tesseract/classify/cluster.cpp
Jim O'Regan 524a61452d Doxygen
Squashed commit from https://github.com/tesseract-ocr/tesseract/tree/more-doxygen
closes #14

Commits:
6317305  doxygen
9f42f69  doxygen
0fc4d52  doxygen
37b4b55  fix typo
bded8f1  some more doxy
020eb00  slight tweak
524666d  doxygenify
2a36a3e  doxygenify
229d218  doxygenify
7fd28ae  doxygenify
a8c64bc  doxygenify
f5d21b6  fix
5d8ede8  doxygenify
a58a4e0  language_model.cpp
fa85709  lm_pain_points.cpp lm_state.cpp
6418da3  merge
06190ba  Merge branch 'old_doxygen_merge' into more-doxygen
84acf08  Merge branch 'master' into more-doxygen
50fe1ff  pagewalk.cpp cube_reco_context.cpp
2982583  change to relative
192a24a  applybox.cpp, take one
8eeb053  delete docs for obsolete params
52e4c77  modernise classify/ocrfeatures.cpp
2a1cba6  modernise cutil/emalloc.cpp
773e006  silence doxygen warning
aeb1731  silence doxygen warning
f18387f  silence doxygen; new params are unused?
15ad6bd  doxygenify cutil/efio.cpp
c8b5dad  doxygenify cutil/danerror.cpp
784450f  the globals and exceptions parts are obsolete; remove
8bca324  doxygen classify/normfeat.cpp
9bcbe16  doxygen classify/normmatch.cpp
aa9a971  doxygen ccmain/cube_control.cpp
c083ff2  doxygen ccmain/cube_reco_context.cpp
f842850  params changed
5c94f12  doxygen ccmain/cubeclassifier.cpp
15ba750  case sensitive
f5c71d4  case sensitive
f85655b  doxygen classify/intproto.cpp
4bbc7aa  partial doxygen classify/mfx.cpp
dbb6041  partial doxygen classify/intproto.cpp
2aa72db  finish doxygen classify/intproto.cpp
0b8de99  doxygen training/mftraining.cpp
0b5b35c  partial doxygen ccstruct/coutln.cpp
b81c766  partial doxygen ccstruct/coutln.cpp
40fc415  finished? doxygen ccstruct/coutln.cpp
6e4165c  doxygen classify/clusttool.cpp
0267dec  doxygen classify/cutoffs.cpp
7f0c70c  doxygen classify/fpoint.cpp
512f3bd  ignore ~ files
5668a52  doxygen classify/intmatcher.cpp
84788d4  doxygen classify/kdtree.cpp
29f36ca  doxygen classify/mfoutline.cpp
40b94b1  silence doxygen warnings
6c511b9  doxygen classify/mfx.cpp
f9b4080  doxygen classify/outfeat.cpp
aa1df05  doxygen classify/picofeat.cpp
cc5f466  doxygen training/cntraining.cpp
cce044f  doxygen training/commontraining.cpp
167e216  missing param
9498383  renamed params
37eeac2  renamed param
d87b5dd  case
c8ee174  renamed params
b858db8  typo
4c2a838  h2 context?
81a2c0c  fix some param names; add some missing params, no docs
bcf8a4c  add some missing params, no docs
af77f86  add some missing params, no docs; fix some param names
01df24e  fix some params
6161056  fix some params
68508b6  fix some params
285aeb6  doxygen complains here no matter what
529bcfa  rm some missing params, typos
cd21226  rm some missing params, add some new ones
48a4bc2  fix params
c844628  missing param
312ce37  missing param; rename one
ec2fdec  missing param
05e15e0  missing params
d515858  change "<" to &lt; to make doxygen happy
b476a28  wrong place
2015-07-20 18:48:00 +01:00

2655 lines
99 KiB
C++

/******************************************************************************
** Filename: cluster.c
** Purpose: Routines for clustering points in N-D space
** Author: Dan Johnson
** History: 5/29/89, DSJ, Created.
**
** (c) Copyright Hewlett-Packard Company, 1988.
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
** http://www.apache.org/licenses/LICENSE-2.0
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
******************************************************************************/
#include "const.h"
#include "cluster.h"
#include "emalloc.h"
#include "genericheap.h"
#include "helpers.h"
#include "kdpair.h"
#include "matrix.h"
#include "tprintf.h"
#include "danerror.h"
#include "freelist.h"
#include <math.h>
#define HOTELLING 1 // If true use Hotelling's test to decide where to split.
#define FTABLE_X 10 // Size of FTable.
#define FTABLE_Y 100 // Size of FTable.
// Table of values approximating the cumulative F-distribution for a confidence of 1%.
const double FTable[FTABLE_Y][FTABLE_X] = {
{4052.19, 4999.52, 5403.34, 5624.62, 5763.65, 5858.97, 5928.33, 5981.10, 6022.50, 6055.85,},
{98.502, 99.000, 99.166, 99.249, 99.300, 99.333, 99.356, 99.374, 99.388, 99.399,},
