tesseract/dict/stopper.cpp
Jim O'Regan 524a61452d Doxygen
Squashed commit from https://github.com/tesseract-ocr/tesseract/tree/more-doxygen
closes #14

Commits:
6317305  doxygen
9f42f69  doxygen
0fc4d52  doxygen
37b4b55  fix typo
bded8f1  some more doxy
020eb00  slight tweak
524666d  doxygenify
2a36a3e  doxygenify
229d218  doxygenify
7fd28ae  doxygenify
a8c64bc  doxygenify
f5d21b6  fix
5d8ede8  doxygenify
a58a4e0  language_model.cpp
fa85709  lm_pain_points.cpp lm_state.cpp
6418da3  merge
06190ba  Merge branch 'old_doxygen_merge' into more-doxygen
84acf08  Merge branch 'master' into more-doxygen
50fe1ff  pagewalk.cpp cube_reco_context.cpp
2982583  change to relative
192a24a  applybox.cpp, take one
8eeb053  delete docs for obsolete params
52e4c77  modernise classify/ocrfeatures.cpp
2a1cba6  modernise cutil/emalloc.cpp
773e006  silence doxygen warning
aeb1731  silence doxygen warning
f18387f  silence doxygen; new params are unused?
15ad6bd  doxygenify cutil/efio.cpp
c8b5dad  doxygenify cutil/danerror.cpp
784450f  the globals and exceptions parts are obsolete; remove
8bca324  doxygen classify/normfeat.cpp
9bcbe16  doxygen classify/normmatch.cpp
aa9a971  doxygen ccmain/cube_control.cpp
c083ff2  doxygen ccmain/cube_reco_context.cpp
f842850  params changed
5c94f12  doxygen ccmain/cubeclassifier.cpp
15ba750  case sensitive
f5c71d4  case sensitive
f85655b  doxygen classify/intproto.cpp
4bbc7aa  partial doxygen classify/mfx.cpp
dbb6041  partial doxygen classify/intproto.cpp
2aa72db  finish doxygen classify/intproto.cpp
0b8de99  doxygen training/mftraining.cpp
0b5b35c  partial doxygen ccstruct/coutln.cpp
b81c766  partial doxygen ccstruct/coutln.cpp
40fc415  finished? doxygen ccstruct/coutln.cpp
6e4165c  doxygen classify/clusttool.cpp
0267dec  doxygen classify/cutoffs.cpp
7f0c70c  doxygen classify/fpoint.cpp
512f3bd  ignore ~ files
5668a52  doxygen classify/intmatcher.cpp
84788d4  doxygen classify/kdtree.cpp
29f36ca  doxygen classify/mfoutline.cpp
40b94b1  silence doxygen warnings
6c511b9  doxygen classify/mfx.cpp
f9b4080  doxygen classify/outfeat.cpp
aa1df05  doxygen classify/picofeat.cpp
cc5f466  doxygen training/cntraining.cpp
cce044f  doxygen training/commontraining.cpp
167e216  missing param
9498383  renamed params
37eeac2  renamed param
d87b5dd  case
c8ee174  renamed params
b858db8  typo
4c2a838  h2 context?
81a2c0c  fix some param names; add some missing params, no docs
bcf8a4c  add some missing params, no docs
af77f86  add some missing params, no docs; fix some param names
01df24e  fix some params
6161056  fix some params
68508b6  fix some params
285aeb6  doxygen complains here no matter what
529bcfa  rm some missing params, typos
cd21226  rm some missing params, add some new ones
48a4bc2  fix params
c844628  missing param
312ce37  missing param; rename one
ec2fdec  missing param
05e15e0  missing params
d515858  change "<" to &lt; to make doxygen happy
b476a28  wrong place
2015-07-20 18:48:00 +01:00

522 lines
20 KiB
C++

