tesseract/wordrec/bestfirst.cpp

737 lines
26 KiB
C++

/* -*-C-*-
********************************************************************************
*
* File: bestfirst.c (Formerly bestfirst.c)
* Description: Best first search functions
* Author: Mark Seaman, OCR Technology
* Created: Mon May 14 11:23:29 1990
* Modified: Tue Jul 30 16:08:47 1991 (Mark Seaman) marks@hpgrlt
* Language: C
* Package: N/A
* Status: Experimental (Do Not Distribute)
*
* (c) Copyright 1990, Hewlett-Packard Company.
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
** http://www.apache.org/licenses/LICENSE-2.0
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*
***************************************************************************/
/*----------------------------------------------------------------------
I n c l u d e s
---------------------------------------------------------------------*/
#include <assert.h>
#include "associate.h"
#include "bestfirst.h"
#include "baseline.h"
#include "bitvec.h"
#include "dict.h"
#include "freelist.h"
#include "globals.h"
#include "pageres.h"
#include "permute.h"
#include "pieces.h"
#include "plotseg.h"
#include "ratngs.h"
#include "states.h"
#include "stopper.h"
#include "structures.h"
#include "unicharset.h"
#include "wordclass.h"
#include "wordrec.h"
// Include automatically generated configuration file if running autoconf.
#ifdef HAVE_CONFIG_H
#include "config_auto.h"
#endif
void call_caller();
/**/
/*----------------------------------------------------------------------
F u n c t i o n s
----------------------------------------------------------------------*/
namespace tesseract {
/**
* @name best_first_search
*
* Find the best segmentation by doing a best first search of the
* solution space.
*/
void Wordrec::best_first_search(CHUNKS_RECORD *chunks_record,
BLOB_CHOICE_LIST_VECTOR *best_char_choices,
WERD_RES *word,
STATE *state,
DANGERR *fixpt,
STATE *best_state) {
SEARCH_RECORD *the_search;
inT16 keep_going;
STATE guided_state; // not used
int num_joints = chunks_record->ratings->dimension() - 1;
the_search = new_search(chunks_record, num_joints, best_char_choices,
word->best_choice, word->raw_choice, state);
// The default state is initialized as the best choice. In order to apply
// segmentation adjustment, or any other contextual processing in permute,
// we give the best choice a poor rating to force the processed raw choice
// to be promoted to best choice.
the_search->best_choice->set_rating(WERD_CHOICE::kBadRating);
evaluate_state(chunks_record, the_search, fixpt);
if (wordrec_debug_level) {
tprintf("\n\n\n =========== BestFirstSearch ==============\n");
word->best_choice->print("**Initial BestChoice**");
}
FLOAT32 worst_priority = 2.0f * prioritize_state(chunks_record, the_search);
if (worst_priority < wordrec_worst_state)
worst_priority = wordrec_worst_state;
if (wordrec_debug_level) {
print_state("BestFirstSearch", best_state, num_joints);
}
guided_state = *state;
do {
/* Look for answer */
if (!hash_lookup (the_search->closed_states, the_search->this_state)) {
guided_state = *(the_search->this_state);
keep_going = evaluate_state(chunks_record, the_search, fixpt);
hash_add (the_search->closed_states, the_search->this_state);
if (!keep_going ||
(the_search->num_states > wordrec_num_seg_states)) {
if (wordrec_debug_level)
tprintf("Breaking best_first_search on keep_going %s numstates %d\n",
((keep_going) ? "T" :"F"), the_search->num_states);
free_state (the_search->this_state);
break;
}
FLOAT32 new_worst_priority = 2.0f * prioritize_state(chunks_record,
the_search);
if (new_worst_priority < worst_priority) {
if (wordrec_debug_level)
tprintf("Lowering WorstPriority %f --> %f\n",
worst_priority, new_worst_priority);
// Tighten the threshold for admitting new paths as better search
// candidates are found. After lowering this threshold, we can safely
// popout everything that is worse than this score also.
worst_priority = new_worst_priority;
}
expand_node(worst_priority, chunks_record, the_search);
}
free_state (the_search->this_state);
num_popped++;
the_search->this_state = pop_queue (the_search->open_states);
if (wordrec_debug_level && !the_search->this_state)
tprintf("No more states to evalaute after %d evals", num_popped);
}
while (the_search->this_state);
state->part1 = the_search->best_state->part1;
state->part2 = the_search->best_state->part2;
if (wordrec_debug_level) {
tprintf("\n\n\n =========== BestFirstSearch ==============\n");
// best_choice->debug_string(getDict().getUnicharset()).string());
word->best_choice->print("**Final BestChoice**");
}
// save the best_state stats
delete_search(the_search);
}
/**
* delete_search
*
* Terminate the current search and free all the memory involved.