{34.116, 30.816, 29.457, 28.710, 28.237, 27.911, 27.672, 27.489, 27.345, 27.229,},
{21.198, 18.000, 16.694, 15.977, 15.522, 15.207, 14.976, 14.799, 14.659, 14.546,},
{16.258, 13.274, 12.060, 11.392, 10.967, 10.672, 10.456, 10.289, 10.158, 10.051,},
{13.745, 10.925, 9.780, 9.148, 8.746, 8.466, 8.260, 8.102, 7.976, 7.874,},
{12.246, 9.547, 8.451, 7.847, 7.460, 7.191, 6.993, 6.840, 6.719, 6.620,},
{11.259, 8.649, 7.591, 7.006, 6.632, 6.371, 6.178, 6.029, 5.911, 5.814,},
{10.561, 8.022, 6.992, 6.422, 6.057, 5.802, 5.613, 5.467, 5.351, 5.257,},
{10.044, 7.559, 6.552, 5.994, 5.636, 5.386, 5.200, 5.057, 4.942, 4.849,},
{ 9.646, 7.206, 6.217, 5.668, 5.316, 5.069, 4.886, 4.744, 4.632, 4.539,},
{ 9.330, 6.927, 5.953, 5.412, 5.064, 4.821, 4.640, 4.499, 4.388, 4.296,},
{ 9.074, 6.701, 5.739, 5.205, 4.862, 4.620, 4.441, 4.302, 4.191, 4.100,},
{ 8.862, 6.515, 5.564, 5.035, 4.695, 4.456, 4.278, 4.140, 4.030, 3.939,},
{ 8.683, 6.359, 5.417, 4.893, 4.556, 4.318, 4.142, 4.004, 3.895, 3.805,},
{ 8.531, 6.226, 5.292, 4.773, 4.437, 4.202, 4.026, 3.890, 3.780, 3.691,},
{ 8.400, 6.112, 5.185, 4.669, 4.336, 4.102, 3.927, 3.791, 3.682, 3.593,},
{ 8.285, 6.013, 5.092, 4.579, 4.248, 4.015, 3.841, 3.705, 3.597, 3.508,},
{ 8.185, 5.926, 5.010, 4.500, 4.171, 3.939, 3.765, 3.631, 3.523, 3.434,},
{ 8.096, 5.849, 4.938, 4.431, 4.103, 3.871, 3.699, 3.564, 3.457, 3.368,},
{ 8.017, 5.780, 4.874, 4.369, 4.042, 3.812, 3.640, 3.506, 3.398, 3.310,},
{ 7.945, 5.719, 4.817, 4.313, 3.988, 3.758, 3.587, 3.453, 3.346, 3.258,},
{ 7.881, 5.664, 4.765, 4.264, 3.939, 3.710, 3.539, 3.406, 3.299, 3.211,},
{ 7.823, 5.614, 4.718, 4.218, 3.895, 3.667, 3.496, 3.363, 3.256, 3.168,},
{ 7.770, 5.568, 4.675, 4.177, 3.855, 3.627, 3.457, 3.324, 3.217, 3.129,},
{ 7.721, 5.526, 4.637, 4.140, 3.818, 3.591, 3.421, 3.288, 3.182, 3.094,},
{ 7.677, 5.488, 4.601, 4.106, 3.785, 3.558, 3.388, 3.256, 3.149, 3.062,},
{ 7.636, 5.453, 4.568, 4.074, 3.754, 3.528, 3.358, 3.226, 3.120, 3.032,},
{ 7.598, 5.420, 4.538, 4.045, 3.725, 3.499, 3.330, 3.198, 3.092, 3.005,},
{ 7.562, 5.390, 4.510, 4.018, 3.699, 3.473, 3.305, 3.173, 3.067, 2.979,},
{ 7.530, 5.362, 4.484, 3.993, 3.675, 3.449, 3.281, 3.149, 3.043, 2.955,},
{ 7.499, 5.336, 4.459, 3.969, 3.652, 3.427, 3.258, 3.127, 3.021, 2.934,},
{ 7.471, 5.312, 4.437, 3.948, 3.630, 3.406, 3.238, 3.106, 3.000, 2.913,},
{ 7.444, 5.289, 4.416, 3.927, 3.611, 3.386, 3.218, 3.087, 2.981, 2.894,},
{ 7.419, 5.268, 4.396, 3.908, 3.592, 3.368, 3.200, 3.069, 2.963, 2.876,},
{ 7.396, 5.248, 4.377, 3.890, 3.574, 3.351, 3.183, 3.052, 2.946, 2.859,},
{ 7.373, 5.229, 4.360, 3.873, 3.558, 3.334, 3.167, 3.036, 2.930, 2.843,},
{ 7.353, 5.211, 4.343, 3.858, 3.542, 3.319, 3.152, 3.021, 2.915, 2.828,},
{ 7.333, 5.194, 4.327, 3.843, 3.528, 3.305, 3.137, 3.006, 2.901, 2.814,},
{ 7.314, 5.179, 4.313, 3.828, 3.514, 3.291, 3.124, 2.993, 2.888, 2.801,},
{ 7.296, 5.163, 4.299, 3.815, 3.501, 3.278, 3.111, 2.980, 2.875, 2.788,},
{ 7.280, 5.149, 4.285, 3.802, 3.488, 3.266, 3.099, 2.968, 2.863, 2.776,},
{ 7.264, 5.136, 4.273, 3.790, 3.476, 3.254, 3.087, 2.957, 2.851, 2.764,},
{ 7.248, 5.123, 4.261, 3.778, 3.465, 3.243, 3.076, 2.946, 2.840, 2.754,},
{ 7.234, 5.110, 4.249, 3.767, 3.454, 3.232, 3.066, 2.935, 2.830, 2.743,},
{ 7.220, 5.099, 4.238, 3.757, 3.444, 3.222, 3.056, 2.925, 2.820, 2.733,},
{ 7.207, 5.087, 4.228, 3.747, 3.434, 3.213, 3.046, 2.916, 2.811, 2.724,},
{ 7.194, 5.077, 4.218, 3.737, 3.425, 3.204, 3.037, 2.907, 2.802, 2.715,},
{ 7.182, 5.066, 4.208, 3.728, 3.416, 3.195, 3.028, 2.898, 2.793, 2.706,},
{ 7.171, 5.057, 4.199, 3.720, 3.408, 3.186, 3.020, 2.890, 2.785, 2.698,},
{ 7.159, 5.047, 4.191, 3.711, 3.400, 3.178, 3.012, 2.882, 2.777, 2.690,},
{ 7.149, 5.038, 4.182, 3.703, 3.392, 3.171, 3.005, 2.874, 2.769, 2.683,},
{ 7.139, 5.030, 4.174, 3.695, 3.384, 3.163, 2.997, 2.867, 2.762, 2.675,},
{ 7.129, 5.021, 4.167, 3.688, 3.377, 3.156, 2.990, 2.860, 2.755, 2.668,},
{ 7.119, 5.013, 4.159, 3.681, 3.370, 3.149, 2.983, 2.853, 2.748, 2.662,},
{ 7.110, 5.006, 4.152, 3.674, 3.363, 3.143, 2.977, 2.847, 2.742, 2.655,},
{ 7.102, 4.998, 4.145, 3.667, 3.357, 3.136, 2.971, 2.841, 2.736, 2.649,},
{ 7.093, 4.991, 4.138, 3.661, 3.351, 3.130, 2.965, 2.835, 2.730, 2.643,},
