mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2025-01-07 10:17:50 +08:00
4523ce9f7d
git-svn-id: https://tesseract-ocr.googlecode.com/svn/trunk@526 d0cd1f9f-072b-0410-8dd7-cf729c803f20
288 lines
8.2 KiB
C++
288 lines
8.2 KiB
C++
/**********************************************************************
|
|
* File: cube_object.cpp
|
|
* Description: Implementation of the Cube Object Class
|
|
* Author: Ahmad Abdulkader
|
|
* Created: 2007
|
|
*
|
|
* (C) Copyright 2008, Google Inc.
|
|
** Licensed under the Apache License, Version 2.0 (the "License");
|
|
** you may not use this file except in compliance with the License.
|
|
** You may obtain a copy of the License at
|
|
** http://www.apache.org/licenses/LICENSE-2.0
|
|
** Unless required by applicable law or agreed to in writing, software
|
|
** distributed under the License is distributed on an "AS IS" BASIS,
|
|
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
** See the License for the specific language governing permissions and
|
|
** limitations under the License.
|
|
*
|
|
**********************************************************************/
|
|
|
|
#include <math.h>
|
|
#include "cube_object.h"
|
|
#include "cube_utils.h"
|
|
#include "word_list_lang_model.h"
|
|
|
|
namespace tesseract {
|
|
CubeObject::CubeObject(CubeRecoContext *cntxt, CharSamp *char_samp) {
|
|
Init();
|
|
char_samp_ = char_samp;
|
|
cntxt_ = cntxt;
|
|
}
|
|
|
|
CubeObject::CubeObject(CubeRecoContext *cntxt, IMAGE *img,
|
|
int left, int top, int wid, int hgt) {
|
|
Init();
|
|
char_samp_ = CubeUtils::CharSampleFromImg(img, left, top, wid, hgt);
|
|
own_char_samp_ = true;
|
|
cntxt_ = cntxt;
|
|
}
|
|
|
|
CubeObject::CubeObject(CubeRecoContext *cntxt, Pix *pix,
|
|
int left, int top, int wid, int hgt) {
|
|
Init();
|
|
char_samp_ = CubeUtils::CharSampleFromPix(pix, left, top, wid, hgt);
|
|
own_char_samp_ = true;
|
|
cntxt_ = cntxt;
|
|
}
|
|
|
|
// Data member initialization function
|
|
void CubeObject::Init() {
|
|
char_samp_ = NULL;
|
|
own_char_samp_ = false;
|
|
alt_list_ = NULL;
|
|
srch_obj_ = NULL;
|
|
deslanted_alt_list_ = NULL;
|
|
deslanted_srch_obj_ = NULL;
|
|
deslanted_ = false;
|
|
deslanted_char_samp_ = NULL;
|
|
beam_obj_ = NULL;
|
|
deslanted_beam_obj_ = NULL;
|
|
cntxt_ = NULL;
|
|
}
|
|
|
|
// Cleanup function
|
|
void CubeObject::Cleanup() {
|
|
if (alt_list_ != NULL) {
|
|
delete alt_list_;
|
|
alt_list_ = NULL;
|
|
}
|
|
|
|
if (deslanted_alt_list_ != NULL) {
|
|
delete deslanted_alt_list_;
|
|
deslanted_alt_list_ = NULL;
|
|
}
|
|
}
|
|
|
|
CubeObject::~CubeObject() {
|
|
if (char_samp_ != NULL && own_char_samp_ == true) {
|
|
delete char_samp_;
|
|
char_samp_ = NULL;
|
|
}
|
|
|
|
if (srch_obj_ != NULL) {
|
|
delete srch_obj_;
|
|
srch_obj_ = NULL;
|
|
}
|
|
|
|
if (deslanted_srch_obj_ != NULL) {
|
|
delete deslanted_srch_obj_;
|
|
deslanted_srch_obj_ = NULL;
|
|
}
|
|
|
|
if (beam_obj_ != NULL) {
|
|
delete beam_obj_;
|
|
beam_obj_ = NULL;
|
|
}
|
|
|
|
if (deslanted_beam_obj_ != NULL) {
|
|
delete deslanted_beam_obj_;
|
|
deslanted_beam_obj_ = NULL;
|
|
}
|
|
|
|
if (deslanted_char_samp_ != NULL) {
|
|
delete deslanted_char_samp_;
|
|
deslanted_char_samp_ = NULL;
|
|
}
|
|
|
|
Cleanup();
|
|
}
|
|
|
|
// Actually do the recognition using the specified language mode. If none
|
|
// is specified, the default language model in the CubeRecoContext is used.
