mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2024-11-28 22:00:09 +08:00
2c909702c9
git-svn-id: https://tesseract-ocr.googlecode.com/svn/trunk@877 d0cd1f9f-072b-0410-8dd7-cf729c803f20
767 lines
32 KiB
C++
767 lines
32 KiB
C++
// Copyright 2011 Google Inc. All Rights Reserved.
|
|
// Author: rays@google.com (Ray Smith)
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "textlineprojection.h"
|
|
#include "allheaders.h"
|
|
#include "bbgrid.h" // Base class.
|
|
#include "blobbox.h" // BlobNeighourDir.
|
|
#include "blobs.h"
|
|
#include "colpartition.h"
|
|
#include "normalis.h"
|
|
|
|
// Padding factor to use on definitely oriented blobs
|
|
const int kOrientedPadFactor = 8;
|
|
// Padding factor to use on not definitely oriented blobs.
|
|
const int kDefaultPadFactor = 2;
|
|
// Penalty factor for going away from the line center.
|
|
const int kWrongWayPenalty = 4;
|
|
// Ratio between parallel gap and perpendicular gap used to measure total
|
|
// distance of a box from a target box in curved textline space.
|
|
// parallel-gap is treated more favorably by this factor to allow catching
|
|
// quotes and elipsis at the end of textlines.
|
|
const int kParaPerpDistRatio = 4;
|
|
// Multiple of scale_factor_ that the inter-line gap must be before we start
|
|
// padding the increment box perpendicular to the text line.
|
|
const int kMinLineSpacingFactor = 4;
|
|
// Maximum tab-stop overrun for horizontal padding, in projection pixels.
|
|
const int kMaxTabStopOverrun = 6;
|
|
|
|
namespace tesseract {
|
|
|
|
TextlineProjection::TextlineProjection(int resolution)
|
|
: x_origin_(0), y_origin_(0), pix_(NULL) {
|
|
// The projection map should be about 100 ppi, whatever the input.
|
|
scale_factor_ = IntCastRounded(resolution / 100.0);
|
|
if (scale_factor_ < 1) scale_factor_ = 1;
|
|
}
|
|
TextlineProjection::~TextlineProjection() {
|
|
pixDestroy(&pix_);
|
|
}
|
|
|
|
// Build the projection profile given the input_block containing lists of
|
|
// blobs, a rotation to convert to image coords,
|
|
// and a full-resolution nontext_map, marking out areas to avoid.
|
|
// During construction, we have the following assumptions:
|
|
// The rotation is a multiple of 90 degrees, ie no deskew yet.
|
|
// The blobs have had their left and right rules set to also limit
|
|
// the range of projection.
|
|
void TextlineProjection::ConstructProjection(TO_BLOCK* input_block,
|
|
const FCOORD& rotation,
|
|
Pix* nontext_map) {
|
|
pixDestroy(&pix_);
|
|
TBOX image_box(0, 0, pixGetWidth(nontext_map), pixGetHeight(nontext_map));
|
|
x_origin_ = 0;
|
|
y_origin_ = image_box.height();
|
|
int width = (image_box.width() + scale_factor_ - 1) / scale_factor_;
|
|
int height = (image_box.height() + scale_factor_ - 1) / scale_factor_;
|
|
|
|
pix_ = pixCreate(width, height, 8);
|
|
ProjectBlobs(&input_block->blobs, rotation, image_box, nontext_map);
|
|
ProjectBlobs(&input_block->large_blobs, rotation, image_box, nontext_map);
|
|
Pix* final_pix = pixBlockconv(pix_, 1, 1);
|
|
// Pix* final_pix = pixBlockconv(pix_, 2, 2);
|
|
pixDestroy(&pix_);
|
|
pix_ = final_pix;
|
|
}
|
|
|
|
// Display the blobs in the window colored according to textline quality.
|
|
void TextlineProjection::PlotGradedBlobs(BLOBNBOX_LIST* blobs,
|
|
ScrollView* win) {
|
|
#ifndef GRAPHICS_DISABLED
|
|
BLOBNBOX_IT it(blobs);
|
|
for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
|
|
BLOBNBOX* blob = it.data();
|
|
const TBOX& box = blob->bounding_box();
|
|
bool bad_box = BoxOutOfHTextline(box, NULL, false);
|
|
if (blob->UniquelyVertical())
|
|
win->Pen(ScrollView::YELLOW);
|
|
else
|
|
win->Pen(bad_box ? ScrollView::RED : ScrollView::BLUE);
|
|
win->Rectangle(box.left(), box.bottom(), box.right(), box.top());
|
|
}
|
|
win->Update();
|
|
#endif // GRAPHICS_DISABLED
|
|
}
|
|
|
|
// Moves blobs that look like they don't sit well on a textline from the
|
|
// input blobs list to the output small_blobs list.
|
|
// This gets them away from initial textline finding to stop diacritics
|
|
// from forming incorrect textlines. (Introduced mainly to fix Thai.)