{ 7.085, 4.984, 4.132, 3.655, 3.345, 3.124, 2.959, 2.829, 2.724, 2.637,},
{ 7.077, 4.977, 4.126, 3.649, 3.339, 3.119, 2.953, 2.823, 2.718, 2.632,},
{ 7.070, 4.971, 4.120, 3.643, 3.333, 3.113, 2.948, 2.818, 2.713, 2.626,},
{ 7.062, 4.965, 4.114, 3.638, 3.328, 3.108, 2.942, 2.813, 2.708, 2.621,},
{ 7.055, 4.959, 4.109, 3.632, 3.323, 3.103, 2.937, 2.808, 2.703, 2.616,},
{ 7.048, 4.953, 4.103, 3.627, 3.318, 3.098, 2.932, 2.803, 2.698, 2.611,},
{ 7.042, 4.947, 4.098, 3.622, 3.313, 3.093, 2.928, 2.798, 2.693, 2.607,},
{ 7.035, 4.942, 4.093, 3.618, 3.308, 3.088, 2.923, 2.793, 2.689, 2.602,},
{ 7.029, 4.937, 4.088, 3.613, 3.304, 3.084, 2.919, 2.789, 2.684, 2.598,},
{ 7.023, 4.932, 4.083, 3.608, 3.299, 3.080, 2.914, 2.785, 2.680, 2.593,},
{ 7.017, 4.927, 4.079, 3.604, 3.295, 3.075, 2.910, 2.781, 2.676, 2.589,},
{ 7.011, 4.922, 4.074, 3.600, 3.291, 3.071, 2.906, 2.777, 2.672, 2.585,},
{ 7.006, 4.917, 4.070, 3.596, 3.287, 3.067, 2.902, 2.773, 2.668, 2.581,},
{ 7.001, 4.913, 4.066, 3.591, 3.283, 3.063, 2.898, 2.769, 2.664, 2.578,},
{ 6.995, 4.908, 4.062, 3.588, 3.279, 3.060, 2.895, 2.765, 2.660, 2.574,},
{ 6.990, 4.904, 4.058, 3.584, 3.275, 3.056, 2.891, 2.762, 2.657, 2.570,},
{ 6.985, 4.900, 4.054, 3.580, 3.272, 3.052, 2.887, 2.758, 2.653, 2.567,},
{ 6.981, 4.896, 4.050, 3.577, 3.268, 3.049, 2.884, 2.755, 2.650, 2.563,},
{ 6.976, 4.892, 4.047, 3.573, 3.265, 3.046, 2.881, 2.751, 2.647, 2.560,},
{ 6.971, 4.888, 4.043, 3.570, 3.261, 3.042, 2.877, 2.748, 2.644, 2.557,},
{ 6.967, 4.884, 4.040, 3.566, 3.258, 3.039, 2.874, 2.745, 2.640, 2.554,},
{ 6.963, 4.881, 4.036, 3.563, 3.255, 3.036, 2.871, 2.742, 2.637, 2.551,},
{ 6.958, 4.877, 4.033, 3.560, 3.252, 3.033, 2.868, 2.739, 2.634, 2.548,},
{ 6.954, 4.874, 4.030, 3.557, 3.249, 3.030, 2.865, 2.736, 2.632, 2.545,},
{ 6.950, 4.870, 4.027, 3.554, 3.246, 3.027, 2.863, 2.733, 2.629, 2.542,},
{ 6.947, 4.867, 4.024, 3.551, 3.243, 3.025, 2.860, 2.731, 2.626, 2.539,},
{ 6.943, 4.864, 4.021, 3.548, 3.240, 3.022, 2.857, 2.728, 2.623, 2.537,},
{ 6.939, 4.861, 4.018, 3.545, 3.238, 3.019, 2.854, 2.725, 2.621, 2.534,},
{ 6.935, 4.858, 4.015, 3.543, 3.235, 3.017, 2.852, 2.723, 2.618, 2.532,},
{ 6.932, 4.855, 4.012, 3.540, 3.233, 3.014, 2.849, 2.720, 2.616, 2.529,},
{ 6.928, 4.852, 4.010, 3.538, 3.230, 3.012, 2.847, 2.718, 2.613, 2.527,},
{ 6.925, 4.849, 4.007, 3.535, 3.228, 3.009, 2.845, 2.715, 2.611, 2.524,},
{ 6.922, 4.846, 4.004, 3.533, 3.225, 3.007, 2.842, 2.713, 2.609, 2.522,},
{ 6.919, 4.844, 4.002, 3.530, 3.223, 3.004, 2.840, 2.711, 2.606, 2.520,},
{ 6.915, 4.841, 3.999, 3.528, 3.221, 3.002, 2.838, 2.709, 2.604, 2.518,},
{ 6.912, 4.838, 3.997, 3.525, 3.218, 3.000, 2.835, 2.706, 2.602, 2.515,},
{ 6.909, 4.836, 3.995, 3.523, 3.216, 2.998, 2.833, 2.704, 2.600, 2.513,},
{ 6.906, 4.833, 3.992, 3.521, 3.214, 2.996, 2.831, 2.702, 2.598, 2.511,},
{ 6.904, 4.831, 3.990, 3.519, 3.212, 2.994, 2.829, 2.700, 2.596, 2.509,},
{ 6.901, 4.829, 3.988, 3.517, 3.210, 2.992, 2.827, 2.698, 2.594, 2.507,},
{ 6.898, 4.826, 3.986, 3.515, 3.208, 2.990, 2.825, 2.696, 2.592, 2.505,},
{ 6.895, 4.824, 3.984, 3.513, 3.206, 2.988, 2.823, 2.694, 2.590, 2.503}
};
/** define the variance which will be used as a minimum variance for any
dimension of any feature. Since most features are calculated from numbers
with a precision no better than 1 in 128, the variance should never be
less than the square of this number for parameters whose range is 1. */
#define MINVARIANCE 0.0004
/** define the absolute minimum number of samples which must be present in
order to accurately test hypotheses about underlying probability
distributions. Define separately the minimum samples that are needed
before a statistical analysis is attempted; this number should be
equal to MINSAMPLES but can be set to a lower number for early testing
when very few samples are available. */
#define MINSAMPLESPERBUCKET 5
#define MINSAMPLES (MINBUCKETS * MINSAMPLESPERBUCKET)
#define MINSAMPLESNEEDED 1
/** define the size of the table which maps normalized samples to
histogram buckets. Also define the number of standard deviations
in a normal distribution which are considered to be significant.