*/
void Wordrec::delete_search(SEARCH_RECORD *the_search) {
float closeness;
closeness = (the_search->num_joints ?
(hamming_distance(reinterpret_cast<uinT32*>(the_search->first_state),
reinterpret_cast<uinT32*>(the_search->best_state), 2) /
(float) the_search->num_joints) : 0.0f);
free_state (the_search->first_state);
free_state (the_search->best_state);
free_hash_table(the_search->closed_states);
FreeHeapData (the_search->open_states, (void_dest) free_state);
memfree(the_search);
}
/**
* evaluate_chunks
*
* A particular word level segmentation has been chosen. Evaluation
* this to find the word list that corresponds to it.
*/
BLOB_CHOICE_LIST_VECTOR *Wordrec::evaluate_chunks(CHUNKS_RECORD *chunks_record,
SEARCH_STATE search_state) {
BLOB_CHOICE_LIST_VECTOR *char_choices = new BLOB_CHOICE_LIST_VECTOR();
BLOB_CHOICE_LIST *blob_choices;
BLOB_CHOICE_IT blob_choice_it;
int i;
int x = 0;
int y;
// Iterate sub-paths.
for (i = 1; i <= search_state[0] + 1; i++) {
if (i > search_state[0])
y = count_blobs (chunks_record->chunks) - 1;
else
y = x + search_state[i];
// Process one square.
// Classify if needed.
blob_choices = get_piece_rating(chunks_record->ratings,
chunks_record->chunks,
chunks_record->splits,
x, y);
if (blob_choices == NULL) {
delete char_choices;
return (NULL);
}
// Add permuted ratings.
blob_choice_it.set_to_list(blob_choices);
last_segmentation[i - 1].certainty = blob_choice_it.data()->certainty();
last_segmentation[i - 1].match = blob_choice_it.data()->rating();
last_segmentation[i - 1].width =
AssociateUtils::GetChunksWidth(chunks_record->chunk_widths, x, y);
last_segmentation[i - 1].gap =
AssociateUtils::GetChunksGap(chunks_record->chunk_widths, y);
*char_choices += blob_choices;
x = y + 1;
}
return (char_choices);
}
/**
* @name evaluate_state
*
* Evaluate the segmentation that is represented by this state in the
* best first search. Add this state to the "states_seen" list.
*/
inT16 Wordrec::evaluate_state(CHUNKS_RECORD *chunks_record,
SEARCH_RECORD *the_search,
DANGERR *fixpt) {
BLOB_CHOICE_LIST_VECTOR *char_choices;
SEARCH_STATE chunk_groups;
float rating_limit = the_search->best_choice->rating();
bool keep_going = true;
PIECES_STATE widths;
the_search->num_states++;
chunk_groups = bin_to_chunks(the_search->this_state,
the_search->num_joints);
bin_to_pieces (the_search->this_state, the_search->num_joints, widths);
getDict().LogNewSegmentation(widths);
char_choices = evaluate_chunks(chunks_record, chunk_groups);
getDict().SetWordsegRatingAdjustFactor(-1.0f);
bool updated_best_choice = false;
if (char_choices != NULL && char_choices->length() > 0) {
// Compute the segmentation cost and include the cost in word rating.
