULL);
|
|
BLOB_CHOICE_IT choice_it;
|
|
choice_it.set_to_list(&choices);
|
|
for (choice_it.mark_cycle_pt(); !choice_it.cycled_list();
|
|
choice_it.forward()) {
|
|
if (choice_it.data()->rating() > best_rating) {
|
|
best_rating = choice_it.data()->rating();
|
|
best_class = choice_it.data()->unichar_id();
|
|
}
|
|
}
|
|
|
|
if (id == best_class) {
|
|
threshold = tesseract_->matcher_good_threshold;
|
|
} else {
|
|
/* the blob was incorrectly classified - find the rating threshold
|
|
needed to create a template which will correct the error with
|
|
some margin. However, don't waste time trying to make
|
|
templates which are too tight. */
|
|
threshold = tesseract_->GetBestRatingFor(blob, id);
|
|
threshold *= .9;
|
|
const float max_threshold = .125;
|
|
const float min_threshold = .02;
|
|
|
|
if (threshold > max_threshold)
|
|
threshold = max_threshold;
|
|
|
|
// I have cuddled the following line to set it out of the strike
|
|
// of the coverage testing tool. I have no idea how to trigger
|
|
// this situation nor I have any necessity to do it. --mezhirov
|
|
if (threshold < min_threshold) threshold = min_threshold;
|
|
}
|
|
|
|
if (blob->outlines)
|
|
tesseract_->AdaptToChar(blob, id, kUnknownFontinfoId, threshold);
|
|
delete blob;
|
|
}
|
|
|
|
|
|
PAGE_RES* TessBaseAPI::RecognitionPass1(BLOCK_LIST* block_list) {
|
|
PAGE_RES *page_res = new PAGE_RES(block_list,
|
|
&(tesseract_->prev_word_best_choice_));
|
|
tesseract_->recog_all_words(page_res, NULL, NULL, NULL, 1);
|
|
return page_res;
|
|
}
|
|
|
|
PAGE_RES* TessBaseAPI::RecognitionPass2(BLOCK_LIST* block_list,
|
|
PAGE_RES* pass1_result) {
|
|
if (!pass1_result)
|
|
pass1_result = new PAGE_RES(block_list,
|
|
&(tesseract_->prev_word_best_choice_));
|
|
tesseract_->recog_all_words(pass1_result, NULL, NULL, NULL, 2);
|
|
return pass1_result;
|
|
}
|
|
|
|
struct TESS_CHAR : ELIST_LINK {
|
|
char *unicode_repr;
|
|
int length; // of unicode_repr
|
|
float cost;
|
|
TBOX box;
|
|
|
|
TESS_CHAR(float _cost, const char *repr, int len = -1) : cost(_cost) {
|
|
length = (len == -1 ? strlen(repr) : len);
|
|
unicode_repr = new char[length + 1];
|
|
strncpy(unicode_repr, repr, length);
|
|
}
|
|
|
|
TESS_CHAR() { // Satisfies ELISTIZE.
|
|
}
|
|
~TESS_CHAR() {
|
|
delete [] unicode_repr;
|
|
}
|
|
};
|
|
|
|
ELISTIZEH(TESS_CHAR)
|
|
ELISTIZE(TESS_CHAR)
|
|
|
|
static void add_space(TESS_CHAR_IT* it) {
|
|
TESS_CHAR *t = new TESS_CHAR(0, " ");
|
|
it->add_after_then_move(t);
|
|
}
|
|
|
|
|
|
static float rating_to_cost(float rating) {
|
|
rating = 100 + rating;
|
|
// cuddled that to save from coverage profiler
|
|
// (I have never seen ratings worse than -100,
|
|
// but the check won't hurt)
|
|
if (rating < 0) rating = 0;
|
|
return rating;
|
|
}
|
|
|
|
|
|
// Extract the OCR results, costs (penalty points for uncertainty),
|
|
// and the bounding boxes of the characters.
|
|
static void extract_result(TESS_CHAR_IT* out,
|
|
PAGE_RES* page_res) {
|
|
PAGE_RES_IT page_res_it(page_res);
|
|
int word_count = 0;
|
|
while (page_res_it.word() != NULL) {
|
|
WERD_RES *word = page_res_it.word();
|
|
const char *str = word->best_choice->unichar_string().string();
|
|
const char *len = word->best_choice->unichar_lengths().string();
|
|
TBOX real_rect = word->word->bounding_box();
|
|
|
|
if (word_count)
|
|
add_space(out);
|
|
int n = strlen(len);
|
|
for (int i = 0; i < n; i++) {
|
|
TESS_CHAR *tc = new TESS_CHAR(rating_to_cost(word->best_choice->rating()),
|
|
str, *len);
|
|
tc->box = real_rect.intersection(word->box_word->BlobBox(i));
|
|
out->add_after_then_move(tc);
|
|
str += *len;
|
|
len++;
|
|
}
|
|
page_res_it.forward();
|
|
word_count++;
|
|
}
|
|
}
|
|
|
|
|
|
// Extract the OCR results, costs (penalty points for uncertainty),
|
|
// and the bounding boxes of the characters.