The mapping table will be defined in such a way that it covers
the specified number of standard deviations on either side of
the mean. BUCKETTABLESIZE should always be even. */
#define BUCKETTABLESIZE 1024
#define NORMALEXTENT 3.0
struct TEMPCLUSTER {
CLUSTER *Cluster;
CLUSTER *Neighbor;
};
typedef tesseract::KDPairInc<float, TEMPCLUSTER*> ClusterPair;
typedef tesseract::GenericHeap<ClusterPair> ClusterHeap;
struct STATISTICS {
FLOAT32 AvgVariance;
FLOAT32 *CoVariance;
FLOAT32 *Min; // largest negative distance from the mean
FLOAT32 *Max; // largest positive distance from the mean
};
struct BUCKETS {
DISTRIBUTION Distribution; // distribution being tested for
uinT32 SampleCount; // # of samples in histogram
FLOAT64 Confidence; // confidence level of test
FLOAT64 ChiSquared; // test threshold
uinT16 NumberOfBuckets; // number of cells in histogram
uinT16 Bucket[BUCKETTABLESIZE];// mapping to histogram buckets
uinT32 *Count; // frequency of occurence histogram
FLOAT32 *ExpectedCount; // expected histogram
};
struct CHISTRUCT{
uinT16 DegreesOfFreedom;
FLOAT64 Alpha;
FLOAT64 ChiSquared;
};
// For use with KDWalk / MakePotentialClusters
struct ClusteringContext {
ClusterHeap *heap; // heap used to hold temp clusters, "best" on top
TEMPCLUSTER *candidates; // array of potential clusters
KDTREE *tree; // kd-tree to be searched for neighbors
inT32 next; // next candidate to be used
};
typedef FLOAT64 (*DENSITYFUNC) (inT32);
typedef FLOAT64 (*SOLVEFUNC) (CHISTRUCT *, double);
#define Odd(N) ((N)%2)
#define Mirror(N,R) ((R) - (N) - 1)
#define Abs(N) ( ( (N) < 0 ) ? ( -(N) ) : (N) )
//--------------Global Data Definitions and Declarations----------------------
/** the following variables describe a discrete normal distribution
which is used by NormalDensity() and NormalBucket(). The
constant NORMALEXTENT determines how many standard
deviations of the distribution are mapped onto the fixed
discrete range of x. x=0 is mapped to -NORMALEXTENT standard
deviations and x=BUCKETTABLESIZE is mapped to
+NORMALEXTENT standard deviations. */
#define SqrtOf2Pi 2.506628275
static const FLOAT64 kNormalStdDev = BUCKETTABLESIZE / (2.0 * NORMALEXTENT);
static const FLOAT64 kNormalVariance =
(BUCKETTABLESIZE * BUCKETTABLESIZE) / (4.0 * NORMALEXTENT * NORMALEXTENT);
static const FLOAT64 kNormalMagnitude =
(2.0 * NORMALEXTENT) / (SqrtOf2Pi * BUCKETTABLESIZE);
static const FLOAT64 kNormalMean = BUCKETTABLESIZE / 2;
/** define lookup tables used to compute the number of histogram buckets
that should be used for a given number of samples. */
#define LOOKUPTABLESIZE 8
#define MAXDEGREESOFFREEDOM MAXBUCKETS
static const uinT32 kCountTable[LOOKUPTABLESIZE] = {
MINSAMPLES, 200, 400, 600, 800, 1000, 1500, 2000
}; // number of samples
static const uinT16 kBucketsTable[LOOKUPTABLESIZE] = {
MINBUCKETS, 16, 20, 24, 27, 30, 35, MAXBUCKETS
}; // number of buckets
/*-------------------------------------------------------------------------
Private Function Prototypes
--------------------------------------------------------------------------*/
void CreateClusterTree(CLUSTERER *Clusterer);
void MakePotentialClusters(ClusteringContext *context, CLUSTER *Cluster,
inT32 Level);
CLUSTER *FindNearestNeighbor(KDTREE *Tree,
CLUSTER *Cluster,
FLOAT32 *Distance);
CLUSTER *MakeNewCluster(CLUSTERER *Clusterer, TEMPCLUSTER *TempCluster);
inT32 MergeClusters (inT16 N,
register PARAM_DESC ParamDesc[],
register inT32 n1,
register inT32 n2,
register FLOAT32 m[],
register FLOAT32 m1[], register FLOAT32 m2[]);
void ComputePrototypes(CLUSTERER *Clusterer, CLUSTERCONFIG *Config);
PROTOTYPE *MakePrototype(CLUSTERER *Clusterer,
CLUSTERCONFIG *Config,
CLUSTER *Cluster);
PROTOTYPE *MakeDegenerateProto(uinT16 N,
CLUSTER *Cluster,
STATISTICS *Statistics,
PROTOSTYLE Style,
inT32 MinSamples);
PROTOTYPE *TestEllipticalProto(CLUSTERER *Clusterer,
CLUSTERCONFIG *Config,
CLUSTER *Cluster,
STATISTICS *Statistics);
PROTOTYPE *MakeSphericalProto(CLUSTERER *Clusterer,
CLUSTER *Cluster,
STATISTICS *Statistics,
BUCKETS *Buckets);
PROTOTYPE *MakeEllipticalProto(CLUSTERER *Clusterer,
CLUSTER *Cluster,
STATISTICS *Statistics,
BUCKETS *Buckets);
PROTOTYPE *MakeMixedProto(CLUSTERER *Clusterer,
CLUSTER *Cluster,
STATISTICS *Statistics,
BUCKETS *NormalBuckets,
FLOAT64 Confidence);
void MakeDimRandom(uinT16 i, PROTOTYPE *Proto, PARAM_DESC *ParamDesc);
void MakeDimUniform(uinT16 i, PROTOTYPE *Proto, STATISTICS *Statistics);
STATISTICS *ComputeStatistics (inT16 N,
PARAM_DESC ParamDesc[], CLUSTER * Cluster);
PROTOTYPE *NewSphericalProto(uinT16 N,
CLUSTER *Cluster,
STATISTICS *Statistics);
PROTOTYPE *NewEllipticalProto(inT16 N,
CLUSTER *Cluster,
STATISTICS *Statistics);
PROTOTYPE *NewMixedProto(inT16 N, CLUSTER *Cluster, STATISTICS *Statistics);
PROTOTYPE *NewSimpleProto(inT16 N, CLUSTER *Cluster);
BOOL8 Independent (PARAM_DESC ParamDesc[],
inT16 N, FLOAT32 * CoVariance, FLOAT32 Independence);
BUCKETS *GetBuckets(CLUSTERER* clusterer,
DISTRIBUTION Distribution,
uinT32 SampleCount,
FLOAT64 Confidence);
BUCKETS *MakeBuckets(DISTRIBUTION Distribution,
uinT32 SampleCount,
FLOAT64 Confidence);
uinT16 OptimumNumberOfBuckets(uinT32 SampleCount);
FLOAT64 ComputeChiSquared(uinT16 DegreesOfFreedom, FLOAT64 Alpha);
FLOAT64 NormalDensity(inT32 x);
FLOAT64 UniformDensity(inT32 x);
FLOAT64 Integral(FLOAT64 f1, FLOAT64 f2, FLOAT64 Dx);
void FillBuckets(BUCKETS *Buckets,
CLUSTER *Cluster,
uinT16 Dim,
PARAM_DESC *ParamDesc,
FLOAT32 Mean,
FLOAT32 StdDev);
uinT16 NormalBucket(PARAM_DESC *ParamDesc,
FLOAT32 x,
FLOAT32 Mean,
FLOAT32 StdDev);
uinT16 UniformBucket(PARAM_DESC *ParamDesc,
FLOAT32 x,
FLOAT32 Mean,
FLOAT32 StdDev);
BOOL8 DistributionOK(BUCKETS *Buckets);
void FreeStatistics(STATISTICS *Statistics);
void FreeBuckets(BUCKETS *Buckets);
void FreeCluster(CLUSTER *Cluster);
uinT16 DegreesOfFreedom(DISTRIBUTION Distribution, uinT16 HistogramBuckets);
int NumBucketsMatch(void *arg1, // BUCKETS *Histogram,
void *arg2); // uinT16 *DesiredNumberOfBuckets);
int ListEntryMatch(void *arg1, void *arg2);
void AdjustBuckets(BUCKETS *Buckets, uinT32 NewSampleCount);
void InitBuckets(BUCKETS *Buckets);
int AlphaMatch(void *arg1, // CHISTRUCT *ChiStruct,
void *arg2); // CHISTRUCT *SearchKey);
CHISTRUCT *NewChiStruct(uinT16 DegreesOfFreedom, FLOAT64 Alpha);
FLOAT64 Solve(SOLVEFUNC Function,
void *FunctionParams,
FLOAT64 InitialGuess,
FLOAT64 Accuracy);
FLOAT64 ChiArea(CHISTRUCT *ChiParams, FLOAT64 x);
BOOL8 MultipleCharSamples(CLUSTERER *Clusterer,
CLUSTER *Cluster,
FLOAT32 MaxIllegal);
double InvertMatrix(const float* input, int size, float* inv);
//--------------------------Public Code--------------------------------------
/**
* This routine creates a new clusterer data structure,
* initializes it, and returns a pointer to it.
