tesseract/classify/mastertrainer.h
zdenop@gmail.com 49c4ce3183 fix for GRAPHICS_DISABLED build
git-svn-id: https://tesseract-ocr.googlecode.com/svn/trunk@686 d0cd1f9f-072b-0410-8dd7-cf729c803f20
2012-03-01 22:43:51 +00:00

299 lines
13 KiB
C++

// Copyright 2010 Google Inc. All Rights Reserved.
// Author: rays@google.com (Ray Smith)
///////////////////////////////////////////////////////////////////////
// File: mastertrainer.h
// Description: Trainer to build the MasterClassifier.
// Author: Ray Smith
// Created: Wed Nov 03 18:07:01 PDT 2010
//
// (C) Copyright 2010, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
///////////////////////////////////////////////////////////////////////
#ifndef TESSERACT_TRAINING_MASTERTRAINER_H__
#define TESSERACT_TRAINING_MASTERTRAINER_H__
/**----------------------------------------------------------------------------
Include Files and Type Defines
----------------------------------------------------------------------------**/
#include "classify.h"
#include "cluster.h"
#include "intfx.h"
#include "elst.h"
#include "featdefs.h"
#include "fontinfo.h"
#include "indexmapbidi.h"
#include "intfeaturespace.h"
#include "intfeaturemap.h"
#include "intmatcher.h"
#include "params.h"
#include "shapetable.h"
#include "trainingsample.h"
#include "trainingsampleset.h"
#include "unicharset.h"
namespace tesseract {
class ShapeClassifier;
// Simple struct to hold the distance between two shapes during clustering.
struct ShapeDist {
ShapeDist() : shape1(0), shape2(0), distance(0.0f) {}
ShapeDist(int s1, int s2, float dist)
: shape1(s1), shape2(s2), distance(dist) {}
// Sort operator to sort in ascending order of distance.
bool operator<(const ShapeDist& other) const {
return distance < other.distance;
}
int shape1;
int shape2;
float distance;
};
// Class to encapsulate training processes that use the TrainingSampleSet.
// Initially supports shape clustering and mftrainining.
// Other important features of the MasterTrainer are conditioning the data
// by outlier elimination, replication with perturbation, and serialization.
class MasterTrainer {
public:
MasterTrainer(NormalizationMode norm_mode, bool shape_analysis,
bool replicate_samples, int debug_level);
~MasterTrainer();
// Writes to the given file. Returns false in case of error.
bool Serialize(FILE* fp) const;
// Reads from the given file. Returns false in case of error.
// If swap is true, assumes a big/little-endian swap is needed.
bool DeSerialize(bool swap, FILE* fp);
// Loads an initial unicharset, or sets one up if the file cannot be read.
void LoadUnicharset(const char* filename);
// Sets the feature space definition.
void SetFeatureSpace(const IntFeatureSpace& fs) {
feature_space_ = fs;
feature_map_.Init(fs);
}
// Reads the samples and their features from the given file,
// adding them to the trainer with the font_id from the content of the file.
// If verification, then these are verification samples, not training.
void ReadTrainingSamples(FILE *fp,
const FEATURE_DEFS_STRUCT& feature_defs,
bool verification);
// Adds the given single sample to the trainer, setting the classid
// appropriately from the given unichar_str.
void AddSample(bool verification, const char* unichar_str,
TrainingSample* sample);
// Loads all pages from the given tif filename and append to page_images_.
// Must be called after ReadTrainingSamples, as the current number of images
// is used as an offset for page numbers in the samples.
void LoadPageImages(const char* filename);
// Cleans up the samples after initial load from the tr files, and prior to
// saving the MasterTrainer:
// Remaps fragmented chars if running shape anaylsis.
// Sets up the samples appropriately for class/fontwise access.
// Deletes outlier samples.
void PostLoadCleanup();
// Gets the samples ready for training. Use after both
// ReadTrainingSamples+PostLoadCleanup or DeSerialize.
// Re-indexes the features and computes canonical and cloud features.
void PreTrainingSetup();
// Sets up the master_shapes_ table, which tells which fonts should stay
// together until they get to a leaf node classifier.
void SetupMasterShapes();
// Adds the junk_samples_ to the main samples_ set. Junk samples are initially
// fragments and n-grams (all incorrectly segmented characters).
// Various training functions may result in incorrectly segmented characters
// being added to the unicharset of the main samples, perhaps because they
// form a "radical" decomposition of some (Indic) grapheme, or because they
// just look the same as a real character (like rn/m)
// This function moves all the junk samples, to the main samples_ set, but
// desirable junk, being any sample for which the unichar already exists in
// the samples_ unicharset gets the unichar-ids re-indexed to match, but
// anything else gets re-marked as unichar_id 0 (space character) to identify
// it as junk to the error counter.
void IncludeJunk();
// Replicates the samples and perturbs them if the enable_replication_ flag
// is set. MUST be used after the last call to OrganizeByFontAndClass on
// the training samples, ie after IncludeJunk if it is going to be used, as
// OrganizeByFontAndClass will eat the replicated samples into the regular
// samples.
void ReplicateAndRandomizeSamplesIfRequired();
// Loads the basic font properties file into fontinfo_table_.
// Returns false on failure.
bool LoadFontInfo(const char* filename);
// Loads the xheight font properties file into xheights_.
// Returns false on failure.
bool LoadXHeights(const char* filename);
// Reads spacing stats from filename and adds them to fontinfo_table.
// Returns false on failure.
bool AddSpacingInfo(const char *filename);
// Returns the font id corresponding to the given font name.
