mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2025-01-18 14:41:36 +08:00
238 lines
8.4 KiB
C++
238 lines
8.4 KiB
C++
///////////////////////////////////////////////////////////////////////
|
|
// File: plumbing.cpp
|
|
// Description: Base class for networks that organize other networks
|
|
// eg series or parallel.
|
|
// Author: Ray Smith
|
|
// Created: Mon May 12 08:17:34 PST 2014
|
|
//
|
|
// (C) Copyright 2014, Google Inc.
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
///////////////////////////////////////////////////////////////////////
|
|
|
|
#include "plumbing.h"
|
|
|
|
namespace tesseract {
|
|
|
|
// ni_ and no_ will be set by AddToStack.
|
|
Plumbing::Plumbing(const STRING& name)
|
|
: Network(NT_PARALLEL, name, 0, 0) {
|
|
}
|
|
|
|
Plumbing::~Plumbing() {
|
|
}
|
|
|
|
// Suspends/Enables training by setting the training_ flag. Serialize and
|
|
// DeSerialize only operate on the run-time data if state is false.
|
|
void Plumbing::SetEnableTraining(TrainingState state) {
|
|
Network::SetEnableTraining(state);
|
|
for (int i = 0; i < stack_.size(); ++i)
|
|
stack_[i]->SetEnableTraining(state);
|
|
}
|
|
|
|
// Sets flags that control the action of the network. See NetworkFlags enum
|
|
// for bit values.
|
|
void Plumbing::SetNetworkFlags(uinT32 flags) {
|
|
Network::SetNetworkFlags(flags);
|
|
for (int i = 0; i < stack_.size(); ++i)
|
|
stack_[i]->SetNetworkFlags(flags);
|
|
}
|
|
|
|
// Sets up the network for training. Initializes weights using weights of
|
|
// scale `range` picked according to the random number generator `randomizer`.
|
|
// Note that randomizer is a borrowed pointer that should outlive the network
|
|
// and should not be deleted by any of the networks.
|
|
// Returns the number of weights initialized.
|
|
int Plumbing::InitWeights(float range, TRand* randomizer) {
|
|
num_weights_ = 0;
|
|
for (int i = 0; i < stack_.size(); ++i)
|
|
num_weights_ += stack_[i]->InitWeights(range, randomizer);
|
|
return num_weights_;
|
|
}
|
|
|
|
// Converts a float network to an int network.
|
|
void Plumbing::ConvertToInt() {
|
|
for (int i = 0; i < stack_.size(); ++i)
|
|
stack_[i]->ConvertToInt();
|
|
}
|
|
|
|
// Provides a pointer to a TRand for any networks that care to use it.
|
|
// Note that randomizer is a borrowed pointer that should outlive the network
|
|
// and should not be deleted by any of the networks.
|
|
void Plumbing::SetRandomizer(TRand* randomizer) {
|
|
for (int i = 0; i < stack_.size(); ++i)
|
|
stack_[i]->SetRandomizer(randomizer);
|
|
}
|
|
|
|
// Adds the given network to the stack.
|
|
void Plumbing::AddToStack(Network* network) {
|
|
if (stack_.empty()) {
|
|
ni_ = network->NumInputs();
|
|
no_ = network->NumOutputs();
|
|
} else if (type_ == NT_SERIES) {
|
|
// ni is input of first, no output of last, others match output to input.
|
|
ASSERT_HOST(no_ == network->NumInputs());
|
|
no_ = network->NumOutputs();
|
|
} else {
|
|
// All parallel types. Output is sum of outputs, inputs all match.
|
|
ASSERT_HOST(ni_ == network->NumInputs());
|
|
no_ += network->NumOutputs();
|
|
}
|
|
stack_.push_back(network);
|
|
}
|
|
|
|
// Sets needs_to_backprop_ to needs_backprop and calls on sub-network
|
|
// according to needs_backprop || any weights in this network.
|
|
bool Plumbing::SetupNeedsBackprop(bool needs_backprop) {
|
|
if (IsTraining()) {
|
|
needs_to_backprop_ = needs_backprop;
|
|
bool retval = needs_backprop;
|
|
for (int i = 0; i < stack_.size(); ++i) {
|
|
if (stack_[i]->SetupNeedsBackprop(needs_backprop)) retval = true;
|
|
}
|
|
return retval;
|
|
}
|
|
// Frozen networks don't do backprop.
|
|
needs_to_backprop_ = false;
|
|
return false;
|
|
}
|
|
|
|
// Returns an integer reduction factor that the network applies to the
|
|
// time sequence. Assumes that any 2-d is already eliminated. Used for
|
|
// scaling bounding boxes of truth data.
|
|
// WARNING: if GlobalMinimax is used to vary the scale, this will return
|
|
// the last used scale factor. Call it before any forward, and it will return
|
|
// the minimum scale factor of the paths through the GlobalMinimax.
|
|
int Plumbing::XScaleFactor() const {
|
|
return stack_[0]->XScaleFactor();
|
|
}
|
|
|
|
// Provides the (minimum) x scale factor to the network (of interest only to
|
|
// input units) so they can determine how to scale bounding boxes.
