mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2025-01-22 01:30:49 +08:00
4523ce9f7d
git-svn-id: https://tesseract-ocr.googlecode.com/svn/trunk@526 d0cd1f9f-072b-0410-8dd7-cf729c803f20
465 lines
21 KiB
C++
465 lines
21 KiB
C++
///////////////////////////////////////////////////////////////////////
|
|
// File: wordrec.h
|
|
// Description: wordrec class.
|
|
// Author: Samuel Charron
|
|
//
|
|
// (C) Copyright 2006, Google Inc.
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////
|
|
|
|
#ifndef TESSERACT_WORDREC_WORDREC_H__
|
|
#define TESSERACT_WORDREC_WORDREC_H__
|
|
|
|
#include "associate.h"
|
|
#include "classify.h"
|
|
#include "dict.h"
|
|
#include "language_model.h"
|
|
#include "ratngs.h"
|
|
#include "matrix.h"
|
|
#include "matchtab.h"
|
|
#include "oldheap.h"
|
|
#include "gradechop.h"
|
|
#include "seam.h"
|
|
#include "findseam.h"
|
|
#include "callcpp.h"
|
|
#include "associate.h"
|
|
#include "pieces.h"
|
|
#include "ratngs.h"
|
|
#include "tally.h"
|
|
|
|
struct CHUNKS_RECORD;
|
|
struct SEARCH_RECORD;
|
|
class WERD_RES;
|
|
|
|
// A struct for storing child/parent pairs of the BLOB_CHOICE_LISTs
|
|
// to be processed by the segmentation search.
|
|
struct SEG_SEARCH_PENDING : public ELIST_LINK {
|
|
SEG_SEARCH_PENDING(int child_row_arg,
|
|
BLOB_CHOICE_LIST *parent_arg,
|
|
tesseract::LanguageModelFlagsType changed_arg) :
|
|
child_row(child_row_arg), parent(parent_arg), changed(changed_arg) {}
|
|
|
|
// Comparator function for add_sorted().
|
|
static int compare(const void *p1, const void *p2) {
|
|
const SEG_SEARCH_PENDING *e1 = *reinterpret_cast<
|
|
const SEG_SEARCH_PENDING * const *>(p1);
|
|
const SEG_SEARCH_PENDING *e2 = *reinterpret_cast<
|
|
const SEG_SEARCH_PENDING * const *>(p2);
|
|
if (e1->child_row == e2->child_row &&
|
|
e1->parent == e2->parent) return 0;
|
|
return (e1->child_row < e2->child_row) ? -1 : 1;
|
|
}
|
|
|
|
int child_row; // row of the child in the ratings matrix
|
|
BLOB_CHOICE_LIST *parent; // pointer to the parent BLOB_CHOICE_LIST
|
|
// Flags that indicate which language model components are still active
|
|
// on the parent path (i.e. recorded some changes to the language model
|
|
// state) and need to be invoked for this pending entry.
|
|
// This field is used as an argument to LanguageModel::UpdateState()
|
|
// in Wordrec::UpdateSegSearchNodes().
|
|
tesseract::LanguageModelFlagsType changed;
|
|
};
|
|
|
|
ELISTIZEH(SEG_SEARCH_PENDING);
|
|
|
|
|
|
namespace tesseract {
|
|
|
|
/* ccmain/tstruct.cpp *********************************************************/
|
|
class FRAGMENT:public ELIST_LINK
|
|
{
|
|
public:
|
|
FRAGMENT() { //constructor
|
|
}
|
|
FRAGMENT(EDGEPT *head_pt, //start
|
|
EDGEPT *tail_pt); //end
|
|
|
|
ICOORD head; //coords of start
|
|
ICOORD tail; //coords of end
|
|
EDGEPT *headpt; //start point
|
|
EDGEPT *tailpt; //end point
|
|
|
|
NEWDELETE2 (FRAGMENT)
|
|
};
|
|
ELISTIZEH (FRAGMENT)
|
|
|
|
|
|
class Wordrec : public Classify {
|
|
public:
|
|
// config parameters *******************************************************
|
|
BOOL_VAR_H(wordrec_no_block, FALSE, "Don't output block information");
|
|
BOOL_VAR_H(wordrec_enable_assoc, TRUE, "Associator Enable");
|
|
BOOL_VAR_H(force_word_assoc, FALSE,
|
|
"force associator to run regardless of what enable_assoc is."