// TODO(dsl): We should change the SEARCH_RECORD to store this cost
// from state evaluation and avoid recomputing it here.
prioritize_state(chunks_record, the_search);
getDict().SetWordsegRatingAdjustFactor(the_search->segcost_bias);
updated_best_choice =
getDict().permute_characters(*char_choices,
the_search->best_choice,
the_search->raw_choice);
bool replaced = false;
if (updated_best_choice) {
if (getDict().AcceptableChoice(char_choices, the_search->best_choice,
NULL, ASSOCIATOR_CALLER, &replaced)) {
keep_going = false;
}
CopyCharChoices(*char_choices, the_search->best_char_choices);
}
}
getDict().SetWordsegRatingAdjustFactor(-1.0f);
#ifndef GRAPHICS_DISABLED
if (wordrec_display_segmentations) {
display_segmentation (chunks_record->chunks, chunk_groups);
if (wordrec_display_segmentations > 1)
window_wait(segm_window);
}
#endif
if (rating_limit != the_search->best_choice->rating()) {
ASSERT_HOST(updated_best_choice);
the_search->before_best = the_search->num_states;
the_search->best_state->part1 = the_search->this_state->part1;
the_search->best_state->part2 = the_search->this_state->part2;
replace_char_widths(chunks_record, chunk_groups);
} else {
ASSERT_HOST(!updated_best_choice);
if (char_choices != NULL) fixpt->clear();
}
if (char_choices != NULL) delete char_choices;
memfree(chunk_groups);
return (keep_going);
}
/**
* rebuild_current_state
*
* Transfers the given state to the word's output fields: rebuild_word,
* best_state, box_word, and returns the corresponding blob choices.
*/
BLOB_CHOICE_LIST_VECTOR *Wordrec::rebuild_current_state(
WERD_RES *word,
STATE *state,
BLOB_CHOICE_LIST_VECTOR *old_choices,
MATRIX *ratings) {
// Initialize search_state, num_joints, x, y.
int num_joints = array_count(word->seam_array);
#ifndef GRAPHICS_DISABLED
if (wordrec_display_segmentations) {
print_state("Rebuilding state", state, num_joints);
}
#endif
// Setup the rebuild_word ready for the output blobs.
if (word->rebuild_word != NULL)
delete word->rebuild_word;
word->rebuild_word = new TWERD;
// Setup the best_state.
word->best_state.clear();
SEARCH_STATE search_state = bin_to_chunks(state, num_joints);
// See which index is which below for information on x and y.
int x = 0;
int y;
for (int i = 1; i <= search_state[0]; i++) {
y = x + search_state[i];
x = y + 1;
}
y = count_blobs(word->chopped_word->blobs) - 1;
// Initialize char_choices, expanded_fragment_lengths:
// e.g. if fragment_lengths = {1 1 2 3 1},
// expanded_fragment_lengths_str = {1 1 2 2 3 3 3 1}.
BLOB_CHOICE_LIST_VECTOR *char_choices = new BLOB_CHOICE_LIST_VECTOR();
STRING expanded_fragment_lengths_str = "";
bool state_has_fragments = false;
const char *fragment_lengths = NULL;
if (word->best_choice->length() > 0) {
fragment_lengths = word->best_choice->fragment_lengths();
}
if (fragment_lengths) {
for (int i = 0; i < word->best_choice->length(); ++i) {
*char_choices += NULL;
word->best_state.push_back(0);
if (fragment_lengths[i] > 1) {
state_has_fragments = true;
}
for (int j = 0; j < fragment_lengths[i]; ++j) {
expanded_fragment_lengths_str += fragment_lengths[i];
}
}
} else {
for (int i = 0; i <= search_state[0]; ++i) {
expanded_fragment_lengths_str += (char)1;
*char_choices += NULL;
word->best_state.push_back(0);
}
}
// Set up variables for concatenating fragments.
const char *word_lengths_ptr = NULL;
const char *word_ptr = NULL;
if (state_has_fragments) {
// Make word_lengths_ptr point to the last element in
// best_choice->unichar_lengths().
word_lengths_ptr = word->best_choice->unichar_lengths().string();
word_lengths_ptr += (strlen(word_lengths_ptr)-1);
// Make word_str point to the beginning of the last
// unichar in best_choice->unichar_string().
word_ptr = word->best_choice->unichar_string().string();
word_ptr += (strlen(word_ptr)-*word_lengths_ptr);
}
const char *expanded_fragment_lengths =
expanded_fragment_lengths_str.string();
char unichar[UNICHAR_LEN + 1];
// Populate char_choices list such that it corresponds to search_state.