/******************************************************************************
** Filename: stopper.c
** Purpose: Stopping criteria for word classifier.
** Author: Dan Johnson
** History: Mon Apr 29 14:56:49 1991, DSJ, Created.
**
** (c) Copyright Hewlett-Packard Company, 1988.
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
** http://www.apache.org/licenses/LICENSE-2.0
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
******************************************************************************/
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <math.h>
#include "stopper.h"
#include "ambigs.h"
#include "ccutil.h"
#include "const.h"
#include "danerror.h"
#include "dict.h"
#include "efio.h"
#include "helpers.h"
#include "matchdefs.h"
#include "pageres.h"
#include "params.h"
#include "ratngs.h"
#include "scanutils.h"
#include "unichar.h"
#ifdef _MSC_VER
#pragma warning(disable:4244) // Conversion warnings
#pragma warning(disable:4800) // int/bool warnings
#endif
using tesseract::ScriptPos;
/*----------------------------------------------------------------------------
Private Code
----------------------------------------------------------------------------*/
namespace tesseract {
bool Dict::AcceptableChoice(const WERD_CHOICE& best_choice,
XHeightConsistencyEnum xheight_consistency) {
float CertaintyThreshold = stopper_nondict_certainty_base;
int WordSize;
if (stopper_no_acceptable_choices) return false;
if (best_choice.length() == 0) return false;
bool no_dang_ambigs = !best_choice.dangerous_ambig_found();
bool is_valid_word = valid_word_permuter(best_choice.permuter(), false);
bool is_case_ok = case_ok(best_choice, getUnicharset());
if (stopper_debug_level >= 1) {
const char *xht = "UNKNOWN";
switch (xheight_consistency) {
case XH_GOOD: xht = "NORMAL"; break;
case XH_SUBNORMAL: xht = "SUBNORMAL"; break;
case XH_INCONSISTENT: xht = "INCONSISTENT"; break;
default: xht = "UNKNOWN";
}
tprintf("\nStopper: %s (word=%c, case=%c, xht_ok=%s=[%g,%g])\n",
best_choice.unichar_string().string(),
(is_valid_word ? 'y' : 'n'),
(is_case_ok ? 'y' : 'n'),
xht,
best_choice.min_x_height(),
best_choice.max_x_height());
}
// Do not accept invalid words in PASS1.
if (reject_offset_ <= 0.0f && !is_valid_word) return false;
if (is_valid_word && is_case_ok) {
WordSize = LengthOfShortestAlphaRun(best_choice);
WordSize -= stopper_smallword_size;
if (WordSize < 0)
WordSize = 0;
CertaintyThreshold += WordSize * stopper_certainty_per_char;
}
if (stopper_debug_level >= 1)
tprintf("Stopper: Rating = %4.1f, Certainty = %4.1f, Threshold = %4.1f\n",
best_choice.rating(), best_choice.certainty(), CertaintyThreshold);
if (no_dang_ambigs &&
best_choice.certainty() > CertaintyThreshold &&
xheight_consistency < XH_INCONSISTENT &&
UniformCertainties(best_choice)) {
return true;
} else {
if (stopper_debug_level >= 1) {
tprintf("AcceptableChoice() returned false"
" (no_dang_ambig:%d cert:%.4g thresh:%g uniform:%d)\n",
no_dang_ambigs, best_choice.certainty(),
CertaintyThreshold,
UniformCertainties(best_choice));
}
return false;
}
}
bool Dict::AcceptableResult(WERD_RES* word) {
if (word->best_choice == NULL) return false;
float CertaintyThreshold = stopper_nondict_certainty_base - reject_offset_;
int WordSize;
if (stopper_debug_level >= 1) {
tprintf("\nRejecter: %s (word=%c, case=%c, unambig=%c, multiple=%c)\n",
word->best_choice->debug_string().string(),
(valid_word(*word->best_choice) ? 'y' : 'n'),
(case_ok(*word->best_choice, getUnicharset()) ? 'y' : 'n'),
word->best_choice->dangerous_ambig_found() ? 'n' : 'y',
word->best_choices.singleton() ? 'n' : 'y');
}
if (word->best_choice->length() == 0 || !word->best_choices.singleton())
return false;
if (valid_word(*word->best_choice) &&
case_ok(*word->best_choice, getUnicharset())) {
WordSize = LengthOfShortestAlphaRun(*word->best_choice);
WordSize -= stopper_smallword_size;
if (WordSize < 0)
WordSize = 0;
CertaintyThreshold += WordSize * stopper_certainty_per_char;
}
if (stopper_debug_level >= 1)
tprintf("Rejecter: Certainty = %4.1f, Threshold = %4.1f ",
word->best_choice->certainty(), CertaintyThreshold);
if (word->best_choice->certainty() > CertaintyThreshold &&
!stopper_no_acceptable_choices) {
if (stopper_debug_level >= 1)
tprintf("ACCEPTED\n");
return true;
} else {
if (stopper_debug_level >= 1)
tprintf("REJECTED\n");
return false;
}
}
bool Dict::NoDangerousAmbig(WERD_CHOICE *best_choice,
DANGERR *fixpt,
bool fix_replaceable,
MATRIX *ratings) {
if (stopper_debug_level > 2) {
tprintf("\nRunning NoDangerousAmbig() for %s\n",
best_choice->debug_string().string());
}
// Construct BLOB_CHOICE_LIST_VECTOR with ambiguities
// for each unichar id in BestChoice.