|
|
"This is used for CJK where component grouping is necessary.");
|
|
INT_VAR_H(wordrec_num_seg_states, 30, "Segmentation states");
|
|
double_VAR_H(wordrec_worst_state, 1, "Worst segmentation state");
|
|
BOOL_VAR_H(fragments_guide_chopper, FALSE,
|
|
"Use information from fragments to guide chopping process");
|
|
INT_VAR_H(repair_unchopped_blobs, 1, "Fix blobs that aren't chopped");
|
|
double_VAR_H(tessedit_certainty_threshold, -2.25, "Good blob limit");
|
|
INT_VAR_H(chop_debug, 0, "Chop debug");
|
|
BOOL_VAR_H(chop_enable, 1, "Chop enable");
|
|
BOOL_VAR_H(chop_vertical_creep, 0, "Vertical creep");
|
|
INT_VAR_H(chop_split_length, 10000, "Split Length");
|
|
INT_VAR_H(chop_same_distance, 2, "Same distance");
|
|
INT_VAR_H(chop_min_outline_points, 6, "Min Number of Points on Outline");
|
|
INT_VAR_H(chop_inside_angle, -50, "Min Inside Angle Bend");
|
|
INT_VAR_H(chop_min_outline_area, 2000, "Min Outline Area");
|
|
double_VAR_H(chop_split_dist_knob, 0.5, "Split length adjustment");
|
|
double_VAR_H(chop_overlap_knob, 0.9, "Split overlap adjustment");
|
|
double_VAR_H(chop_center_knob, 0.15, "Split center adjustment");
|
|
double_VAR_H(chop_sharpness_knob, 0.06, "Split sharpness adjustment");
|
|
double_VAR_H(chop_width_change_knob, 5.0, "Width change adjustment");
|
|
double_VAR_H(chop_ok_split, 100.0, "OK split limit");
|
|
double_VAR_H(chop_good_split, 50.0, "Good split limit");
|
|
INT_VAR_H(chop_x_y_weight, 3, "X / Y length weight");
|
|
INT_VAR_H(segment_adjust_debug, 0, "Segmentation adjustment debug");
|
|
BOOL_VAR_H(assume_fixed_pitch_char_segment, FALSE,
|
|
"include fixed-pitch heuristics in char segmentation");
|
|
BOOL_VAR_H(use_new_state_cost, FALSE,
|
|
"use new state cost heuristics for segmentation state evaluation");
|
|
double_VAR_H(heuristic_segcost_rating_base, 1.25,
|
|
"base factor for adding segmentation cost into word rating."
|
|
"It's a multiplying factor, the larger the value above 1, "
|
|
"the bigger the effect of segmentation cost.");
|
|
double_VAR_H(heuristic_weight_rating, 1,
|
|
"weight associated with char rating in combined cost of state");
|
|
double_VAR_H(heuristic_weight_width, 0,
|
|
"weight associated with width evidence in combined cost of state");
|
|
double_VAR_H(heuristic_weight_seamcut, 0,
|
|
"weight associated with seam cut in combined cost of state");
|
|
double_VAR_H(heuristic_max_char_wh_ratio, 2.0,
|
|
"max char width-to-height ratio allowed in segmentation");
|
|
INT_VAR_H(wordrec_debug_level, 0, "Debug level for wordrec");
|
|
BOOL_VAR_H(enable_new_segsearch, false,
|
|
"Enable new segmentation search path.");
|
|
INT_VAR_H(segsearch_debug_level, 0, "SegSearch debug level");
|
|
INT_VAR_H(segsearch_max_pain_points, 2000,
|
|
"Maximum number of pain points stored in the queue");
|
|
INT_VAR_H(segsearch_max_futile_classifications, 10,
|
|
"Maximum number of pain point classifications per word.");
|
|
double_VAR_H(segsearch_max_char_wh_ratio, 2.0,
|
|
"Maximum character width-to-height ratio");
|
|
double_VAR_H(segsearch_max_fixed_pitch_char_wh_ratio, 2.0,
|
|
"Maximum character width-to-height ratio for"
|
|