|
|
void TextlineProjection::MoveNonTextlineBlobs(
|
|
BLOBNBOX_LIST* blobs, BLOBNBOX_LIST* small_blobs) const {
|
|
BLOBNBOX_IT it(blobs);
|
|
BLOBNBOX_IT small_it(small_blobs);
|
|
for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
|
|
BLOBNBOX* blob = it.data();
|
|
const TBOX& box = blob->bounding_box();
|
|
bool debug = AlignedBlob::WithinTestRegion(2, box.left(),
|
|
box.bottom());
|
|
if (BoxOutOfHTextline(box, NULL, debug) && !blob->UniquelyVertical()) {
|
|
blob->ClearNeighbours();
|
|
small_it.add_to_end(it.extract());
|
|
}
|
|
}
|
|
}
|
|
|
|
// Create a window and display the projection in it.
|
|
void TextlineProjection::DisplayProjection() const {
|
|
int width = pixGetWidth(pix_);
|
|
int height = pixGetHeight(pix_);
|
|
Pix* pixc = pixCreate(width, height, 32);
|
|
int src_wpl = pixGetWpl(pix_);
|
|
int col_wpl = pixGetWpl(pixc);
|
|
uinT32* src_data = pixGetData(pix_);
|
|
uinT32* col_data = pixGetData(pixc);
|
|
for (int y = 0; y < height; ++y, src_data += src_wpl, col_data += col_wpl) {
|
|
for (int x = 0; x < width; ++x) {
|
|
int pixel = GET_DATA_BYTE(src_data, x);
|
|
l_uint32 result;
|
|
if (pixel <= 17)
|
|
composeRGBPixel(0, 0, pixel * 15, &result);
|
|
else if (pixel <= 145)
|
|
composeRGBPixel(0, (pixel - 17) * 2, 255, &result);
|
|
else
|
|
composeRGBPixel((pixel - 145) * 2, 255, 255, &result);
|
|
col_data[x] = result;
|
|
}
|
|
}
|
|
#if 0
|
|
// TODO(rays) uncomment when scrollview can display non-binary images.
|
|
ScrollView* win = new ScrollView("Projection", 0, 0,
|
|
width, height, width, height);
|
|
win->Image(pixc, 0, 0);
|
|
win->Update();
|
|
#else
|
|
pixWrite("projection.png", pixc, IFF_PNG);
|
|
#endif
|
|
pixDestroy(&pixc);
|
|
}
|
|
|
|
// Compute the distance of the box from the partition using curved projection
|
|
// space. As DistanceOfBoxFromBox, except that the direction is taken from
|
|
// the ColPartition and the median bounds of the ColPartition are used as
|
|
// the to_box.
|
|
int TextlineProjection::DistanceOfBoxFromPartition(const TBOX& box,
|
|
const ColPartition& part,
|
|
const DENORM* denorm,
|
|
bool debug) const {
|
|
// Compute a partition box that uses the median top/bottom of the blobs
|
|
// within and median left/right for vertical.
|
|
TBOX part_box = part.bounding_box();
|
|
if (part.IsHorizontalType()) {
|
|
part_box.set_top(part.median_top());
|
|
part_box.set_bottom(part.median_bottom());
|
|
} else {
|
|
part_box.set_left(part.median_left());
|
|
part_box.set_right(part.median_right());
|
|
}
|
|
// Now use DistanceOfBoxFromBox to make the actual calculation.
|
|
return DistanceOfBoxFromBox(box, part_box, part.IsHorizontalType(),
|
|
denorm, debug);
|
|
}
|
|
|
|
// Compute the distance from the from_box to the to_box using curved
|
|
// projection space. Separation that involves a decrease in projection
|
|
// density (moving from the from_box to the to_box) is weighted more heavily
|
|
// than constant density, and an increase is weighted less.
|
|
// If horizontal_textline is true, then curved space is used vertically,
|
|
// as for a diacritic on the edge of a textline.
|
|
// The projection uses original image coords, so denorm is used to get
|
|
// back to the image coords from box/part space.
|
|
// How the calculation works: Think of a diacritic near a textline.
|
|
// Distance is measured from the far side of the from_box to the near side of
|
|
// the to_box. Shown is the horizontal textline case.
|
|
// |------^-----|
|
|
// | from | box |
|
|
// |------|-----|
|
|
// perpendicular |
|
|
// <------v-------->|--------------------|
|
|
// parallel | to box |
|
|
// |--------------------|
|
|
// Perpendicular distance uses "curved space" See VerticalDistance below.
|
|
// Parallel distance is linear.
|
|
// Result is perpendicular_gap + parallel_gap / kParaPerpDistRatio.
|
|
int TextlineProjection::DistanceOfBoxFromBox(const TBOX& from_box,
|
|
const TBOX& to_box,
|
|
bool horizontal_textline,
|
|
const DENORM* denorm,
|
|
bool debug) const {
|
|
// The parallel_gap is the horizontal gap between a horizontal textline and
|
|
// the box. Analogous for vertical.
|
|
int parallel_gap = 0;
|
|
// start_pt is the box end of the line to be modified for curved space.