|
|
int TessBaseAPI::TesseractExtractResult(char** text,
|
|
int** lengths,
|
|
float** costs,
|
|
int** x0,
|
|
int** y0,
|
|
int** x1,
|
|
int** y1,
|
|
PAGE_RES* page_res) {
|
|
TESS_CHAR_LIST tess_chars;
|
|
TESS_CHAR_IT tess_chars_it(&tess_chars);
|
|
extract_result(&tess_chars_it, page_res);
|
|
tess_chars_it.move_to_first();
|
|
int n = tess_chars.length();
|
|
int text_len = 0;
|
|
*lengths = new int[n];
|
|
*costs = new float[n];
|
|
*x0 = new int[n];
|
|
*y0 = new int[n];
|
|
*x1 = new int[n];
|
|
*y1 = new int[n];
|
|
int i = 0;
|
|
for (tess_chars_it.mark_cycle_pt();
|
|
!tess_chars_it.cycled_list();
|
|
tess_chars_it.forward(), i++) {
|
|
TESS_CHAR *tc = tess_chars_it.data();
|
|
text_len += (*lengths)[i] = tc->length;
|
|
(*costs)[i] = tc->cost;
|
|
(*x0)[i] = tc->box.left();
|
|
(*y0)[i] = tc->box.bottom();
|
|
(*x1)[i] = tc->box.right();
|
|
(*y1)[i] = tc->box.top();
|
|
}
|
|
char *p = *text = new char[text_len];
|
|
|
|
tess_chars_it.move_to_first();
|
|
for (tess_chars_it.mark_cycle_pt();
|
|
!tess_chars_it.cycled_list();
|
|
tess_chars_it.forward()) {
|
|
TESS_CHAR *tc = tess_chars_it.data();
|
|
strncpy(p, tc->unicode_repr, tc->length);
|
|
p += tc->length;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
// This method returns the features associated with the input blob.
|
|
void TessBaseAPI::GetFeaturesForBlob(TBLOB* blob, const DENORM& denorm,
|
|
INT_FEATURE_ARRAY int_features,
|
|
int* num_features,
|
|
int* FeatureOutlineIndex) {
|
|
if (tesseract_) {
|
|
tesseract_->ResetFeaturesHaveBeenExtracted();
|
|
}
|
|
tesseract_->set_denorm(&denorm);
|
|
CLASS_NORMALIZATION_ARRAY norm_array;
|
|
inT32 len;
|
|
*num_features = tesseract_->GetIntCharNormFeatures(
|
|
blob, tesseract_->PreTrainedTemplates,
|
|
int_features, norm_array, &len, FeatureOutlineIndex);
|
|
}
|
|
|
|
// This method returns the row to which a box of specified dimensions would
|
|
// belong. If no good match is found, it returns NULL.
|
|
ROW* TessBaseAPI::FindRowForBox(BLOCK_LIST* blocks,
|
|
int left, int top, int right, int bottom) {
|
|
TBOX box(left, bottom, right, top);
|
|
BLOCK_IT b_it(blocks);
|
|
for (b_it.mark_cycle_pt(); !b_it.cycled_list(); b_it.forward()) {
|
|
BLOCK* block = b_it.data();
|
|
if (!box.major_overlap(block->bounding_box()))
|
|
continue;
|
|
ROW_IT r_it(block->row_list());
|
|
for (r_it.mark_cycle_pt(); !r_it.cycled_list(); r_it.forward()) {
|
|
ROW* row = r_it.data();
|
|
if (!box.major_overlap(row->bounding_box()))
|
|
continue;
|
|
WERD_IT w_it(row->word_list());
|
|
for (w_it.mark_cycle_pt(); !w_it.cycled_list(); w_it.forward()) {
|
|
WERD* word = w_it.data();
|
|
if (box.major_overlap(word->bounding_box()))
|
|
return row;
|
|
}
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
// Method to run adaptive classifier on a blob.
|
|
void TessBaseAPI::RunAdaptiveClassifier(TBLOB* blob, const DENORM& denorm,
|
|
int num_max_matches,
|
|
int* unichar_ids,
|
|
float* ratings,
|
|
int* num_matches_returned) {
|
|
BLOB_CHOICE_LIST* choices = new BLOB_CHOICE_LIST;
|
|
tesseract_->set_denorm(&denorm);
|
|
tesseract_->AdaptiveClassifier(blob, choices, NULL);
|
|
BLOB_CHOICE_IT choices_it(choices);
|
|
int& index = *num_matches_returned;
|
|
index = 0;
|
|
for (choices_it.mark_cycle_pt();
|
|
!choices_it.cycled_list() && index < num_max_matches;
|
|
choices_it.forward()) {
|
|
BLOB_CHOICE* choice = choices_it.data();
|
|
unichar_ids[index] = choice->unichar_id();
|
|
ratings[index] = choice->rating();
|
|
++index;
|
|
}
|
|
*num_matches_returned = index;
|
|
delete choices;
|
|
}
|
|
|
|
// This method returns the string form of the specified unichar.
|
|
const char* TessBaseAPI::GetUnichar(int unichar_id) {
|
|
return tesseract_->unicharset.id_to_unichar(unichar_id);
|
|
}
|
|
|
|
// Return the pointer to the i-th dawg loaded into tesseract_ object.
|
|
const Dawg *TessBaseAPI::GetDawg(int i) const {
|
|
if (tesseract_ == NULL || i >= NumDawgs()) return NULL;
|
|
return tesseract_->getDict().GetDawg(i);
|
|
}
|
|
|
|
// Return the number of dawgs loaded into tesseract_ object.
|
|
int TessBaseAPI::NumDawgs() const {
|
|
return tesseract_ == NULL ? 0 : tesseract_->getDict().NumDawgs();
|
|
}
|
|
|
|
// Return the language used in the last valid initialization.
|
|
const char* TessBaseAPI::GetLastInitLanguage() const {
|
|
return (tesseract_ == NULL || tesseract_->lang.string() == NULL) ?
|
|
"" : tesseract_->lang.string();
|
|
}
|
|
|
|
// Return a pointer to underlying CubeRecoContext object if present.
|
|
CubeRecoContext *TessBaseAPI::GetCubeRecoContext() const {
|
|
return (tesseract_ == NULL) ? NULL : tesseract_->GetCubeRecoContext();
|
|
}
|
|
} // namespace tesseract.
|