|
|
// Returns the sorted list of alternate answers
|
|
// The Word mode determines whether recognition is done as a word or a phrase
|
|
WordAltList *CubeObject::Recognize(LangModel *lang_mod, bool word_mode) {
|
|
if (char_samp_ == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
// clear alt lists
|
|
Cleanup();
|
|
|
|
// no specified language model, use the one in the reco context
|
|
if (lang_mod == NULL) {
|
|
lang_mod = cntxt_->LangMod();
|
|
}
|
|
|
|
// normalize if necessary
|
|
if (cntxt_->SizeNormalization()) {
|
|
Normalize();
|
|
}
|
|
|
|
// assume not de-slanted by default
|
|
deslanted_ = false;
|
|
|
|
// create a beam search object
|
|
if (beam_obj_ == NULL) {
|
|
beam_obj_ = new BeamSearch(cntxt_, word_mode);
|
|
if (beam_obj_ == NULL) {
|
|
fprintf(stderr, "Cube ERROR (CubeObject::Recognize): could not construct "
|
|
"BeamSearch\n");
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
// create a cube search object
|
|
if (srch_obj_ == NULL) {
|
|
srch_obj_ = new CubeSearchObject(cntxt_, char_samp_);
|
|
if (srch_obj_ == NULL) {
|
|
fprintf(stderr, "Cube ERROR (CubeObject::Recognize): could not construct "
|
|
"CubeSearchObject\n");
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
// run a beam search against the tesslang model
|
|
alt_list_ = beam_obj_->Search(srch_obj_, lang_mod);
|
|
|
|
// deslant (if supported by language) and re-reco if probability is low enough
|
|
if (cntxt_->HasItalics() == true &&
|
|
(alt_list_ == NULL || alt_list_->AltCount() < 1 ||
|
|
alt_list_->AltCost(0) > CubeUtils::Prob2Cost(kMinProbSkipDeslanted))) {
|
|
|
|
if (deslanted_beam_obj_ == NULL) {
|
|
deslanted_beam_obj_ = new BeamSearch(cntxt_);
|
|
if (deslanted_beam_obj_ == NULL) {
|
|
fprintf(stderr, "Cube ERROR (CubeObject::Recognize): could not "
|
|
"construct deslanted BeamSearch\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (deslanted_srch_obj_ == NULL) {
|
|
deslanted_char_samp_ = char_samp_->Clone();
|
|
if (deslanted_char_samp_ == NULL) {
|
|
fprintf(stderr, "Cube ERROR (CubeObject::Recognize): could not "
|
|
"construct deslanted CharSamp\n");
|
|
return NULL;
|
|
}
|
|
|
|
if (deslanted_char_samp_->Deslant() == false) {
|
|
return NULL;
|
|
}
|
|
|
|
deslanted_srch_obj_ = new CubeSearchObject(cntxt_, deslanted_char_samp_);
|
|
if (deslanted_srch_obj_ == NULL) {
|
|
fprintf(stderr, "Cube ERROR (CubeObject::Recognize): could not "
|
|
"construct deslanted CubeSearchObject\n");
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
// run a beam search against the tesslang model
|
|
deslanted_alt_list_ = deslanted_beam_obj_->Search(deslanted_srch_obj_,
|
|
lang_mod);
|
|
// should we use de-slanted altlist?