"fixed pitch fonts");
|
|
|
|
// methods from wordrec/*.cpp ***********************************************
|
|
Wordrec();
|
|
virtual ~Wordrec();
|
|
|
|
void CopyCharChoices(const BLOB_CHOICE_LIST_VECTOR &from,
|
|
BLOB_CHOICE_LIST_VECTOR *to);
|
|
|
|
// tface.cpp
|
|
void program_editup(const char *textbase,
|
|
bool init_classifier,
|
|
bool init_permute);
|
|
BLOB_CHOICE_LIST_VECTOR *cc_recog(WERD_RES *word);
|
|
void program_editdown(inT32 elasped_time);
|
|
void set_pass1();
|
|
void set_pass2();
|
|
int end_recog();
|
|
BLOB_CHOICE_LIST *call_matcher(TBLOB* blob);
|
|
int dict_word(const WERD_CHOICE &word);
|
|
// wordclass.cpp
|
|
BLOB_CHOICE_LIST *classify_blob(TBLOB *blob,
|
|
const char *string,
|
|
C_COL color);
|
|
BLOB_CHOICE_LIST *fake_classify_blob(UNICHAR_ID class_id,
|
|
float rating, float certainty);
|
|
void update_blob_classifications(TWERD *word,
|
|
const BLOB_CHOICE_LIST_VECTOR &choices);
|
|
|
|
// bestfirst.cpp
|
|
BLOB_CHOICE_LIST_VECTOR *evaluate_chunks(CHUNKS_RECORD *chunks_record,
|
|
SEARCH_STATE search_state);
|
|
void update_ratings(const BLOB_CHOICE_LIST_VECTOR &new_choices,
|
|
const CHUNKS_RECORD *chunks_record,
|
|
const SEARCH_STATE search_state);
|
|
inT16 evaluate_state(CHUNKS_RECORD *chunks_record,
|
|
SEARCH_RECORD *the_search,
|
|
DANGERR *fixpt);
|
|
SEARCH_RECORD *new_search(CHUNKS_RECORD *chunks_record,
|
|
int num_joints,
|
|
BLOB_CHOICE_LIST_VECTOR *best_char_choices,
|
|
WERD_CHOICE *best_choice,
|
|
WERD_CHOICE *raw_choice,
|
|
STATE *state);
|
|
void best_first_search(CHUNKS_RECORD *chunks_record,
|
|
BLOB_CHOICE_LIST_VECTOR *best_char_choices,
|
|
WERD_RES *word,
|
|
STATE *state,
|
|
DANGERR *fixpt,
|
|
STATE *best_state);
|
|
void delete_search(SEARCH_RECORD *the_search);
|
|
void expand_node(FLOAT32 worst_priority,
|
|
CHUNKS_RECORD *chunks_record,
|
|
SEARCH_RECORD *the_search);
|
|
void replace_char_widths(CHUNKS_RECORD *chunks_record,
|
|
SEARCH_STATE state);
|
|
// Transfers the given state to the word's output fields: rebuild_word,
|
|
// best_state, box_word, and returns the corresponding blob choices.
|
|
BLOB_CHOICE_LIST_VECTOR *rebuild_current_state(
|
|
WERD_RES *word,
|
|
STATE *state,
|
|
BLOB_CHOICE_LIST_VECTOR *char_choices,
|
|
MATRIX *ratings);
|
|
// Creates a fake blob choice from the combination of the given fragments.
|
|
// unichar is the class to be made from the combination,
|
|
// expanded_fragment_lengths[choice_index] is the number of fragments to use.
|
|
// old_choices[choice_index] has the classifier output for each fragment.
|
|
// choice index initially indexes the last fragment and should be decremented
|
|
// expanded_fragment_lengths[choice_index] times to get the earlier fragments.
|
|
// Guarantees to return something non-null, or abort!
|
|
BLOB_CHOICE* rebuild_fragments(
|
|
const char* unichar,
|
|
const char* expanded_fragment_lengths,
|
|
int choice_index,
|
|
BLOB_CHOICE_LIST_VECTOR *old_choices);
|
|
// Creates a joined copy of the blobs between x and y (inclusive) and
|
|
// insert into the rebuild_word in word.
|
|
// Returns a deep copy of the classifier results for the blob.