|
|
void Plumbing::CacheXScaleFactor(int factor) {
|
|
for (int i = 0; i < stack_.size(); ++i) {
|
|
stack_[i]->CacheXScaleFactor(factor);
|
|
}
|
|
}
|
|
|
|
// Provides debug output on the weights.
|
|
void Plumbing::DebugWeights() {
|
|
for (int i = 0; i < stack_.size(); ++i)
|
|
stack_[i]->DebugWeights();
|
|
}
|
|
|
|
// Returns a set of strings representing the layer-ids of all layers below.
|
|
void Plumbing::EnumerateLayers(const STRING* prefix,
|
|
GenericVector<STRING>* layers) const {
|
|
for (int i = 0; i < stack_.size(); ++i) {
|
|
STRING layer_name;
|
|
if (prefix) layer_name = *prefix;
|
|
layer_name.add_str_int(":", i);
|
|
if (stack_[i]->IsPlumbingType()) {
|
|
Plumbing* plumbing = reinterpret_cast<Plumbing*>(stack_[i]);
|
|
plumbing->EnumerateLayers(&layer_name, layers);
|
|
} else {
|
|
layers->push_back(layer_name);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Returns a pointer to the network layer corresponding to the given id.
|
|
Network* Plumbing::GetLayer(const char* id) const {
|
|
char* next_id;
|
|
int index = strtol(id, &next_id, 10);
|
|
if (index < 0 || index >= stack_.size()) return NULL;
|
|
if (stack_[index]->IsPlumbingType()) {
|
|
Plumbing* plumbing = reinterpret_cast<Plumbing*>(stack_[index]);
|
|
ASSERT_HOST(*next_id == ':');
|
|
return plumbing->GetLayer(next_id + 1);
|
|
}
|
|
return stack_[index];
|
|
}
|
|
|
|
// Returns a pointer to the learning rate for the given layer id.
|
|
float* Plumbing::LayerLearningRatePtr(const char* id) const {
|
|
char* next_id;
|
|
int index = strtol(id, &next_id, 10);
|
|
if (index < 0 || index >= stack_.size()) return NULL;
|
|
if (stack_[index]->IsPlumbingType()) {
|
|
Plumbing* plumbing = reinterpret_cast<Plumbing*>(stack_[index]);
|
|
ASSERT_HOST(*next_id == ':');
|
|
return plumbing->LayerLearningRatePtr(next_id + 1);
|
|
}
|
|
if (index < 0 || index >= learning_rates_.size()) return NULL;
|
|
return &learning_rates_[index];
|
|
}
|
|
|
|
// Writes to the given file. Returns false in case of error.
|
|
bool Plumbing::Serialize(TFile* fp) const {
|
|
if (!Network::Serialize(fp)) return false;
|
|
inT32 size = stack_.size();
|
|
// Can't use PointerVector::Serialize here as we need a special DeSerialize.
|
|
if (fp->FWrite(&size, sizeof(size), 1) != 1) return false;
|
|
for (int i = 0; i < size; ++i)
|
|
if (!stack_[i]->Serialize(fp)) return false;
|
|
if ((network_flags_ & NF_LAYER_SPECIFIC_LR) &&
|
|
!learning_rates_.Serialize(fp)) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Reads from the given file. Returns false in case of error.
|
|
bool Plumbing::DeSerialize(TFile* fp) {
|
|
stack_.truncate(0);
|
|
no_ = 0; // We will be modifying this as we AddToStack.
|
|
inT32 size;
|
|
if (fp->FReadEndian(&size, sizeof(size), 1) != 1) return false;
|
|
for (int i = 0; i < size; ++i) {
|
|
Network* network = CreateFromFile(fp);
|
|
if (network == NULL) return false;
|
|
AddToStack(network);
|
|
}
|
|
if ((network_flags_ & NF_LAYER_SPECIFIC_LR) &&
|
|
!learning_rates_.DeSerialize(fp)) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Updates the weights using the given learning rate and momentum.
|
|
// num_samples is the quotient to be used in the adagrad computation iff
|
|
// use_ada_grad_ is true.
|
|
void Plumbing::Update(float learning_rate, float momentum, int num_samples) {
|
|
for (int i = 0; i < stack_.size(); ++i) {
|
|
if (network_flags_ & NF_LAYER_SPECIFIC_LR) {
|
|
if (i < learning_rates_.size())
|
|
learning_rate = learning_rates_[i];
|
|
else
|
|
learning_rates_.push_back(learning_rate);
|
|
}
|
|
if (stack_[i]->IsTraining()) {
|
|
stack_[i]->Update(learning_rate, momentum, num_samples);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Sums the products of weight updates in *this and other, splitting into
|
|
// positive (same direction) in *same and negative (different direction) in
|
|
// *changed.
|
|
void Plumbing::CountAlternators(const Network& other, double* same,
|
|
double* changed) const {
|
|
ASSERT_HOST(other.type() == type_);
|
|
const Plumbing* plumbing = reinterpret_cast<const Plumbing*>(&other);
|
|
ASSERT_HOST(plumbing->stack_.size() == stack_.size());
|
|
for (int i = 0; i < stack_.size(); ++i)
|
|
stack_[i]->CountAlternators(*plumbing->stack_[i], same, changed);
|
|
}
|
|
|
|
} // namespace tesseract.
|
|
|