|
|
if (deslanted_alt_list_ != NULL && deslanted_alt_list_->AltCount() > 0) {
|
|
if (alt_list_ == NULL || alt_list_->AltCount() < 1 ||
|
|
deslanted_alt_list_->AltCost(0) < alt_list_->AltCost(0)) {
|
|
deslanted_ = true;
|
|
return deslanted_alt_list_;
|
|
}
|
|
}
|
|
}
|
|
|
|
return alt_list_;
|
|
}
|
|
|
|
// Recognize the member char sample as a word
|
|
WordAltList *CubeObject::RecognizeWord(LangModel *lang_mod) {
|
|
return Recognize(lang_mod, true);
|
|
}
|
|
|
|
// Recognize the member char sample as a word
|
|
WordAltList *CubeObject::RecognizePhrase(LangModel *lang_mod) {
|
|
return Recognize(lang_mod, false);
|
|
}
|
|
|
|
// Computes the cost of a specific string. This is done by performing
|
|
// recognition of a language model that allows only the specified word
|
|
int CubeObject::WordCost(const char *str) {
|
|
WordListLangModel *lang_mod = new WordListLangModel(cntxt_);
|
|
if (lang_mod == NULL) {
|
|
return WORST_COST;
|
|
}
|
|
|
|
if (lang_mod->AddString(str) == false) {
|
|
delete lang_mod;
|
|
return WORST_COST;
|
|
}
|
|
|
|
// run a beam search against the single string wordlist model
|
|
WordAltList *alt_list = RecognizeWord(lang_mod);
|
|
delete lang_mod;
|
|
|
|
int cost = WORST_COST;
|
|
if (alt_list != NULL) {
|
|
if (alt_list->AltCount() > 0) {
|
|
cost = alt_list->AltCost(0);
|
|
}
|
|
}
|
|
|
|
return cost;
|
|
}
|
|
|
|
// Normalize the input word bitmap to have a minimum aspect ratio
|
|
bool CubeObject::Normalize() {
|
|
// create a cube search object
|
|
CubeSearchObject *srch_obj = new CubeSearchObject(cntxt_, char_samp_);
|
|
if (srch_obj == NULL) {
|
|
return false;
|
|
}
|
|
// Perform over-segmentation
|
|
int seg_cnt = srch_obj->SegPtCnt();
|
|
// Only perform normalization if segment count is large enough
|
|
if (seg_cnt < kMinNormalizationSegmentCnt) {
|
|
delete srch_obj;
|
|
return true;
|
|
}
|
|
// compute the mean AR of the segments
|
|
double ar_mean = 0.0;
|
|
for (int seg_idx = 0; seg_idx <= seg_cnt; seg_idx++) {
|
|
CharSamp *seg_samp = srch_obj->CharSample(seg_idx - 1, seg_idx);
|
|
if (seg_samp != NULL && seg_samp->Width() > 0) {
|
|
ar_mean += (1.0 * seg_samp->Height() / seg_samp->Width());
|
|
}
|
|
}
|
|
ar_mean /= (seg_cnt + 1);
|
|
// perform normalization if segment AR is too high
|
|
if (ar_mean > kMinNormalizationAspectRatio) {
|
|
// scale down the image in the y-direction to attain AR
|
|
CharSamp *new_samp = char_samp_->Scale(char_samp_->Width(),
|
|
2.0 * char_samp_->Height() / ar_mean,
|
|
false);
|
|
if (new_samp != NULL) {
|
|
// free existing char samp if owned
|
|
if (own_char_samp_) {
|
|
delete char_samp_;
|
|
}
|
|
// update with new scaled charsamp and set ownership flag
|
|
char_samp_ = new_samp;
|
|
own_char_samp_ = true;
|
|
}
|
|
}
|
|
delete srch_obj;
|
|
return true;
|
|
}
|
|
}
|