|
|
TPOINT start_pt;
|
|
// end_pt is the partition end of the line to be modified for curved space.
|
|
TPOINT end_pt;
|
|
if (horizontal_textline) {
|
|
parallel_gap = from_box.x_gap(to_box) + from_box.width();
|
|
start_pt.x = (from_box.left() + from_box.right()) / 2;
|
|
end_pt.x = start_pt.x;
|
|
if (from_box.top() - to_box.top() >= to_box.bottom() - from_box.bottom()) {
|
|
start_pt.y = from_box.top();
|
|
end_pt.y = MIN(to_box.top(), start_pt.y);
|
|
} else {
|
|
start_pt.y = from_box.bottom();
|
|
end_pt.y = MAX(to_box.bottom(), start_pt.y);
|
|
}
|
|
} else {
|
|
parallel_gap = from_box.y_gap(to_box) + from_box.height();
|
|
if (from_box.right() - to_box.right() >= to_box.left() - from_box.left()) {
|
|
start_pt.x = from_box.right();
|
|
end_pt.x = MIN(to_box.right(), start_pt.x);
|
|
} else {
|
|
start_pt.x = from_box.left();
|
|
end_pt.x = MAX(to_box.left(), start_pt.x);
|
|
}
|
|
start_pt.y = (from_box.bottom() + from_box.top()) / 2;
|
|
end_pt.y = start_pt.y;
|
|
}
|
|
// The perpendicular gap is the max vertical distance gap out of:
|
|
// top of from_box to to_box top and bottom of from_box to to_box bottom.
|
|
// This value is then modified for curved projection space.
|
|
// Analogous for vertical.
|
|
int perpendicular_gap = 0;
|
|
// If start_pt == end_pt, then the from_box lies entirely within the to_box
|
|
// (in the perpendicular direction), so we don't need to calculate the
|
|
// perpendicular_gap.
|
|
if (start_pt.x != end_pt.x || start_pt.y != end_pt.y) {
|
|
if (denorm != NULL) {
|
|
// Denormalize the start and end.
|
|
denorm->DenormTransform(NULL, start_pt, &start_pt);
|
|
denorm->DenormTransform(NULL, end_pt, &end_pt);
|
|
}
|
|
if (abs(start_pt.y - end_pt.y) >= abs(start_pt.x - end_pt.x)) {
|
|
perpendicular_gap = VerticalDistance(debug, start_pt.x, start_pt.y,
|
|
end_pt.y);
|
|
} else {
|
|
perpendicular_gap = HorizontalDistance(debug, start_pt.x, end_pt.x,
|
|
start_pt.y);
|
|
}
|
|
}
|
|
// The parallel_gap weighs less than the perpendicular_gap.
|
|
return perpendicular_gap + parallel_gap / kParaPerpDistRatio;
|
|
}
|
|
|
|
// Compute the distance between (x, y1) and (x, y2) using the rule that
|
|
// a decrease in textline density is weighted more heavily than an increase.
|
|
// The coordinates are in source image space, ie processed by any denorm
|
|
// already, but not yet scaled by scale_factor_.
|
|
// Going from the outside of a textline to the inside should measure much
|
|
// less distance than going from the inside of a textline to the outside.
|
|
// How it works:
|
|
// An increase is cheap (getting closer to a textline).
|
|
// Constant costs unity.
|
|
// A decrease is expensive (getting further from a textline).
|
|
// Pixels in projection map Counted distance
|
|
// 2
|
|
// 3 1/x
|
|
// 3 1
|
|
// 2 x
|
|
// 5 1/x
|
|
// 7 1/x
|
|
// Total: 1 + x + 3/x where x = kWrongWayPenalty.
|
|
int TextlineProjection::VerticalDistance(bool debug, int x,
|
|
int y1, int y2) const {
|
|
x = ImageXToProjectionX(x);
|
|
y1 = ImageYToProjectionY(y1);
|
|
y2 = ImageYToProjectionY(y2);
|
|
if (y1 == y2) return 0;
|
|
int wpl = pixGetWpl(pix_);
|
|
int step = y1 < y2 ? 1 : -1;
|
|
uinT32* data = pixGetData(pix_) + y1 * wpl;
|
|
wpl *= step;
|
|
int prev_pixel = GET_DATA_BYTE(data, x);
|
|
int distance = 0;
|
|
int right_way_steps = 0;
|
|
for (int y = y1; y != y2; y += step) {
|
|
data += wpl;
|
|
int pixel = GET_DATA_BYTE(data, x);
|
|
if (debug)
|
|
tprintf("At (%d,%d), pix = %d, prev=%d\n",
|
|
x, y + step, pixel, prev_pixel);
|
|
if (pixel < prev_pixel)
|
|
distance += kWrongWayPenalty;
|
|
else if (pixel > prev_pixel)
|
|
++right_way_steps;
|
|
else
|
|
++distance;
|
|
prev_pixel = pixel;
|
|
}
|
|
return distance * scale_factor_ +
|
|
right_way_steps * scale_factor_ / kWrongWayPenalty;
|
|
}
|
|
|
|
// Compute the distance between (x1, y) and (x2, y) using the rule that
|
|
// a decrease in textline density is weighted more heavily than an increase.