BLOB_CHOICE_LIST_VECTOR ambig_blob_choices;
int i;
bool ambigs_found = false;
// For each position in best_choice:
// -- choose AMBIG_SPEC_LIST that corresponds to unichar_id at best_choice[i]
// -- initialize wrong_ngram with a single unichar_id at best_choice[i]
// -- look for ambiguities corresponding to wrong_ngram in the list while
// adding the following unichar_ids from best_choice to wrong_ngram
//
// Repeat the above procedure twice: first time look through
// ambigs to be replaced and replace all the ambiguities found;
// second time look through dangerous ambiguities and construct
// ambig_blob_choices with fake a blob choice for each ambiguity
// and pass them to dawg_permute_and_select() to search for
// ambiguous words in the dictionaries.
//
// Note that during the execution of the for loop (on the first pass)
// if replacements are made the length of best_choice might change.
for (int pass = 0; pass < (fix_replaceable ? 2 : 1); ++pass) {
bool replace = (fix_replaceable && pass == 0);
const UnicharAmbigsVector &table = replace ?
getUnicharAmbigs().replace_ambigs() : getUnicharAmbigs().dang_ambigs();
if (!replace) {
// Initialize ambig_blob_choices with lists containing a single
// unichar id for the correspoding position in best_choice.
// best_choice consisting from only the original letters will
// have a rating of 0.0.
for (i = 0; i < best_choice->length(); ++i) {
BLOB_CHOICE_LIST *lst = new BLOB_CHOICE_LIST();
BLOB_CHOICE_IT lst_it(lst);
// TODO(rays/antonova) Put real xheights and y shifts here.
lst_it.add_to_end(new BLOB_CHOICE(best_choice->unichar_id(i),
0.0, 0.0, -1, 0, 1, 0, BCC_AMBIG));
ambig_blob_choices.push_back(lst);
}
}
UNICHAR_ID wrong_ngram[MAX_AMBIG_SIZE + 1];
int wrong_ngram_index;
int next_index;
int blob_index = 0;
for (i = 0; i < best_choice->length(); blob_index += best_choice->state(i),
++i) {
UNICHAR_ID curr_unichar_id = best_choice->unichar_id(i);
if (stopper_debug_level > 2) {
tprintf("Looking for %s ngrams starting with %s:\n",
replace ? "replaceable" : "ambiguous",
getUnicharset().debug_str(curr_unichar_id).string());
}
int num_wrong_blobs = best_choice->state(i);
wrong_ngram_index = 0;
wrong_ngram[wrong_ngram_index] = curr_unichar_id;
if (curr_unichar_id == INVALID_UNICHAR_ID ||
curr_unichar_id >= table.size() ||
table[curr_unichar_id] == NULL) {
continue; // there is no ambig spec for this unichar id
}
AmbigSpec_IT spec_it(table[curr_unichar_id]);
for (spec_it.mark_cycle_pt(); !spec_it.cycled_list();) {
const AmbigSpec *ambig_spec = spec_it.data();
wrong_ngram[wrong_ngram_index+1] = INVALID_UNICHAR_ID;
int compare = UnicharIdArrayUtils::compare(wrong_ngram,
ambig_spec->wrong_ngram);
if (stopper_debug_level > 2) {
tprintf("candidate ngram: ");
UnicharIdArrayUtils::print(wrong_ngram, getUnicharset());
tprintf("current ngram from spec: ");
UnicharIdArrayUtils::print(ambig_spec->wrong_ngram, getUnicharset());
tprintf("comparison result: %d\n", compare);
}
if (compare == 0) {
// Record the place where we found an ambiguity.