// Returns -1 if the font cannot be found.
int GetFontInfoId(const char* font_name);
// Returns the font_id of the closest matching font name to the given
// filename. It is assumed that a substring of the filename will match
// one of the fonts. If more than one is matched, the longest is returned.
int GetBestMatchingFontInfoId(const char* filename);
// Sets up a flat shapetable with one shape per class/font combination.
void SetupFlatShapeTable(ShapeTable* shape_table);
// Sets up a Clusterer for mftraining on a single shape_id.
// Call FreeClusterer on the return value after use.
CLUSTERER* SetupForClustering(const ShapeTable& shape_table,
const FEATURE_DEFS_STRUCT& feature_defs,
int shape_id, int* num_samples);
// Writes the given float_classes (produced by SetupForFloat2Int) as inttemp
// to the given inttemp_file, and the corresponding pffmtable.
// The unicharset is the original encoding of graphemes, and shape_set should
// match the size of the shape_table, and may possibly be totally fake.
void WriteInttempAndPFFMTable(const UNICHARSET& unicharset,
const UNICHARSET& shape_set,
const ShapeTable& shape_table,
CLASS_STRUCT* float_classes,
const char* inttemp_file,
const char* pffmtable_file);
const UNICHARSET& unicharset() const {
return samples_.unicharset();
}
TrainingSampleSet* GetSamples() {
return &samples_;
}
const ShapeTable& master_shapes() const {
return master_shapes_;
}
// Generates debug output relating to the canonical distance between the
// two given UTF8 grapheme strings.
void DebugCanonical(const char* unichar_str1, const char* unichar_str2);
#ifndef GRAPHICS_DISABLED
// Debugging for cloud/canonical features.
// Displays a Features window containing:
// If unichar_str2 is in the unicharset, and canonical_font is non-negative,
// displays the canonical features of the char/font combination in red.
// If unichar_str1 is in the unicharset, and cloud_font is non-negative,
// displays the cloud feature of the char/font combination in green.
// The canonical features are drawn first to show which ones have no
// matches in the cloud features.
// Until the features window is destroyed, each click in the features window
// will display the samples that have that feature in a separate window.
void DisplaySamples(const char* unichar_str1, int cloud_font,
const char* unichar_str2, int canonical_font);
#endif // GRAPHICS_DISABLED
// Tests the given test_classifier on the internal samples.
// See TestClassifier for details.
void TestClassifierOnSamples(int report_level,
bool replicate_samples,
ShapeClassifier* test_classifier,
STRING* report_string);
// Tests the given test_classifier on the given samples
// report_levels:
// 0 = no output.
// 1 = bottom-line error rate.
// 2 = bottom-line error rate + time.
// 3 = font-level error rate + time.
// 4 = list of all errors + short classifier debug output on 16 errors.
// 5 = list of all errors + short classifier debug output on 25 errors.
// If replicate_samples is true, then the test is run on an extended test
// sample including replicated and systematically perturbed samples.
// If report_string is non-NULL, a summary of the results for each font
// is appended to the report_string.
double TestClassifier(int report_level,
bool replicate_samples,
TrainingSampleSet* samples,
ShapeClassifier* test_classifier,
STRING* report_string);
// Returns the average (in some sense) distance between the two given
// shapes, which may contain multiple fonts and/or unichars.
// This function is public to facilitate testing.
float ShapeDistance(const ShapeTable& shapes, int s1, int s2);
private:
// Replaces samples that are always fragmented with the corresponding
// fragment samples.
void ReplaceFragmentedSamples();
// Runs a hierarchical agglomerative clustering to merge shapes in the given
// shape_table, while satisfying the given constraints:
// * End with at least min_shapes left in shape_table,
// * No shape shall have more than max_shape_unichars in it,
// * Don't merge shapes where the distance between them exceeds max_dist.
void ClusterShapes(int min_shapes, int max_shape_unichars,
float max_dist, ShapeTable* shape_table);
private:
NormalizationMode norm_mode_;
// Character set we are training for.
UNICHARSET unicharset_;
// Original feature space. Subspace mapping is contained in feature_map_.
IntFeatureSpace feature_space_;
TrainingSampleSet samples_;
TrainingSampleSet junk_samples_;
TrainingSampleSet verify_samples_;
// Master shape table defines what fonts stay together until the leaves.
ShapeTable master_shapes_;
// Flat shape table has each unichar/font id pair in a separate shape.
ShapeTable flat_shapes_;
// Font metrics gathered from multiple files.
UnicityTable<FontInfo> fontinfo_table_;
// Array of xheights indexed by font ids in fontinfo_table_;
GenericVector<int> xheights_;
// Non-serialized data initialized by other means or used temporarily
// during loading of training samples.
// Number of different class labels in unicharset_.
int charsetsize_;
// Flag to indicate that we are running shape analysis and need fragments
// fixing.
bool enable_shape_anaylsis_;
// Flag to indicate that sample replication is required.
bool enable_replication_;
// Flag to indicate that junk should be included in samples_.
bool include_junk_;
// Array of classids of fragments that replace the correctly segmented chars.
int* fragments_;
// Classid of previous correctly segmented sample that was added.
int prev_unichar_id_;
// Debug output control.
int debug_level_;
// Feature map used to construct reduced feature spaces for compact
// classifiers.
IntFeatureMap feature_map_;
// Vector of Pix pointers used for classifiers that need the image.
// Indexed by page_num_ in the samples.
// These images are owned by the trainer and need to be pixDestroyed.
GenericVector<Pix*> page_images_;
};
} // namespace tesseract.
#endif