//
// If we are rebuilding a state that contains character fragments:
// -- combine blobs that belong to character fragments
// -- re-classify the blobs to obtain choices list for the merged blob
// -- ensure that correct classification appears in the new choices list
// NOTE: a choice composed form original fragment choices will be always
// added to the new choices list for each character composed from
// fragments (even if the choice for the corresponding character appears
// in the re-classified choices list of for the newly merged blob).
int ss_index = search_state[0];
// Which index is which?
// char_choices_index refers to the finished product: there is one for each
// blob/unicharset entry in the final word.
// ss_index refers to the search_state, and indexes a group (chunk) of blobs
// that were classified together for the best state.
// old_choice_index is a copy of ss_index, and accesses the old_choices,
// which correspond to chunks in the best state. old_choice_index gets
// set to -1 on a fragment set, as there is no corresponding chunk in
// the best state.
// x and y refer to the underlying blobs and are the first and last blob
// indices in a chunk.
for (int char_choices_index = char_choices->length() - 1;
char_choices_index >= 0;
--char_choices_index) {
// The start and end of the blob to rebuild.
int true_x = x;
int true_y = y;
// The fake merged fragment choice.
BLOB_CHOICE* merged_choice = NULL;
// Test for and combine fragments first.
int fragment_pieces = expanded_fragment_lengths[ss_index];
int old_choice_index = ss_index;
if (fragment_pieces > 1) {
strncpy(unichar, word_ptr, *word_lengths_ptr);
unichar[*word_lengths_ptr] = '\0';
merged_choice = rebuild_fragments(unichar, expanded_fragment_lengths,
old_choice_index, old_choices);
old_choice_index = -1;
}
while (fragment_pieces > 0) {
true_x = x;
// Move left to the previous blob.
y = x - 1;
x = y - search_state[ss_index--];
--fragment_pieces;
}
word->best_state[char_choices_index] = true_y + 1 - true_x;
BLOB_CHOICE_LIST *current_choices = join_blobs_and_classify(
word, true_x, true_y, old_choice_index, ratings, old_choices);
if (merged_choice != NULL) {
// Insert merged_blob into current_choices, such that current_choices
// are still sorted in non-descending order by rating.
ASSERT_HOST(!current_choices->empty());
BLOB_CHOICE_IT choice_it(current_choices);
for (choice_it.mark_cycle_pt(); !choice_it.cycled_list() &&
merged_choice->rating() > choice_it.data()->rating();
choice_it.forward());
choice_it.add_before_stay_put(merged_choice);
}
// Get rid of fragments in current_choices.
BLOB_CHOICE_IT choice_it(current_choices);
for (choice_it.mark_cycle_pt(); !choice_it.cycled_list();
choice_it.forward()) {
if (getDict().getUnicharset().get_fragment(
choice_it.data()->unichar_id())) {
delete choice_it.extract();
}
}
char_choices->set(current_choices, char_choices_index);
// Update word_ptr and word_lengths_ptr.
if (word_lengths_ptr != NULL && word_ptr != NULL) {
word_lengths_ptr--;
word_ptr -= (*word_lengths_ptr);
}
}
old_choices->delete_data_pointers();
delete old_choices;
memfree(search_state);
return char_choices;
}
/**
* @name expand_node
*
* Create the states that are attached to this one. Check to see that
* each one has not already been visited. If not add it to the priority
* queue.
*/
void Wordrec::expand_node(FLOAT32 worst_priority,
CHUNKS_RECORD *chunks_record,
SEARCH_RECORD *the_search) {
STATE old_state;
int nodes_added = 0;
int x;
uinT32 mask = 1 << (the_search->num_joints - 1 - 32);
old_state.part1 = the_search->this_state->part1;
old_state.part2 = the_search->this_state->part2;
// We need to expand the search more intelligently, or we get stuck
// with a bad starting segmentation in a long word sequence as in CJK.
// Expand a child node only if it is within the global bound, and no
// worse than 2x of its parent.