|
|
int TextlineProjection::HorizontalDistance(bool debug, int x1, int x2,
|
|
int y) const {
|
|
x1 = ImageXToProjectionX(x1);
|
|
x2 = ImageXToProjectionX(x2);
|
|
y = ImageYToProjectionY(y);
|
|
if (x1 == x2) return 0;
|
|
int wpl = pixGetWpl(pix_);
|
|
int step = x1 < x2 ? 1 : -1;
|
|
uinT32* data = pixGetData(pix_) + y * wpl;
|
|
int prev_pixel = GET_DATA_BYTE(data, x1);
|
|
int distance = 0;
|
|
int right_way_steps = 0;
|
|
for (int x = x1; x != x2; x += step) {
|
|
int pixel = GET_DATA_BYTE(data, x + step);
|
|
if (debug)
|
|
tprintf("At (%d,%d), pix = %d, prev=%d\n",
|
|
x + step, y, pixel, prev_pixel);
|
|
if (pixel < prev_pixel)
|
|
distance += kWrongWayPenalty;
|
|
else if (pixel > prev_pixel)
|
|
++right_way_steps;
|
|
else
|
|
++distance;
|
|
prev_pixel = pixel;
|
|
}
|
|
return distance * scale_factor_ +
|
|
right_way_steps * scale_factor_ / kWrongWayPenalty;
|
|
}
|
|
|
|
// Returns true if the blob appears to be outside of a textline.
|
|
// Such blobs are potentially diacritics (even if large in Thai) and should
|
|
// be kept away from initial textline finding.
|
|
bool TextlineProjection::BoxOutOfHTextline(const TBOX& box,
|
|
const DENORM* denorm,
|
|
bool debug) const {
|
|
int grad1 = 0;
|
|
int grad2 = 0;
|
|
EvaluateBoxInternal(box, denorm, debug, &grad1, &grad2, NULL, NULL);
|
|
int worst_result = MIN(grad1, grad2);
|
|
int total_result = grad1 + grad2;
|
|
if (total_result >= 6) return false; // Strongly in textline.
|
|
// Medium strength: if either gradient is negative, it is likely outside
|
|
// the body of the textline.
|
|
if (worst_result < 0)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
// Evaluates the textlineiness of a ColPartition. Uses EvaluateBox below,
|
|
// but uses the median top/bottom for horizontal and median left/right for
|
|
// vertical instead of the bounding box edges.
|
|
// Evaluates for both horizontal and vertical and returns the best result,
|
|
// with a positive value for horizontal and a negative value for vertical.
|
|
int TextlineProjection::EvaluateColPartition(const ColPartition& part,
|
|
const DENORM* denorm,
|
|
bool debug) const {
|
|
if (part.IsSingleton())
|
|
return EvaluateBox(part.bounding_box(), denorm, debug);
|
|
// Test vertical orientation.
|
|
TBOX box = part.bounding_box();
|
|
// Use the partition median for left/right.
|
|
box.set_left(part.median_left());
|
|
box.set_right(part.median_right());
|
|
int vresult = EvaluateBox(box, denorm, debug);
|
|
|
|
// Test horizontal orientation.
|
|
box = part.bounding_box();
|
|
// Use the partition median for top/bottom.
|
|
box.set_top(part.median_top());
|
|
box.set_bottom(part.median_bottom());
|
|
int hresult = EvaluateBox(box, denorm, debug);
|
|
if (debug) {
|
|
tprintf("Partition hresult=%d, vresult=%d from:", hresult, vresult);
|
|
part.bounding_box().print();
|
|
part.Print();
|
|
}
|
|
return hresult >= -vresult ? hresult : vresult;
|
|
}
|
|
|
|
// Computes the mean projection gradients over the horizontal and vertical
|
|
// edges of the box:
|
|
// -h-h-h-h-h-h
|
|
// |------------| mean=htop -v|+v--------+v|-v
|
|
// |+h+h+h+h+h+h| -v|+v +v|-v
|
|
// | | -v|+v +v|-v
|
|
// | box | -v|+v box +v|-v
|
|
// | | -v|+v +v|-v
|
|
// |+h+h+h+h+h+h| -v|+v +v|-v
|
|
// |------------| mean=hbot -v|+v--------+v|-v
|
|
// -h-h-h-h-h-h
|
|
// mean=vleft mean=vright
|
|
//
|
|
// Returns MAX(htop,hbot) - MAX(vleft,vright), which is a positive number
|
|
// for a horizontal textline, a negative number for a vertical textline,
|
|
// and near zero for undecided. Undecided is most likely non-text.
|
|
// All the gradients are truncated to remain non-negative, since negative
|
|
// horizontal gradients don't give any indication of being vertical and
|
|
// vice versa.