*
* @param SampleSize number of dimensions in feature space
* @param ParamDesc description of each dimension
* @return pointer to the new clusterer data structure
* @note Exceptions: None
* @note History: 5/29/89, DSJ, Created.
*/
CLUSTERER *
MakeClusterer (inT16 SampleSize, const PARAM_DESC ParamDesc[]) {
CLUSTERER *Clusterer;
int i;
// allocate main clusterer data structure and init simple fields
Clusterer = (CLUSTERER *) Emalloc (sizeof (CLUSTERER));
Clusterer->SampleSize = SampleSize;
Clusterer->NumberOfSamples = 0;
Clusterer->NumChar = 0;
// init fields which will not be used initially
Clusterer->Root = NULL;
Clusterer->ProtoList = NIL_LIST;
// maintain a copy of param descriptors in the clusterer data structure
Clusterer->ParamDesc =
(PARAM_DESC *) Emalloc (SampleSize * sizeof (PARAM_DESC));
for (i = 0; i < SampleSize; i++) {
Clusterer->ParamDesc[i].Circular = ParamDesc[i].Circular;
Clusterer->ParamDesc[i].NonEssential = ParamDesc[i].NonEssential;
Clusterer->ParamDesc[i].Min = ParamDesc[i].Min;
Clusterer->ParamDesc[i].Max = ParamDesc[i].Max;
Clusterer->ParamDesc[i].Range = ParamDesc[i].Max - ParamDesc[i].Min;
Clusterer->ParamDesc[i].HalfRange = Clusterer->ParamDesc[i].Range / 2;
Clusterer->ParamDesc[i].MidRange =
(ParamDesc[i].Max + ParamDesc[i].Min) / 2;
}
// allocate a kd tree to hold the samples
Clusterer->KDTree = MakeKDTree (SampleSize, ParamDesc);
// Initialize cache of histogram buckets to minimize recomputing them.
for (int d = 0; d < DISTRIBUTION_COUNT; ++d) {
for (int c = 0; c < MAXBUCKETS + 1 - MINBUCKETS; ++c)
Clusterer->bucket_cache[d][c] = NULL;
}
return Clusterer;
} // MakeClusterer
/**
* This routine creates a new sample data structure to hold
* the specified feature. This sample is added to the clusterer
* data structure (so that it knows which samples are to be
* clustered later), and a pointer to the sample is returned to
* the caller.
*
* @param Clusterer clusterer data structure to add sample to
* @param Feature feature to be added to clusterer
* @param CharID unique ident. of char that sample came from
*
* @return Pointer to the new sample data structure
* @note Exceptions: ALREADYCLUSTERED MakeSample can't be called after
* ClusterSamples has been called
* @note History: 5/29/89, DSJ, Created.
*/
SAMPLE* MakeSample(CLUSTERER * Clusterer, const FLOAT32* Feature,
inT32 CharID) {
SAMPLE *Sample;
int i;
// see if the samples have already been clustered - if so trap an error
if (Clusterer->Root != NULL)
DoError (ALREADYCLUSTERED,
"Can't add samples after they have been clustered");
// allocate the new sample and initialize it
Sample = (SAMPLE *) Emalloc (sizeof (SAMPLE) +
(Clusterer->SampleSize -
1) * sizeof (FLOAT32));
Sample->Clustered = FALSE;
Sample->Prototype = FALSE;
Sample->SampleCount = 1;
Sample->Left = NULL;
Sample->Right = NULL;
Sample->CharID = CharID;
for (i = 0; i < Clusterer->SampleSize; i++)
Sample->Mean[i] = Feature[i];
// add the sample to the KD tree - keep track of the total # of samples
Clusterer->NumberOfSamples++;
KDStore (Clusterer->KDTree, Sample->Mean, (char *) Sample);
if (CharID >= Clusterer->NumChar)
Clusterer->NumChar = CharID + 1;
// execute hook for monitoring clustering operation
// (*SampleCreationHook)( Sample );
return (Sample);
} // MakeSample
/**
* This routine first checks to see if the samples in this
* clusterer have already been clustered before; if so, it does
* not bother to recreate the cluster tree. It simply recomputes
* the prototypes based on the new Config info.
*
* If the samples have not been clustered before, the
* samples in the KD tree are formed into a cluster tree and then
* the prototypes are computed from the cluster tree.
*
* In either case this routine returns a pointer to a
* list of prototypes that best represent the samples given
* the constraints specified in Config.
*
* @param Clusterer data struct containing samples to be clustered
* @param Config parameters which control clustering process
*
* @return Pointer to a list of prototypes
* @note Exceptions: None
* @note History: 5/29/89, DSJ, Created.