|
|
BLOB_CHOICE_LIST *join_blobs_and_classify(
|
|
WERD_RES* word, int x, int y, int choice_index, MATRIX *ratings,
|
|
BLOB_CHOICE_LIST_VECTOR *old_choices);
|
|
STATE *pop_queue(HEAP *queue);
|
|
void push_queue(HEAP *queue, STATE *state, FLOAT32 worst_priority,
|
|
FLOAT32 priority, bool debug);
|
|
|
|
// segsearch.cpp
|
|
// SegSearch works on the lower diagonal matrix of BLOB_CHOICE_LISTs.
|
|
// Each entry in the matrix represents the classification choice
|
|
// for a chunk, i.e. an entry in row 2, column 1 represents the list
|
|
// of ratings for the chunks 1 and 2 classified as a single blob.
|
|
// The entries on the diagonal of the matrix are classifier choice lists
|
|
// for a single chunk from the maximal segmentation.
|
|
//
|
|
// The ratings matrix given to SegSearch represents the segmentation
|
|
// graph / trellis for the current word. The nodes in the graph are the
|
|
// individual BLOB_CHOICEs in each of the BLOB_CHOICE_LISTs in the ratings
|
|
// matrix. The children of each node (nodes connected by outgoing links)
|
|
// are the entries in the column that is equal to node's row+1. The parents
|
|
// (nodes connected by the incoming links) are the entries in the row that
|
|
// is equal to the node's column-1. Here is an example ratings matrix:
|
|
//
|
|
// 0 1 2 3 4
|
|
// -------------------------
|
|
// 0| c,( |
|
|
// 1| d l,1 |
|
|
// 2| o |
|
|
// 3| c,( |
|
|
// 4| g,y l,1 |
|
|
// -------------------------
|
|
//
|
|
// In the example above node "o" has children (outgoing connection to nodes)
|
|
// "c","(","g","y" and parents (incoming connections from nodes) "l","1","d".
|
|
//
|
|
// The objective of the search is to find the least cost path, where the cost
|
|
// is determined by the language model components and the properties of the
|
|
// cut between the blobs on the path. SegSearch starts by populating the
|
|
// matrix with the all the entries that were classified by the chopper and
|
|
// finding the initial best path. Based on the classifier ratings, language
|
|
// model scores and the properties of each cut, a list of "pain points" is
|
|
// constructed - those are the points on the path where the choices do not
|
|
// look consistent with the neighboring choices, the cuts look particularly
|
|
// problematic, or the certainties of the blobs are low. The most troublesome
|
|
// "pain point" is picked from the list and the new entry in the ratings
|
|
// matrix corresponding to this "pain point" is filled in. Then the language
|
|
// model state is updated to reflect the new classification and the new
|
|
// "pain points" are added to the list and the next most troublesome
|
|
// "pain point" is determined. This continues until either the word choice
|
|
// composed from the best paths in the segmentation graph is "good enough"
|
|
// (e.g. above a certain certainty threshold, is an unambiguous dictionary
|
|
// word, etc) or there are no more "pain points" to explore.