if (fixpt != NULL) {
UNICHAR_ID leftmost_id = ambig_spec->correct_fragments[0];
fixpt->push_back(DANGERR_INFO(
blob_index, blob_index + num_wrong_blobs, replace,
getUnicharset().get_isngram(ambig_spec->correct_ngram_id),
leftmost_id));
if (stopper_debug_level > 1) {
tprintf("fixpt+=(%d %d %d %d %s)\n", blob_index,
blob_index + num_wrong_blobs, false,
getUnicharset().get_isngram(
ambig_spec->correct_ngram_id),
getUnicharset().id_to_unichar(leftmost_id));
}
}
if (replace) {
if (stopper_debug_level > 2) {
tprintf("replace ambiguity with %s : ",
getUnicharset().id_to_unichar(
ambig_spec->correct_ngram_id));
UnicharIdArrayUtils::print(
ambig_spec->correct_fragments, getUnicharset());
}
ReplaceAmbig(i, ambig_spec->wrong_ngram_size,
ambig_spec->correct_ngram_id,
best_choice, ratings);
} else if (i > 0 || ambig_spec->type != CASE_AMBIG) {
// We found dang ambig - update ambig_blob_choices.
if (stopper_debug_level > 2) {
tprintf("found ambiguity: ");
UnicharIdArrayUtils::print(
ambig_spec->correct_fragments, getUnicharset());
}
ambigs_found = true;
for (int tmp_index = 0; tmp_index <= wrong_ngram_index;
++tmp_index) {
// Add a blob choice for the corresponding fragment of the
// ambiguity. These fake blob choices are initialized with
// negative ratings (which are not possible for real blob
// choices), so that dawg_permute_and_select() considers any
// word not consisting of only the original letters a better
// choice and stops searching for alternatives once such a
// choice is found.
BLOB_CHOICE_IT bc_it(ambig_blob_choices[i+tmp_index]);
bc_it.add_to_end(new BLOB_CHOICE(
ambig_spec->correct_fragments[tmp_index], -1.0, 0.0,
-1, 0, 1, 0, BCC_AMBIG));
}
}
spec_it.forward();
} else if (compare == -1) {
if (wrong_ngram_index+1 < ambig_spec->wrong_ngram_size &&
((next_index = wrong_ngram_index+1+i) < best_choice->length())) {
// Add the next unichar id to wrong_ngram and keep looking for
// more ambigs starting with curr_unichar_id in AMBIG_SPEC_LIST.
wrong_ngram[++wrong_ngram_index] =
best_choice->unichar_id(next_index);
num_wrong_blobs += best_choice->state(next_index);
} else {
break; // no more matching ambigs in this AMBIG_SPEC_LIST
}
} else {
spec_it.forward();
}
} // end searching AmbigSpec_LIST
} // end searching best_choice
} // end searching replace and dangerous ambigs
// If any ambiguities were found permute the constructed ambig_blob_choices
// to see if an alternative dictionary word can be found.