*/
LIST ClusterSamples(CLUSTERER *Clusterer, CLUSTERCONFIG *Config) {
//only create cluster tree if samples have never been clustered before
if (Clusterer->Root == NULL)
CreateClusterTree(Clusterer);
//deallocate the old prototype list if one exists
FreeProtoList (&Clusterer->ProtoList);
Clusterer->ProtoList = NIL_LIST;
//compute prototypes starting at the root node in the tree
ComputePrototypes(Clusterer, Config);
return (Clusterer->ProtoList);
} // ClusterSamples
/**
* This routine frees all of the memory allocated to the
* specified data structure. It will not, however, free
* the memory used by the prototype list. The pointers to
* the clusters for each prototype in the list will be set
* to NULL to indicate that the cluster data structures no
* longer exist. Any sample lists that have been obtained
* via calls to GetSamples are no longer valid.
* @param Clusterer pointer to data structure to be freed
* @return None
* @note Exceptions: None
* @note History: 6/6/89, DSJ, Created.
*/
void FreeClusterer(CLUSTERER *Clusterer) {
if (Clusterer != NULL) {
memfree (Clusterer->ParamDesc);
if (Clusterer->KDTree != NULL)
FreeKDTree (Clusterer->KDTree);
if (Clusterer->Root != NULL)
FreeCluster (Clusterer->Root);
// Free up all used buckets structures.
for (int d = 0; d < DISTRIBUTION_COUNT; ++d) {
for (int c = 0; c < MAXBUCKETS + 1 - MINBUCKETS; ++c)
if (Clusterer->bucket_cache[d][c] != NULL)
FreeBuckets(Clusterer->bucket_cache[d][c]);
}
memfree(Clusterer);
}
} // FreeClusterer
/**
* This routine frees all of the memory allocated to the
* specified list of prototypes. The clusters which are
* pointed to by the prototypes are not freed.
* @param ProtoList pointer to list of prototypes to be freed
* @return None
* @note Exceptions: None
* @note History: 6/6/89, DSJ, Created.
*/
void FreeProtoList(LIST *ProtoList) {
destroy_nodes(*ProtoList, FreePrototype);
} // FreeProtoList
/**
* This routine deallocates the memory consumed by the specified
* prototype and modifies the corresponding cluster so that it
* is no longer marked as a prototype. The cluster is NOT
* deallocated by this routine.
* @param arg prototype data structure to be deallocated
* @return None
* @note Exceptions: None
* @note History: 5/30/89, DSJ, Created.
*/
void FreePrototype(void *arg) { //PROTOTYPE *Prototype)
PROTOTYPE *Prototype = (PROTOTYPE *) arg;
// unmark the corresponding cluster (if there is one
if (Prototype->Cluster != NULL)
Prototype->Cluster->Prototype = FALSE;
// deallocate the prototype statistics and then the prototype itself
if (Prototype->Distrib != NULL)
memfree (Prototype->Distrib);
if (Prototype->Mean != NULL)
memfree (Prototype->Mean);
if (Prototype->Style != spherical) {
if (Prototype->Variance.Elliptical != NULL)
memfree (Prototype->Variance.Elliptical);
if (Prototype->Magnitude.Elliptical != NULL)
memfree (Prototype->Magnitude.Elliptical);
if (Prototype->Weight.Elliptical != NULL)
memfree (Prototype->Weight.Elliptical);
}
memfree(Prototype);
} // FreePrototype
/**
* This routine is used to find all of the samples which
* belong to a cluster. It starts by removing the top
* cluster on the cluster list (SearchState). If this cluster is
* a leaf it is returned. Otherwise, the right subcluster
* is pushed on the list and we continue the search in the
* left subcluster. This continues until a leaf is found.
* If all samples have been found, NULL is returned.
* InitSampleSearch() must be called
* before NextSample() to initialize the search.
* @param SearchState ptr to list containing clusters to be searched
* @return Pointer to the next leaf cluster (sample) or NULL.
* @note Exceptions: None
* @note History: 6/16/89, DSJ, Created.
*/
CLUSTER *NextSample(LIST *SearchState) {
CLUSTER *Cluster;
if (*SearchState == NIL_LIST)
return (NULL);
Cluster = (CLUSTER *) first_node (*SearchState);
*SearchState = pop (*SearchState);
while (TRUE) {
if (Cluster->Left == NULL)
return (Cluster);
*SearchState = push (*SearchState, Cluster->Right);
Cluster = Cluster->Left;
}
} // NextSample
/**
* This routine returns the mean of the specified
* prototype in the indicated dimension.
* @param Proto prototype to return mean of
* @param Dimension dimension whose mean is to be returned
* @return Mean of Prototype in Dimension
* @note Exceptions: none
* @note History: 7/6/89, DSJ, Created.
*/
FLOAT32 Mean(PROTOTYPE *Proto, uinT16 Dimension) {
return (Proto->Mean[Dimension]);
} // Mean
/**
* This routine returns the standard deviation of the
* prototype in the indicated dimension.
* @param Proto prototype to return standard deviation of
* @param Dimension dimension whose stddev is to be returned
* @return Standard deviation of Prototype in Dimension
* @note Exceptions: none
* @note History: 7/6/89, DSJ, Created.
*/
FLOAT32 StandardDeviation(PROTOTYPE *Proto, uinT16 Dimension) {
switch (Proto->Style) {
case spherical:
return ((FLOAT32) sqrt ((double) Proto->Variance.Spherical));
case elliptical:
return ((FLOAT32)
sqrt ((double) Proto->Variance.Elliptical[Dimension]));
case mixed:
switch (Proto->Distrib[Dimension]) {
case normal:
return ((FLOAT32)
sqrt ((double) Proto->Variance.Elliptical[Dimension]));
case uniform:
case D_random:
return (Proto->Variance.Elliptical[Dimension]);
case DISTRIBUTION_COUNT:
ASSERT_HOST(!"Distribution count not allowed!");
}
}
return 0.0f;
} // StandardDeviation
/*---------------------------------------------------------------------------
Private Code
----------------------------------------------------------------------------*/
/**
* This routine performs a bottoms-up clustering on the samples
* held in the kd-tree of the Clusterer data structure. The
* result is a cluster tree. Each node in the tree represents
* a cluster which conceptually contains a subset of the samples.
* More precisely, the cluster contains all of the samples which
* are contained in its two sub-clusters. The leaves of the
* tree are the individual samples themselves; they have no
* sub-clusters. The root node of the tree conceptually contains
* all of the samples.
* @param Clusterer data structure holdings samples to be clustered
* @return None (the Clusterer data structure is changed)
* @note Exceptions: None
* @note History: 5/29/89, DSJ, Created.