|
|
void SegSearch(CHUNKS_RECORD *chunks_record,
|
|
WERD_CHOICE *best_choice,
|
|
BLOB_CHOICE_LIST_VECTOR *best_char_choices,
|
|
WERD_CHOICE *raw_choice,
|
|
STATE *output_best_state);
|
|
|
|
// chop.cpp
|
|
PRIORITY point_priority(EDGEPT *point);
|
|
void add_point_to_list(POINT_GROUP point_list, EDGEPT *point);
|
|
int angle_change(EDGEPT *point1, EDGEPT *point2, EDGEPT *point3);
|
|
int is_little_chunk(EDGEPT *point1, EDGEPT *point2);
|
|
int is_small_area(EDGEPT *point1, EDGEPT *point2);
|
|
EDGEPT *pick_close_point(EDGEPT *critical_point,
|
|
EDGEPT *vertical_point,
|
|
int *best_dist);
|
|
void prioritize_points(TESSLINE *outline, POINT_GROUP points);
|
|
void new_min_point(EDGEPT *local_min, POINT_GROUP points);
|
|
void new_max_point(EDGEPT *local_max, POINT_GROUP points);
|
|
void vertical_projection_point(EDGEPT *split_point, EDGEPT *target_point,
|
|
EDGEPT** best_point);
|
|
|
|
// chopper.cpp
|
|
SEAM *attempt_blob_chop(TWERD *word, inT32 blob_number, bool italic_blob,
|
|
SEAMS seam_list);
|
|
bool improve_one_blob(TWERD *word,
|
|
BLOB_CHOICE_LIST_VECTOR *char_choices,
|
|
inT32 *blob_number,
|
|
SEAMS *seam_list,
|
|
DANGERR *fixpt,
|
|
bool split_next_to_fragment);
|
|
void modify_blob_choice(BLOB_CHOICE_LIST *answer,
|
|
int chop_index);
|
|
bool chop_one_blob(TWERD *word,
|
|
BLOB_CHOICE_LIST_VECTOR *char_choices,
|
|
inT32 *blob_number,
|
|
SEAMS *seam_list,
|
|
int *right_chop_index);
|
|
BLOB_CHOICE_LIST_VECTOR *chop_word_main(WERD_RES *word);
|
|
void improve_by_chopping(WERD_RES *word,
|
|
BLOB_CHOICE_LIST_VECTOR *char_choices,
|
|
STATE *best_state,
|
|
BLOB_CHOICE_LIST_VECTOR *best_char_choices,
|
|
DANGERR *fixpt,
|
|
bool *updated_best_choice);
|
|
MATRIX *word_associator(WERD_RES *word,
|
|
STATE *state,
|
|
BLOB_CHOICE_LIST_VECTOR *best_char_choices,
|
|
DANGERR *fixpt,
|
|
STATE *best_state);
|
|
inT16 select_blob_to_split(const BLOB_CHOICE_LIST_VECTOR &char_choices,
|
|
float rating_ceiling,
|
|
bool split_next_to_fragment);
|
|
|
|
// findseam.cpp
|
|
void junk_worst_seam(SEAM_QUEUE seams, SEAM *new_seam, float new_priority);
|
|
void choose_best_seam(SEAM_QUEUE seam_queue,
|
|
SEAM_PILE *seam_pile,
|
|
SPLIT *split,
|
|
PRIORITY priority,
|
|
SEAM **seam_result,
|
|
TBLOB *blob);
|
|
void combine_seam(SEAM_QUEUE seam_queue, SEAM_PILE seam_pile, SEAM *seam);
|
|
inT16 constrained_split(SPLIT *split, TBLOB *blob);
|
|
void delete_seam_pile(SEAM_PILE seam_pile);
|
|
SEAM *pick_good_seam(TBLOB *blob);
|
|
PRIORITY seam_priority(SEAM *seam, inT16 xmin, inT16 xmax);
|
|
void try_point_pairs (EDGEPT * points[MAX_NUM_POINTS],
|
|
inT16 num_points,
|
|
SEAM_QUEUE seam_queue,
|
|
SEAM_PILE * seam_pile, SEAM ** seam, TBLOB * blob);
|
|
void try_vertical_splits(EDGEPT * points[MAX_NUM_POINTS],
|
|
inT16 num_points,
|
|
SEAM_QUEUE seam_queue,
|
|
SEAM_PILE * seam_pile, SEAM ** seam, TBLOB * blob);
|
|
|
|
// gradechop.cpp
|
|
PRIORITY full_split_priority(SPLIT *split, inT16 xmin, inT16 xmax);
|
|
PRIORITY grade_center_of_blob(register BOUNDS_RECT rect);
|
|
PRIORITY grade_overlap(register BOUNDS_RECT rect);
|
|
PRIORITY grade_split_length(register SPLIT *split);
|
|
PRIORITY grade_sharpness(register SPLIT *split);
|
|
PRIORITY grade_width_change(register BOUNDS_RECT rect);
|
|
void set_outline_bounds(register EDGEPT *point1,
|
|
register EDGEPT *point2,
|
|
BOUNDS_RECT rect);
|
|
|
|
// outlines.cpp
|
|