|
|
// Additional complexity: The coordinates have to be transformed to original
|
|
// image coordinates with denorm (if not null), scaled to match the projection
|
|
// pix, and THEN step out 2 pixels each way from the edge to compute the
|
|
// gradient, and tries 3 positions, each measuring the gradient over a
|
|
// 4-pixel spread: (+3/-1), (+2/-2), (+1/-3). This complexity is handled by
|
|
// several layers of helpers below.
|
|
int TextlineProjection::EvaluateBox(const TBOX& box, const DENORM* denorm,
|
|
bool debug) const {
|
|
return EvaluateBoxInternal(box, denorm, debug, NULL, NULL, NULL, NULL);
|
|
}
|
|
|
|
// Internal version of EvaluateBox returns the unclipped gradients as well
|
|
// as the result of EvaluateBox.
|
|
// hgrad1 and hgrad2 are the gradients for the horizontal textline.
|
|
int TextlineProjection::EvaluateBoxInternal(const TBOX& box,
|
|
const DENORM* denorm, bool debug,
|
|
int* hgrad1, int* hgrad2,
|
|
int* vgrad1, int* vgrad2) const {
|
|
int top_gradient = BestMeanGradientInRow(denorm, box.left(), box.right(),
|
|
box.top(), true);
|
|
int bottom_gradient = -BestMeanGradientInRow(denorm, box.left(), box.right(),
|
|
box.bottom(), false);
|
|
int left_gradient = BestMeanGradientInColumn(denorm, box.left(), box.bottom(),
|
|
box.top(), true);
|
|
int right_gradient = -BestMeanGradientInColumn(denorm, box.right(),
|
|
box.bottom(), box.top(),
|
|
false);
|
|
int top_clipped = MAX(top_gradient, 0);
|
|
int bottom_clipped = MAX(bottom_gradient, 0);
|
|
int left_clipped = MAX(left_gradient, 0);
|
|
int right_clipped = MAX(right_gradient, 0);
|
|
if (debug) {
|
|
tprintf("Gradients: top = %d, bottom = %d, left= %d, right= %d for box:",
|
|
top_gradient, bottom_gradient, left_gradient, right_gradient);
|
|
box.print();
|
|
}
|
|
int result = MAX(top_clipped, bottom_clipped) -
|
|
MAX(left_clipped, right_clipped);
|
|
if (hgrad1 != NULL && hgrad2 != NULL) {
|
|
*hgrad1 = top_gradient;
|
|
*hgrad2 = bottom_gradient;
|
|
}
|
|
if (vgrad1 != NULL && vgrad2 != NULL) {
|
|
*vgrad1 = left_gradient;
|
|
*vgrad2 = right_gradient;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// Helper returns the mean gradient value for the horizontal row at the given
|
|
// y, (in the external coordinates) by subtracting the mean of the transformed
|
|
// row 2 pixels above from the mean of the transformed row 2 pixels below.
|
|
// This gives a positive value for a good top edge and negative for bottom.
|
|
// Returns the best result out of +2/-2, +3/-1, +1/-3 pixels from the edge.
|
|
int TextlineProjection::BestMeanGradientInRow(const DENORM* denorm,
|
|
inT16 min_x, inT16 max_x, inT16 y,
|
|
bool best_is_max) const {
|
|
TPOINT start_pt(min_x, y);
|
|
TPOINT end_pt(max_x, y);
|
|
int upper = MeanPixelsInLineSegment(denorm, -2, start_pt, end_pt);
|
|
int lower = MeanPixelsInLineSegment(denorm, 2, start_pt, end_pt);
|
|
int best_gradient = lower - upper;
|
|
upper = MeanPixelsInLineSegment(denorm, -1, start_pt, end_pt);
|
|
lower = MeanPixelsInLineSegment(denorm, 3, start_pt, end_pt);
|
|
int gradient = lower - upper;
|
|
if ((gradient > best_gradient) == best_is_max)
|
|
best_gradient = gradient;
|
|
upper = MeanPixelsInLineSegment(denorm, -3, start_pt, end_pt);
|
|
lower = MeanPixelsInLineSegment(denorm, 1, start_pt, end_pt);
|
|
gradient = lower - upper;
|
|
if ((gradient > best_gradient) == best_is_max)
|
|
best_gradient = gradient;
|
|
return best_gradient;
|
|
}
|
|
|
|
// Helper returns the mean gradient value for the vertical column at the
|
|
// given x, (in the external coordinates) by subtracting the mean of the
|
|
// transformed column 2 pixels left from the mean of the transformed column
|
|
// 2 pixels to the right.
|
|
// This gives a positive value for a good left edge and negative for right.
|
|
// Returns the best result out of +2/-2, +3/-1, +1/-3 pixels from the edge.