if (ambigs_found) {
if (stopper_debug_level > 2) {
tprintf("\nResulting ambig_blob_choices:\n");
for (i = 0; i < ambig_blob_choices.length(); ++i) {
print_ratings_list("", ambig_blob_choices.get(i), getUnicharset());
tprintf("\n");
}
}
WERD_CHOICE *alt_word = dawg_permute_and_select(ambig_blob_choices, 0.0);
ambigs_found = (alt_word->rating() < 0.0);
if (ambigs_found) {
if (stopper_debug_level >= 1) {
tprintf ("Stopper: Possible ambiguous word = %s\n",
alt_word->debug_string().string());
}
if (fixpt != NULL) {
// Note: Currently character choices combined from fragments can only
// be generated by NoDangrousAmbigs(). This code should be updated if
// the capability to produce classifications combined from character
// fragments is added to other functions.
int orig_i = 0;
for (i = 0; i < alt_word->length(); ++i) {
const UNICHARSET &uchset = getUnicharset();
bool replacement_is_ngram =
uchset.get_isngram(alt_word->unichar_id(i));
UNICHAR_ID leftmost_id = alt_word->unichar_id(i);
if (replacement_is_ngram) {
// we have to extract the leftmost unichar from the ngram.
const char *str = uchset.id_to_unichar(leftmost_id);
int step = uchset.step(str);
if (step) leftmost_id = uchset.unichar_to_id(str, step);
}
int end_i = orig_i + alt_word->state(i);
if (alt_word->state(i) > 1 ||
(orig_i + 1 == end_i && replacement_is_ngram)) {
// Compute proper blob indices.
int blob_start = 0;
for (int j = 0; j < orig_i; ++j)
blob_start += best_choice->state(j);
int blob_end = blob_start;
for (int j = orig_i; j < end_i; ++j)
blob_end += best_choice->state(j);
fixpt->push_back(DANGERR_INFO(blob_start, blob_end, true,
replacement_is_ngram, leftmost_id));
if (stopper_debug_level > 1) {
tprintf("fixpt->dangerous+=(%d %d %d %d %s)\n", orig_i, end_i,
true, replacement_is_ngram,
uchset.id_to_unichar(leftmost_id));
}
}
orig_i += alt_word->state(i);
}
}
}
delete alt_word;
}
if (output_ambig_words_file_ != NULL) {
fprintf(output_ambig_words_file_, "\n");
}
ambig_blob_choices.delete_data_pointers();
return !ambigs_found;
}
void Dict::EndDangerousAmbigs() {}
void Dict::SettupStopperPass1() {
reject_offset_ = 0.0;
}
void Dict::SettupStopperPass2() {
reject_offset_ = stopper_phase2_certainty_rejection_offset;
}
void Dict::ReplaceAmbig(int wrong_ngram_begin_index, int wrong_ngram_size,
UNICHAR_ID correct_ngram_id, WERD_CHOICE *werd_choice,
MATRIX *ratings) {
int num_blobs_to_replace = 0;
int begin_blob_index = 0;
int i;
// Rating and certainty for the new BLOB_CHOICE are derived from the
// replaced choices.
float new_rating = 0.0f;
float new_certainty = 0.0f;
BLOB_CHOICE* old_choice = NULL;
for (i = 0; i < wrong_ngram_begin_index + wrong_ngram_size; ++i) {
if (i >= wrong_ngram_begin_index) {
int num_blobs = werd_choice->state(i);
int col = begin_blob_index + num_blobs_to_replace;
int row = col + num_blobs - 1;
BLOB_CHOICE_LIST* choices = ratings->get(col, row);
ASSERT_HOST(choices != NULL);
old_choice = FindMatchingChoice(werd_choice->unichar_id(i), choices);
ASSERT_HOST(old_choice != NULL);
new_rating += old_choice->rating();
new_certainty += old_choice->certainty();
num_blobs_to_replace += num_blobs;
} else {
begin_blob_index += werd_choice->state(i);
}
}
new_certainty /= wrong_ngram_size;
// If there is no entry in the ratings matrix, add it.