*/
void CreateClusterTree(CLUSTERER *Clusterer) {
ClusteringContext context;
ClusterPair HeapEntry;
TEMPCLUSTER *PotentialCluster;
// each sample and its nearest neighbor form a "potential" cluster
// save these in a heap with the "best" potential clusters on top
context.tree = Clusterer->KDTree;
context.candidates = (TEMPCLUSTER *)
Emalloc(Clusterer->NumberOfSamples * sizeof(TEMPCLUSTER));
context.next = 0;
context.heap = new ClusterHeap(Clusterer->NumberOfSamples);
KDWalk(context.tree, (void_proc)MakePotentialClusters, &context);
// form potential clusters into actual clusters - always do "best" first
while (context.heap->Pop(&HeapEntry)) {
PotentialCluster = HeapEntry.data;
// if main cluster of potential cluster is already in another cluster
// then we don't need to worry about it
if (PotentialCluster->Cluster->Clustered) {
continue;
}
// if main cluster is not yet clustered, but its nearest neighbor is
// then we must find a new nearest neighbor
else if (PotentialCluster->Neighbor->Clustered) {
PotentialCluster->Neighbor =
FindNearestNeighbor(context.tree, PotentialCluster->Cluster,
&HeapEntry.key);
if (PotentialCluster->Neighbor != NULL) {
context.heap->Push(&HeapEntry);
}
}
// if neither cluster is already clustered, form permanent cluster
else {
PotentialCluster->Cluster =
MakeNewCluster(Clusterer, PotentialCluster);
PotentialCluster->Neighbor =
FindNearestNeighbor(context.tree, PotentialCluster->Cluster,
&HeapEntry.key);
if (PotentialCluster->Neighbor != NULL) {
context.heap->Push(&HeapEntry);
}
}
}
// the root node in the cluster tree is now the only node in the kd-tree
Clusterer->Root = (CLUSTER *) RootOf(Clusterer->KDTree);
// free up the memory used by the K-D tree, heap, and temp clusters
FreeKDTree(context.tree);
Clusterer->KDTree = NULL;
delete context.heap;
memfree(context.candidates);
} // CreateClusterTree
/**
* This routine is designed to be used in concert with the
* KDWalk routine. It will create a potential cluster for
* each sample in the kd-tree that is being walked. This
* potential cluster will then be pushed on the heap.
* @param context ClusteringContext (see definition above)
* @param Cluster current cluster being visited in kd-tree walk
* @param Level level of this cluster in the kd-tree
*/
void MakePotentialClusters(ClusteringContext *context,
CLUSTER *Cluster, inT32 Level) {
ClusterPair HeapEntry;
int next = context->next;
context->candidates[next].Cluster = Cluster;
HeapEntry.data = &(context->candidates[next]);
context->candidates[next].Neighbor =
FindNearestNeighbor(context->tree,
context->candidates[next].Cluster,
&HeapEntry.key);
if (context->candidates[next].Neighbor != NULL) {
context->heap->Push(&HeapEntry);
context->next++;
}
} // MakePotentialClusters
/**
* This routine searches the specified kd-tree for the nearest
* neighbor of the specified cluster. It actually uses the
* kd routines to find the 2 nearest neighbors since one of them
* will be the original cluster. A pointer to the nearest
* neighbor is returned, if it can be found, otherwise NULL is
* returned. The distance between the 2 nodes is placed
* in the specified variable.
* @param Tree kd-tree to search in for nearest neighbor
* @param Cluster cluster whose nearest neighbor is to be found
* @param Distance ptr to variable to report distance found
* @return Pointer to the nearest neighbor of Cluster, or NULL
* @note Exceptions: none
* @note History: 5/29/89, DSJ, Created.
* 7/13/89, DSJ, Removed visibility of kd-tree node data struct
*/
CLUSTER *
FindNearestNeighbor(KDTREE * Tree, CLUSTER * Cluster, FLOAT32 * Distance)
#define MAXNEIGHBORS 2
#define MAXDISTANCE MAX_FLOAT32
{
CLUSTER *Neighbor[MAXNEIGHBORS];
FLOAT32 Dist[MAXNEIGHBORS];
int NumberOfNeighbors;
inT32 i;
CLUSTER *BestNeighbor;
// find the 2 nearest neighbors of the cluster
KDNearestNeighborSearch(Tree, Cluster->Mean, MAXNEIGHBORS, MAXDISTANCE,
&NumberOfNeighbors, (void **)Neighbor, Dist);
// search for the nearest neighbor that is not the cluster itself
*Distance = MAXDISTANCE;
BestNeighbor = NULL;
for (i = 0; i < NumberOfNeighbors; i++) {
if ((Dist[i] < *Distance) && (Neighbor[i] != Cluster)) {
*Distance = Dist[i];
BestNeighbor = Neighbor[i];
}
}
return BestNeighbor;
} // FindNearestNeighbor
/**
* This routine creates a new permanent cluster from the
* clusters specified in TempCluster. The 2 clusters in
* TempCluster are marked as "clustered" and deleted from
* the kd-tree. The new cluster is then added to the kd-tree.
* @param Clusterer current clustering environment
* @param TempCluster potential cluster to make permanent
* @return Pointer to the new permanent cluster
* @note Exceptions: none
* @note History: 5/29/89, DSJ, Created.
* 7/13/89, DSJ, Removed visibility of kd-tree node data struct
*/
CLUSTER *MakeNewCluster(CLUSTERER *Clusterer, TEMPCLUSTER *TempCluster) {
CLUSTER *Cluster;
// allocate the new cluster and initialize it
Cluster = (CLUSTER *) Emalloc(
sizeof(CLUSTER) + (Clusterer->SampleSize - 1) * sizeof(FLOAT32));
Cluster->Clustered = FALSE;
Cluster->Prototype = FALSE;
Cluster->Left = TempCluster->Cluster;
Cluster->Right = TempCluster->Neighbor;
Cluster->CharID = -1;
// mark the old clusters as "clustered" and delete them from the kd-tree
Cluster->Left->Clustered = TRUE;
Cluster->Right->Clustered = TRUE;
KDDelete(Clusterer->KDTree, Cluster->Left->Mean, Cluster->Left);
KDDelete(Clusterer->KDTree, Cluster->Right->Mean, Cluster->Right);
// compute the mean and sample count for the new cluster
Cluster->SampleCount =
MergeClusters(Clusterer->SampleSize, Clusterer->ParamDesc,
Cluster->Left->SampleCount, Cluster->Right->SampleCount,
Cluster->Mean, Cluster->Left->Mean, Cluster->Right->Mean);
// add the new cluster to the KD tree
KDStore(Clusterer->KDTree, Cluster->Mean, Cluster);
return Cluster;
} // MakeNewCluster
/**
* This routine merges two clusters into one larger cluster.