// TODO(dsl): There is some redudency here in recomputing the priority,
// and in filtering of old_merit and worst_priority.
the_search->this_state->part2 = old_state.part2;
for (x = the_search->num_joints; x > 32; x--) {
the_search->this_state->part1 = mask ^ old_state.part1;
if (!hash_lookup (the_search->closed_states, the_search->this_state)) {
FLOAT32 new_merit = prioritize_state(chunks_record, the_search);
if (wordrec_debug_level) {
cprintf ("....checking state: %8.3f ", new_merit);
print_state ("", the_search->this_state, num_joints);
}
if (new_merit < worst_priority) {
push_queue(the_search->open_states, the_search->this_state,
worst_priority, new_merit, wordrec_debug_level > 0);
nodes_added++;
}
}
mask >>= 1;
}
if (the_search->num_joints > 32) {
mask = 1 << 31;
}
else {
mask = 1 << (the_search->num_joints - 1);
}
the_search->this_state->part1 = old_state.part1;
while (x--) {
the_search->this_state->part2 = mask ^ old_state.part2;
if (!hash_lookup (the_search->closed_states, the_search->this_state)) {
FLOAT32 new_merit = prioritize_state(chunks_record, the_search);
if (wordrec_debug_level) {
cprintf ("....checking state: %8.3f ", new_merit);
print_state ("", the_search->this_state, num_joints);
}
if (new_merit < worst_priority) {
push_queue(the_search->open_states, the_search->this_state,
worst_priority, new_merit, wordrec_debug_level > 0);
nodes_added++;
}
}
mask >>= 1;
}
}
/**
* @name new_search
*
* Create and initialize a new search record.
*/
SEARCH_RECORD *Wordrec::new_search(CHUNKS_RECORD *chunks_record,
int num_joints,
BLOB_CHOICE_LIST_VECTOR *best_char_choices,
WERD_CHOICE *best_choice,
WERD_CHOICE *raw_choice,
STATE *state) {
SEARCH_RECORD *this_search;
this_search = (SEARCH_RECORD *) memalloc (sizeof (SEARCH_RECORD));
this_search->open_states = MakeHeap (wordrec_num_seg_states * 20);
this_search->closed_states = new_hash_table();
if (state)
this_search->this_state = new_state (state);
else
cprintf ("error: bad initial state in new_search\n");
this_search->first_state = new_state (this_search->this_state);
this_search->best_state = new_state (this_search->this_state);
this_search->best_choice = best_choice;
this_search->raw_choice = raw_choice;
this_search->best_char_choices = best_char_choices;
this_search->num_joints = num_joints;
this_search->num_states = 0;
this_search->before_best = 0;
this_search->segcost_bias = 0;
return (this_search);
}
/**
* @name pop_queue
*
* Get this state from the priority queue. It should be the state that
* has the greatest urgency to be evaluated.
*/
STATE *Wordrec::pop_queue(HEAP *queue) {
HEAPENTRY entry;
if (GetTopOfHeap (queue, &entry) == TESS_HEAP_OK) {
#ifndef GRAPHICS_DISABLED
if (wordrec_display_segmentations) {
cprintf ("eval state: %8.3f ", entry.Key);
print_state ("", (STATE *) entry.Data, num_joints);
}
#endif
return ((STATE *) entry.Data);
}
else {
return (NULL);
}
}
/**
* @name push_queue
*
* Add this state into the priority queue.
*/
void Wordrec::push_queue(HEAP *queue, STATE *state, FLOAT32 worst_priority,
FLOAT32 priority, bool debug) {
HEAPENTRY entry;
if (priority < worst_priority) {
if (SizeOfHeap (queue) >= MaxSizeOfHeap(queue)) {
if (debug) tprintf("Heap is Full\n");
return;
}
if (debug) tprintf("\tpushing %d node %f\n", num_pushed, priority);
entry.Data = (char *) new_state (state);
num_pushed++;
entry.Key = priority;
HeapStore(queue, &entry);
}
}
/**
* @name replace_char_widths
*
* Replace the value of the char_width field in the chunks_record with
* the updated width measurements from the last_segmentation.
*/
void Wordrec::replace_char_widths(CHUNKS_RECORD *chunks_record,
SEARCH_STATE state) {
WIDTH_RECORD *width_record;
int num_blobs;
int i;
free_widths (chunks_record->char_widths);
num_blobs = state[0] + 1;
width_record = (WIDTH_RECORD *) memalloc (sizeof (int) * num_blobs * 2);
width_record->num_chars = num_blobs;
for (i = 0; i < num_blobs; i++) {
width_record->widths[2 * i] = last_segmentation[i].width;
if (i + 1 < num_blobs)
width_record->widths[2 * i + 1] = last_segmentation[i].gap;
}
chunks_record->char_widths = width_record;
}
// Creates a fake blob choice from the combination of the given fragments.