MATRIX_COORD coord(begin_blob_index,
begin_blob_index + num_blobs_to_replace - 1);
if (!coord.Valid(*ratings)) {
ratings->IncreaseBandSize(coord.row - coord.col + 1);
}
if (ratings->get(coord.col, coord.row) == NULL)
ratings->put(coord.col, coord.row, new BLOB_CHOICE_LIST);
BLOB_CHOICE_LIST* new_choices = ratings->get(coord.col, coord.row);
BLOB_CHOICE* choice = FindMatchingChoice(correct_ngram_id, new_choices);
if (choice != NULL) {
// Already there. Upgrade if new rating better.
if (new_rating < choice->rating())
choice->set_rating(new_rating);
if (new_certainty < choice->certainty())
choice->set_certainty(new_certainty);
// DO NOT SORT!! It will mess up the iterator in LanguageModel::UpdateState.
} else {
// Need a new choice with the correct_ngram_id.
choice = new BLOB_CHOICE(*old_choice);
choice->set_unichar_id(correct_ngram_id);
choice->set_rating(new_rating);
choice->set_certainty(new_certainty);
choice->set_classifier(BCC_AMBIG);
choice->set_matrix_cell(coord.col, coord.row);
BLOB_CHOICE_IT it (new_choices);
it.add_to_end(choice);
}
// Remove current unichar from werd_choice. On the last iteration
// set the correct replacement unichar instead of removing a unichar.
for (int replaced_count = 0; replaced_count < wrong_ngram_size;
++replaced_count) {
if (replaced_count + 1 == wrong_ngram_size) {
werd_choice->set_blob_choice(wrong_ngram_begin_index,
num_blobs_to_replace, choice);
} else {
werd_choice->remove_unichar_id(wrong_ngram_begin_index + 1);
}
}
if (stopper_debug_level >= 1) {
werd_choice->print("ReplaceAmbig() ");
tprintf("Modified blob_choices: ");
print_ratings_list("\n", new_choices, getUnicharset());
}
}
int Dict::LengthOfShortestAlphaRun(const WERD_CHOICE &WordChoice) {
int shortest = MAX_INT32;
int curr_len = 0;
for (int w = 0; w < WordChoice.length(); ++w) {
if (getUnicharset().get_isalpha(WordChoice.unichar_id(w))) {
curr_len++;
} else if (curr_len > 0) {
if (curr_len < shortest) shortest = curr_len;
curr_len = 0;
}
}
if (curr_len > 0 && curr_len < shortest) {
shortest = curr_len;
} else if (shortest == MAX_INT32) {
shortest = 0;
}
return shortest;
}
int Dict::UniformCertainties(const WERD_CHOICE& word) {
float Certainty;
float WorstCertainty = MAX_FLOAT32;
float CertaintyThreshold;
FLOAT64 TotalCertainty;
FLOAT64 TotalCertaintySquared;
FLOAT64 Variance;
FLOAT32 Mean, StdDev;
int word_length = word.length();
if (word_length < 3)
return true;
TotalCertainty = TotalCertaintySquared = 0.0;
for (int i = 0; i < word_length; ++i) {
Certainty = word.certainty(i);
TotalCertainty += Certainty;
TotalCertaintySquared += Certainty * Certainty;
if (Certainty < WorstCertainty)
WorstCertainty = Certainty;
}
// Subtract off worst certainty from statistics.
word_length--;
TotalCertainty -= WorstCertainty;
TotalCertaintySquared -= WorstCertainty * WorstCertainty;
Mean = TotalCertainty / word_length;
Variance = ((word_length * TotalCertaintySquared -
TotalCertainty * TotalCertainty) /
(word_length * (word_length - 1)));
if (Variance < 0.0)
Variance = 0.0;
StdDev = sqrt(Variance);
CertaintyThreshold = Mean - stopper_allowable_character_badness * StdDev;
if (CertaintyThreshold > stopper_nondict_certainty_base)
CertaintyThreshold = stopper_nondict_certainty_base;
if (word.certainty() < CertaintyThreshold) {
if (stopper_debug_level >= 1)
tprintf("Stopper: Non-uniform certainty = %4.1f"
" (m=%4.1f, s=%4.1f, t=%4.1f)\n",
word.certainty(), Mean, StdDev, CertaintyThreshold);
return false;
} else {
return true;
}
}
} // namespace tesseract