|
|
int TextlineProjection::BestMeanGradientInColumn(const DENORM* denorm, inT16 x,
|
|
inT16 min_y, inT16 max_y,
|
|
bool best_is_max) const {
|
|
TPOINT start_pt(x, min_y);
|
|
TPOINT end_pt(x, max_y);
|
|
int left = MeanPixelsInLineSegment(denorm, -2, start_pt, end_pt);
|
|
int right = MeanPixelsInLineSegment(denorm, 2, start_pt, end_pt);
|
|
int best_gradient = right - left;
|
|
left = MeanPixelsInLineSegment(denorm, -1, start_pt, end_pt);
|
|
right = MeanPixelsInLineSegment(denorm, 3, start_pt, end_pt);
|
|
int gradient = right - left;
|
|
if ((gradient > best_gradient) == best_is_max)
|
|
best_gradient = gradient;
|
|
left = MeanPixelsInLineSegment(denorm, -3, start_pt, end_pt);
|
|
right = MeanPixelsInLineSegment(denorm, 1, start_pt, end_pt);
|
|
gradient = right - left;
|
|
if ((gradient > best_gradient) == best_is_max)
|
|
best_gradient = gradient;
|
|
return best_gradient;
|
|
}
|
|
|
|
// Helper returns the mean pixel value over the line between the start_pt and
|
|
// end_pt (inclusive), but shifted perpendicular to the line in the projection
|
|
// image by offset pixels. For simplicity, it is assumed that the vector is
|
|
// either nearly horizontal or nearly vertical. It works on skewed textlines!
|
|
// The end points are in external coordinates, and will be denormalized with
|
|
// the denorm if not NULL before further conversion to pix coordinates.
|
|
// After all the conversions, the offset is added to the direction
|
|
// perpendicular to the line direction. The offset is thus in projection image
|
|
// coordinates, which allows the caller to get a guaranteed displacement
|
|
// between pixels used to calculate gradients.
|
|
int TextlineProjection::MeanPixelsInLineSegment(const DENORM* denorm,
|
|
int offset,
|
|
TPOINT start_pt,
|
|
TPOINT end_pt) const {
|
|
TransformToPixCoords(denorm, &start_pt);
|
|
TransformToPixCoords(denorm, &end_pt);
|
|
TruncateToImageBounds(&start_pt);
|
|
TruncateToImageBounds(&end_pt);
|
|
int wpl = pixGetWpl(pix_);
|
|
uinT32* data = pixGetData(pix_);
|
|
int total = 0;
|
|
int count = 0;
|
|
int x_delta = end_pt.x - start_pt.x;
|
|
int y_delta = end_pt.y - start_pt.y;
|
|
if (abs(x_delta) >= abs(y_delta)) {
|
|
if (x_delta == 0)
|
|
return 0;
|
|
// Horizontal line. Add the offset vertically.
|
|
int x_step = x_delta > 0 ? 1 : -1;
|
|
// Correct offset for rotation, keeping it anti-clockwise of the delta.
|
|
offset *= x_step;
|
|
start_pt.y += offset;
|
|
end_pt.y += offset;
|
|
TruncateToImageBounds(&start_pt);
|
|
TruncateToImageBounds(&end_pt);
|
|
x_delta = end_pt.x - start_pt.x;
|
|
y_delta = end_pt.y - start_pt.y;
|
|
count = x_delta * x_step + 1;
|
|
for (int x = start_pt.x; x != end_pt.x; x += x_step) {
|
|
int y = start_pt.y + DivRounded(y_delta * (x - start_pt.x), x_delta);
|
|
total += GET_DATA_BYTE(data + wpl * y, x);
|
|
}
|
|
} else {
|
|
// Vertical line. Add the offset horizontally.
|
|
int y_step = y_delta > 0 ? 1 : -1;
|
|
// Correct offset for rotation, keeping it anti-clockwise of the delta.
|
|
// Pix holds the image with y=0 at the top, so the offset is negated.
|
|
offset *= -y_step;
|
|
start_pt.x += offset;
|
|
end_pt.x += offset;
|
|
TruncateToImageBounds(&start_pt);
|
|
TruncateToImageBounds(&end_pt);
|
|
x_delta = end_pt.x - start_pt.x;
|
|
y_delta = end_pt.y - start_pt.y;
|
|
count = y_delta * y_step + 1;
|
|
for (int y = start_pt.y; y != end_pt.y; y += y_step) {
|
|
int x = start_pt.x + DivRounded(x_delta * (y - start_pt.y), y_delta);
|
|
total += GET_DATA_BYTE(data + wpl * y, x);
|
|
}
|
|
}
|
|
return DivRounded(total, count);
|
|
}
|
|
|
|
// Given an input pix, and a box, the sides of the box are shrunk inwards until
|
|
// they bound any black pixels found within the original box.
|
|
// The function converts between tesseract coords and the pix coords assuming
|
|
// that this pix is full resolution equal in size to the original image.
|
|
// Returns an empty box if there are no black pixels in the source box.
