tesseract/wordrec/tface.cpp

187 lines
5.4 KiB
C++

/**********************************************************************
* File: tface.c (Formerly tface.c)
* Description: C side of the Tess/tessedit C/C++ interface.
* Author: Ray Smith
* Created: Mon Apr 27 11:57:06 BST 1992
*
* (C) Copyright 1992, Hewlett-Packard Ltd.
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
** http://www.apache.org/licenses/LICENSE-2.0
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*
**********************************************************************/
#include "bestfirst.h"
#include "callcpp.h"
#include "chop.h"
#include "chopper.h"
#include "danerror.h"
#include "fxdefs.h"
#include "globals.h"
#include "gradechop.h"
#include "matchtab.h"
#include "pageres.h"
#include "permute.h"
#include "wordclass.h"
#include "wordrec.h"
#include "featdefs.h"
#include <math.h>
#ifdef __UNIX__
#include <unistd.h>
#endif
namespace tesseract {
/**
* @name program_editup
*
* Initialize all the things in the program that need to be initialized.
* init_permute determines whether to initialize the permute functions
* and Dawg models.
*/
void Wordrec::program_editup(const char *textbase,
bool init_classifier,
bool init_dict) {
if (textbase != NULL) imagefile = textbase;
InitFeatureDefs(&feature_defs_);
SetupExtractors(&feature_defs_);
InitAdaptiveClassifier(init_classifier);
if (init_dict) getDict().Load();
pass2_ok_split = chop_ok_split;
pass2_seg_states = wordrec_num_seg_states;
}
/**
* @name end_recog
*
* Cleanup and exit the recog program.
*/
int Wordrec::end_recog() {
program_editdown (0);
return (0);
}
/**
* @name program_editdown
*
* This function holds any nessessary post processing for the Wise Owl
* program.
*/
void Wordrec::program_editdown(inT32 elasped_time) {
EndAdaptiveClassifier();
blob_match_table.end_match_table();
getDict().InitChoiceAccum();
getDict().End();
}
/**
* @name set_pass1
*
* Get ready to do some pass 1 stuff.
*/
void Wordrec::set_pass1() {
chop_ok_split.set_value(70.0);
wordrec_num_seg_states.set_value(15);
SettupPass1();
}
/**
* @name set_pass2
*
* Get ready to do some pass 2 stuff.
*/
void Wordrec::set_pass2() {
chop_ok_split.set_value(pass2_ok_split);
wordrec_num_seg_states.set_value(pass2_seg_states);
SettupPass2();
}
/**
* @name cc_recog
*
* Recognize a word.
*/
BLOB_CHOICE_LIST_VECTOR *Wordrec::cc_recog(WERD_RES *word) {
getDict().InitChoiceAccum();
getDict().reset_hyphen_vars(word->word->flag(W_EOL));
blob_match_table.init_match_table();
BLOB_CHOICE_LIST_VECTOR *results = chop_word_main(word);
getDict().DebugWordChoices();
return results;
}
/**
* @name dict_word()
*
* Test the dictionaries, returning NO_PERM (0) if not found, or one
* of the PermuterType values if found, according to the dictionary.
*/
int Wordrec::dict_word(const WERD_CHOICE &word) {
return getDict().valid_word(word);
}
/**
* @name call_matcher
*
* Called from Tess with a blob in tess form.
* The blob may need rotating to the correct orientation for classification.
*/
BLOB_CHOICE_LIST *Wordrec::call_matcher(TBLOB *tessblob) {
TBLOB* rotated_blob = NULL;
// If necessary, copy the blob and rotate it.
if (denorm_.block() != NULL &&
denorm_.block()->classify_rotation().y() != 0.0) {
TBOX box = tessblob->bounding_box();
int src_width = box.width();
int src_height = box.height();
src_width = static_cast<int>(src_width / denorm_.scale() + 0.5);
src_height = static_cast<int>(src_height / denorm_.scale() + 0.5);
int x_middle = (box.left() + box.right()) / 2;
int y_middle = (box.top() + box.bottom()) / 2;
rotated_blob = new TBLOB(*tessblob);
rotated_blob->Move(ICOORD(-x_middle, -y_middle));
rotated_blob->Rotate(denorm_.block()->classify_rotation());
tessblob = rotated_blob;
ICOORD median_size = denorm_.block()->median_size();
int tolerance = median_size.x() / 8;
// TODO(dsl/rays) find a better normalization solution. In the mean time
// make it work for CJK by normalizing for Cap height in the same way
// as is applied in compute_block_xheight when the row is presumed to
// be ALLCAPS, i.e. the x-height is the fixed fraction
// blob height * CCStruct::kXHeightFraction /
// (CCStruct::kXHeightFraction + CCStruct::kXAscenderFraction)
if (NearlyEqual(src_width, static_cast<int>(median_size.x()), tolerance) &&
NearlyEqual(src_height, static_cast<int>(median_size.y()), tolerance)) {
float target_height = kBlnXHeight *
(CCStruct::kXHeightFraction + CCStruct::kAscenderFraction) /
CCStruct::kXHeightFraction;
rotated_blob->Scale(target_height / box.width());
rotated_blob->Move(ICOORD(0,
kBlnBaselineOffset -
rotated_blob->bounding_box().bottom()));
}
}
BLOB_CHOICE_LIST *ratings = new BLOB_CHOICE_LIST(); // matcher result
AdaptiveClassifier(tessblob, ratings, NULL);
if (rotated_blob != NULL)
delete rotated_blob;
return ratings;
}
} // namespace tesseract