// unichar is the class to be made from the combination,
// expanded_fragment_lengths[choice_index] is the number of fragments to use.
// old_choices[choice_index] has the classifier output for each fragment.
// choice index initially indexes the last fragment and should be decremented
// expanded_fragment_lengths[choice_index] times to get the earlier fragments.
// Guarantees to return something non-null, or abort!
BLOB_CHOICE* Wordrec::rebuild_fragments(
const char* unichar,
const char* expanded_fragment_lengths,
int choice_index,
BLOB_CHOICE_LIST_VECTOR *old_choices) {
float rating = 0.0f;
float certainty = 0.0f;
for (int fragment_pieces = expanded_fragment_lengths[choice_index] - 1;
fragment_pieces >= 0; --fragment_pieces, --choice_index) {
// Get a pointer to the classifier results from the old_choices.
BLOB_CHOICE_LIST *current_choices = old_choices->get(choice_index);
// Populate fragment with updated values and look for the
// fragment with the same values in current_choices.
// Update rating and certainty of the character being composed.
CHAR_FRAGMENT fragment;
fragment.set_all(unichar, fragment_pieces,
expanded_fragment_lengths[choice_index]);
BLOB_CHOICE_IT choice_it(current_choices);
for (choice_it.mark_cycle_pt(); !choice_it.cycled_list();
choice_it.forward()) {
const CHAR_FRAGMENT *current_fragment =
getDict().getUnicharset().get_fragment(
choice_it.data()->unichar_id());
if (current_fragment && fragment.equals(current_fragment)) {
rating += choice_it.data()->rating();
if (choice_it.data()->certainty() < certainty) {
certainty = choice_it.data()->certainty();
}
break;
}
}
if (choice_it.cycled_list()) {
print_ratings_list("Failure", current_choices, unicharset);
tprintf("Failed to find fragment %s at index=%d\n",
fragment.to_string().string(), choice_index);
}
ASSERT_HOST(!choice_it.cycled_list()); // Be sure we found the fragment.
}
return new BLOB_CHOICE(getDict().getUnicharset().unichar_to_id(unichar),
rating, certainty, -1, -1, 0);
}
// Creates a joined copy of the blobs between x and y (inclusive) and
// inserts as the first blob at word->rebuild_word->blobs.
// Returns a deep copy of the classifier results for the blob.
BLOB_CHOICE_LIST *Wordrec::join_blobs_and_classify(
WERD_RES* word, int x, int y, int choice_index, MATRIX *ratings,
BLOB_CHOICE_LIST_VECTOR *old_choices) {
// Join parts to make the blob if needed.
if (x != y)
join_pieces(word->chopped_word->blobs, word->seam_array, x, y);
TBLOB *blob = word->chopped_word->blobs;
for (int i = 0; i < x; i++) {
blob = blob->next;
}
// Deep copy this blob into the output word.
TBLOB* copy_blob = new TBLOB(*blob);
copy_blob->next = word->rebuild_word->blobs;
word->rebuild_word->blobs = copy_blob;
BLOB_CHOICE_LIST *choices = NULL;
// First check to see if we can look up the classificaiton
// in old_choices (if there is no need to merge blobs).
if (choice_index >= 0 && old_choices != NULL) {
choices = old_choices->get(choice_index);
old_choices->set(NULL, choice_index);
}
// The ratings matrix filled in by the associator will contain the next most
// up-to-date classification info. Thus we look up the classification there
// next, and only call classify_blob() if the classification is not found.
if (choices == NULL && ratings != NULL) {
choices = ratings->get(x, y);
if (choices != NOT_CLASSIFIED) {
ratings->put(x, y, NULL);
}
}
// Get the choices for the blob by classification if necessary.
if (choices == NULL) {
choices = classify_blob(blob, "rebuild", Orange);
}
// Undo join_pieces to restore the chopped word to its fully chopped state.
if (x != y)
break_pieces(blob, word->seam_array, x, y);
return choices;
}
} // namespace tesseract