|
|
static TBOX BoundsWithinBox(Pix* pix, const TBOX& box) {
|
|
int im_height = pixGetHeight(pix);
|
|
Box* input_box = boxCreate(box.left(), im_height - box.top(),
|
|
box.width(), box.height());
|
|
Box* output_box = NULL;
|
|
pixClipBoxToForeground(pix, input_box, NULL, &output_box);
|
|
TBOX result_box;
|
|
if (output_box != NULL) {
|
|
l_int32 x, y, width, height;
|
|
boxGetGeometry(output_box, &x, &y, &width, &height);
|
|
result_box.set_left(x);
|
|
result_box.set_right(x + width);
|
|
result_box.set_top(im_height - y);
|
|
result_box.set_bottom(result_box.top() - height);
|
|
boxDestroy(&output_box);
|
|
}
|
|
boxDestroy(&input_box);
|
|
return result_box;
|
|
}
|
|
|
|
// Splits the given box in half at x_middle or y_middle according to split_on_x
|
|
// and checks for nontext_map pixels in each half. Reduces the bbox so that it
|
|
// still includes the middle point, but does not touch any fg pixels in
|
|
// nontext_map. An empty box may be returned if there is no such box.
|
|
static void TruncateBoxToMissNonText(int x_middle, int y_middle,
|
|
bool split_on_x, Pix* nontext_map,
|
|
TBOX* bbox) {
|
|
TBOX box1(*bbox);
|
|
TBOX box2(*bbox);
|
|
TBOX im_box;
|
|
if (split_on_x) {
|
|
box1.set_right(x_middle);
|
|
im_box = BoundsWithinBox(nontext_map, box1);
|
|
if (!im_box.null_box()) box1.set_left(im_box.right());
|
|
box2.set_left(x_middle);
|
|
im_box = BoundsWithinBox(nontext_map, box2);
|
|
if (!im_box.null_box()) box2.set_right(im_box.left());
|
|
} else {
|
|
box1.set_bottom(y_middle);
|
|
im_box = BoundsWithinBox(nontext_map, box1);
|
|
if (!im_box.null_box()) box1.set_top(im_box.bottom());
|
|
box2.set_top(y_middle);
|
|
im_box = BoundsWithinBox(nontext_map, box2);
|
|
if (!im_box.null_box()) box2.set_bottom(im_box.top());
|
|
}
|
|
box1 += box2;
|
|
*bbox = box1;
|
|
}
|
|
|
|
|
|
// Helper function to add 1 to a rectangle in source image coords to the
|
|
// internal projection pix_.
|
|
void TextlineProjection::IncrementRectangle8Bit(const TBOX& box) {
|
|
int scaled_left = ImageXToProjectionX(box.left());
|
|
int scaled_top = ImageYToProjectionY(box.top());
|
|
int scaled_right = ImageXToProjectionX(box.right());
|
|
int scaled_bottom = ImageYToProjectionY(box.bottom());
|
|
int wpl = pixGetWpl(pix_);
|
|
uinT32* data = pixGetData(pix_) + scaled_top * wpl;
|
|
for (int y = scaled_top; y <= scaled_bottom; ++y) {
|
|
for (int x = scaled_left; x <= scaled_right; ++x) {
|
|
int pixel = GET_DATA_BYTE(data, x);
|
|
if (pixel < 255)
|
|
SET_DATA_BYTE(data, x, pixel + 1);
|
|
}
|
|
data += wpl;
|
|
}
|
|
}
|
|
|
|
// Inserts a list of blobs into the projection.
|
|
// Rotation is a multiple of 90 degrees to get from blob coords to
|
|
// nontext_map coords, nontext_map_box is the bounds of the nontext_map.
|
|
// Blobs are spread horizontally or vertically according to their internal
|
|
// flags, but the spreading is truncated by set pixels in the nontext_map
|
|
// and also by the horizontal rule line limits on the blobs.
|
|
void TextlineProjection::ProjectBlobs(BLOBNBOX_LIST* blobs,
|
|
const FCOORD& rotation,
|
|
const TBOX& nontext_map_box,
|
|
Pix* nontext_map) {
|
|
BLOBNBOX_IT blob_it(blobs);
|
|
for (blob_it.mark_cycle_pt(); !blob_it.cycled_list(); blob_it.forward()) {
|
|
BLOBNBOX* blob = blob_it.data();
|
|
TBOX bbox = blob->bounding_box();
|
|
ICOORD middle((bbox.left() + bbox.right()) / 2,
|
|
(bbox.bottom() + bbox.top()) / 2);
|
|
bool spreading_horizontally = PadBlobBox(blob, &bbox);
|
|
// Rotate to match the nontext_map.
|
|
bbox.rotate(rotation);
|
|
middle.rotate(rotation);
|
|
if (rotation.x() == 0.0f)
|
|
spreading_horizontally = !spreading_horizontally;
|
|
// Clip to the image before applying the increments.
|
|
bbox &= nontext_map_box; // This is in-place box intersection.
|
|
// Check for image pixels before spreading.
|
|
TruncateBoxToMissNonText(middle.x(), middle.y(), spreading_horizontally,
|
|
nontext_map, &bbox);
|
|
if (bbox.area() > 0) {
|
|
IncrementRectangle8Bit(bbox);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Pads the bounding box of the given blob according to whether it is on
|
|
// a horizontal or vertical text line, taking into account tab-stops near
|
|
// the blob. Returns true if padding was in the horizontal direction.