int crosses_outline(EDGEPT *p0, EDGEPT *p1, EDGEPT *outline);
|
|
int is_crossed(TPOINT a0, TPOINT a1, TPOINT b0, TPOINT b1);
|
|
int is_same_edgept(EDGEPT *p1, EDGEPT *p2);
|
|
EDGEPT *near_point(EDGEPT *point, EDGEPT *line_pt_0, EDGEPT *line_pt_1);
|
|
void reverse_outline(EDGEPT *outline);
|
|
|
|
// pieces.cpp
|
|
virtual BLOB_CHOICE_LIST *classify_piece(TBLOB *pieces,
|
|
SEAMS seams,
|
|
inT16 start,
|
|
inT16 end);
|
|
BLOB_CHOICE_LIST *get_piece_rating(MATRIX *ratings,
|
|
TBLOB *blobs,
|
|
SEAMS seams,
|
|
inT16 start,
|
|
inT16 end);
|
|
BOUNDS_LIST record_blob_bounds(TBLOB *blobs);
|
|
MATRIX *record_piece_ratings(TBLOB *blobs);
|
|
|
|
// heuristic.cpp
|
|
WIDTH_RECORD* state_char_widths(WIDTH_RECORD *chunk_widths,
|
|
STATE *state,
|
|
int num_joints);
|
|
FLOAT32 get_width_variance(WIDTH_RECORD *wrec, float norm_height);
|
|
FLOAT32 get_gap_variance(WIDTH_RECORD *wrec, float norm_height);
|
|
FLOAT32 prioritize_state(CHUNKS_RECORD *chunks_record,
|
|
SEARCH_RECORD *the_search);
|
|
FLOAT32 width_priority(CHUNKS_RECORD *chunks_record,
|
|
STATE *state,
|
|
int num_joints);
|
|
FLOAT32 seamcut_priority(SEAMS seams,
|
|
STATE *state,
|
|
int num_joints);
|
|
FLOAT32 rating_priority(CHUNKS_RECORD *chunks_record,
|
|
STATE *state,
|
|
int num_joints);
|
|
|
|
// Member variables.
|
|
|
|
LanguageModel *language_model_;
|
|
PRIORITY pass2_ok_split;
|
|
int pass2_seg_states;
|
|
int num_joints;
|
|
int num_pushed;
|
|
int num_popped;
|
|
TALLY states_before_best;
|
|
TALLY best_certainties[2];
|
|
TALLY character_widths; /* Width histogram */
|
|
BlobMatchTable blob_match_table;
|
|
EVALUATION_ARRAY last_segmentation;
|
|
// Stores the best choice for the previous word in the paragraph.
|
|
// This variable is modified by PAGE_RES_IT when iterating over
|
|
// words to OCR on the page.
|
|
WERD_CHOICE *prev_word_best_choice_;
|
|
|
|
protected:
|
|
// Updates the language model state recorded for the child entries specified
|
|
// in pending[starting_col]. Enqueues the children of the updated entries
|
|
// into pending and proceedes to update (and remove from pending) all the
|
|
// remaining entries in pending[col] (col >= starting_col). Upon termination
|
|
// of this function all the pending[col] lists will be empty.
|
|
//
|
|
// The arguments:
|
|
//
|
|
// starting_col: index of the column in chunks_record->ratings from
|
|
// which the update should be started
|
|
//
|
|
// pending: list of entries listing chunks_record->ratings entries
|
|
// that should be updated
|
|
//
|
|
// pain_points: priority heap listing the pain points generated by
|
|
// the language model
|
|
//
|
|
// temp_pain_points: temporary storage for tentative pain points generated
|
|
// by the language model after a single call to LanguageModel::UpdateState()
|
|
// (the agrument is passed in rather than created before each
|
|
// LanguageModel::UpdateState() call to avoid dynamic memory re-allocation)
|
|
//
|
|
// best_choice_bundle: a collection of variables that should be updated
|
|
// if a new best choice is found
|
|
//
|
|
void UpdateSegSearchNodes(int starting_col,
|
|
SEG_SEARCH_PENDING_LIST *pending[],
|
|
BestPathByColumn *best_path_by_column[],
|
|
CHUNKS_RECORD *chunks_record,
|
|
HEAP *pain_points,
|
|
BestChoiceBundle *best_choice_bundle);
|
|
};
|
|
|
|
|
|
} // namespace tesseract
|
|
|
|
#endif // TESSERACT_WORDREC_WORDREC_H__
|