|
|
bool TextlineProjection::PadBlobBox(BLOBNBOX* blob, TBOX* bbox) {
|
|
// Determine which direction to spread.
|
|
// If text is well spaced out, it can be useful to pad perpendicular to
|
|
// the textline direction, so as to ensure diacritics get absorbed
|
|
// correctly, but if the text is tightly spaced, this will destroy the
|
|
// blank space between textlines in the projection map, and that would
|
|
// be very bad.
|
|
int pad_limit = scale_factor_ * kMinLineSpacingFactor;
|
|
int xpad = 0;
|
|
int ypad = 0;
|
|
bool padding_horizontally = false;
|
|
if (blob->UniquelyHorizontal()) {
|
|
xpad = bbox->height() * kOrientedPadFactor;
|
|
padding_horizontally = true;
|
|
// If the text appears to be very well spaced, pad the other direction by a
|
|
// single pixel in the projection profile space to help join diacritics to
|
|
// the textline.
|
|
if ((blob->neighbour(BND_ABOVE) == NULL ||
|
|
bbox->y_gap(blob->neighbour(BND_ABOVE)->bounding_box()) > pad_limit) &&
|
|
(blob->neighbour(BND_BELOW) == NULL ||
|
|
bbox->y_gap(blob->neighbour(BND_BELOW)->bounding_box()) > pad_limit)) {
|
|
ypad = scale_factor_;
|
|
}
|
|
} else if (blob->UniquelyVertical()) {
|
|
ypad = bbox->width() * kOrientedPadFactor;
|
|
if ((blob->neighbour(BND_LEFT) == NULL ||
|
|
bbox->x_gap(blob->neighbour(BND_LEFT)->bounding_box()) > pad_limit) &&
|
|
(blob->neighbour(BND_RIGHT) == NULL ||
|
|
bbox->x_gap(blob->neighbour(BND_RIGHT)->bounding_box()) > pad_limit)) {
|
|
xpad = scale_factor_;
|
|
}
|
|
} else {
|
|
if ((blob->neighbour(BND_ABOVE) != NULL &&
|
|
blob->neighbour(BND_ABOVE)->neighbour(BND_BELOW) == blob) ||
|
|
(blob->neighbour(BND_BELOW) != NULL &&
|
|
blob->neighbour(BND_BELOW)->neighbour(BND_ABOVE) == blob)) {
|
|
ypad = bbox->width() * kDefaultPadFactor;
|
|
}
|
|
if ((blob->neighbour(BND_RIGHT) != NULL &&
|
|
blob->neighbour(BND_RIGHT)->neighbour(BND_LEFT) == blob) ||
|
|
(blob->neighbour(BND_LEFT) != NULL &&
|
|
blob->neighbour(BND_LEFT)->neighbour(BND_RIGHT) == blob)) {
|
|
xpad = bbox->height() * kDefaultPadFactor;
|
|
padding_horizontally = true;
|
|
}
|
|
}
|
|
bbox->pad(xpad, ypad);
|
|
pad_limit = scale_factor_ * kMaxTabStopOverrun;
|
|
// Now shrink horizontally to avoid stepping more than pad_limit over a
|
|
// tab-stop.
|
|
if (bbox->left() < blob->left_rule() - pad_limit) {
|
|
bbox->set_left(blob->left_rule() - pad_limit);
|
|
}
|
|
if (bbox->right() > blob->right_rule() + pad_limit) {
|
|
bbox->set_right(blob->right_rule() + pad_limit);
|
|
}
|
|
return padding_horizontally;
|
|
}
|
|
|
|
// Helper denormalizes the TPOINT with the denorm if not NULL, then
|
|
// converts to pix_ coordinates.
|
|
void TextlineProjection::TransformToPixCoords(const DENORM* denorm,
|
|
TPOINT* pt) const {
|
|
if (denorm != NULL) {
|
|
// Denormalize the point.
|
|
denorm->DenormTransform(NULL, *pt, pt);
|
|
}
|
|
pt->x = ImageXToProjectionX(pt->x);
|
|
pt->y = ImageYToProjectionY(pt->y);
|
|
}
|
|
|
|
// Helper truncates the TPOINT to be within the pix_.
|
|
void TextlineProjection::TruncateToImageBounds(TPOINT* pt) const {
|
|
pt->x = ClipToRange<int>(pt->x, 0, pixGetWidth(pix_) - 1);
|
|
pt->y = ClipToRange<int>(pt->y, 0, pixGetHeight(pix_) - 1);
|
|
}
|
|
|
|
// Transform tesseract image coordinates to coordinates used in the projection.
|
|
int TextlineProjection::ImageXToProjectionX(int x) const {
|
|
x = ClipToRange((x - x_origin_) / scale_factor_, 0, pixGetWidth(pix_) - 1);
|
|
return x;
|
|
}
|
|
int TextlineProjection::ImageYToProjectionY(int y) const {
|
|
y = ClipToRange((y_origin_ - y) / scale_factor_, 0, pixGetHeight(pix_) - 1);
|
|
return y;
|
|
}
|
|
|
|
} // namespace tesseract.
|