* To do this it computes the number of samples in the new
* cluster and the mean of the new cluster. The ParamDesc
* information is used to ensure that circular dimensions
* are handled correctly.
* @param N # of dimensions (size of arrays)
* @param ParamDesc array of dimension descriptions
* @param n1, n2 number of samples in each old cluster
* @param m array to hold mean of new cluster
* @param m1, m2 arrays containing means of old clusters
* @return The number of samples in the new cluster.
* @note Exceptions: None
* @note History: 5/31/89, DSJ, Created.
*/
inT32 MergeClusters(inT16 N,
PARAM_DESC ParamDesc[],
inT32 n1,
inT32 n2,
FLOAT32 m[],
FLOAT32 m1[], FLOAT32 m2[]) {
inT32 i, n;
n = n1 + n2;
for (i = N; i > 0; i--, ParamDesc++, m++, m1++, m2++) {
if (ParamDesc->Circular) {
// if distance between means is greater than allowed
// reduce upper point by one "rotation" to compute mean
// then normalize the mean back into the accepted range
if ((*m2 - *m1) > ParamDesc->HalfRange) {
*m = (n1 * *m1 + n2 * (*m2 - ParamDesc->Range)) / n;
if (*m < ParamDesc->Min)
*m += ParamDesc->Range;
}
else if ((*m1 - *m2) > ParamDesc->HalfRange) {
*m = (n1 * (*m1 - ParamDesc->Range) + n2 * *m2) / n;
if (*m < ParamDesc->Min)
*m += ParamDesc->Range;
}
else
*m = (n1 * *m1 + n2 * *m2) / n;
}
else
*m = (n1 * *m1 + n2 * *m2) / n;
}
return n;
} // MergeClusters
/**
* This routine decides which clusters in the cluster tree
* should be represented by prototypes, forms a list of these
* prototypes, and places the list in the Clusterer data
* structure.
* @param Clusterer data structure holding cluster tree
* @param Config parameters used to control prototype generation
* @return None
* @note Exceptions: None
* @note History: 5/30/89, DSJ, Created.
*/
void ComputePrototypes(CLUSTERER *Clusterer, CLUSTERCONFIG *Config) {
LIST ClusterStack = NIL_LIST;
CLUSTER *Cluster;
PROTOTYPE *Prototype;
// use a stack to keep track of clusters waiting to be processed
// initially the only cluster on the stack is the root cluster
if (Clusterer->Root != NULL)
ClusterStack = push (NIL_LIST, Clusterer->Root);
// loop until we have analyzed all clusters which are potential prototypes
while (ClusterStack != NIL_LIST) {
// remove the next cluster to be analyzed from the stack
// try to make a prototype from the cluster
// if successful, put it on the proto list, else split the cluster
Cluster = (CLUSTER *) first_node (ClusterStack);
ClusterStack = pop (ClusterStack);
Prototype = MakePrototype(Clusterer, Config, Cluster);
if (Prototype != NULL) {
Clusterer->ProtoList = push (Clusterer->ProtoList, Prototype);
}
else {
ClusterStack = push (ClusterStack, Cluster->Right);
ClusterStack = push (ClusterStack, Cluster->Left);
}
}
} // ComputePrototypes
/**
* This routine attempts to create a prototype from the
* specified cluster that conforms to the distribution
* specified in Config. If there are too few samples in the
* cluster to perform a statistical analysis, then a prototype
* is generated but labelled as insignificant. If the
* dimensions of the cluster are not independent, no prototype
* is generated and NULL is returned. If a prototype can be
* found that matches the desired distribution then a pointer
* to it is returned, otherwise NULL is returned.
* @param Clusterer data structure holding cluster tree
* @param Config parameters used to control prototype generation
* @param Cluster cluster to be made into a prototype
* @return Pointer to new prototype or NULL
* @note Exceptions: None
* @note History: 6/19/89, DSJ, Created.
*/
PROTOTYPE *MakePrototype(CLUSTERER *Clusterer,
CLUSTERCONFIG *Config,
CLUSTER *Cluster) {
STATISTICS *Statistics;
PROTOTYPE *Proto;
BUCKETS *Buckets;
// filter out clusters which contain samples from the same character
if (MultipleCharSamples (Clusterer, Cluster, Config->MaxIllegal))
return NULL;
// compute the covariance matrix and ranges for the cluster
Statistics =
ComputeStatistics(Clusterer->SampleSize, Clusterer->ParamDesc, Cluster);
// check for degenerate clusters which need not be analyzed further
// note that the MinSamples test assumes that all clusters with multiple
// character samples have been removed (as above)
Proto = MakeDegenerateProto(
Clusterer->SampleSize, Cluster, Statistics, Config->ProtoStyle,
(inT32) (Config->MinSamples * Clusterer->NumChar));
if (Proto != NULL) {
FreeStatistics(Statistics);
return Proto;
}
// check to ensure that all dimensions are independent
if (!Independent(Clusterer->ParamDesc, Clusterer->SampleSize,
Statistics->CoVariance, Config->Independence)) {
FreeStatistics(Statistics);
return NULL;
}
if (HOTELLING && Config->ProtoStyle == elliptical) {
Proto = TestEllipticalProto(Clusterer, Config, Cluster, Statistics);
if (Proto != NULL) {
FreeStatistics(Statistics);
return Proto;
}
}
// create a histogram data structure used to evaluate distributions
Buckets = GetBuckets(Clusterer, normal, Cluster->SampleCount,
Config->Confidence);
// create a prototype based on the statistics and test it
switch (Config->ProtoStyle) {
case spherical:
Proto = MakeSphericalProto(Clusterer, Cluster, Statistics, Buckets);
break;
case elliptical:
Proto = MakeEllipticalProto(Clusterer, Cluster, Statistics, Buckets);
break;
case mixed:
Proto = MakeMixedProto(Clusterer, Cluster, Statistics, Buckets,
Config->Confidence);
break;
case automatic:
Proto = MakeSphericalProto(Clusterer, Cluster, Statistics, Buckets);
if (Proto != NULL)
break;
Proto = MakeEllipticalProto(Clusterer, Cluster, Statistics, Buckets);
if (Proto != NULL)
break;
Proto = MakeMixedProto(Clusterer, Cluster, Statistics, Buckets,
Config->Confidence);
break;
}
FreeStatistics(Statistics);
return Proto;
} // MakePrototype
/**
* This routine checks for clusters which are degenerate and
* therefore cannot be analyzed in a statistically valid way.
* A cluster is defined as degenerate if it does not have at
* least MINSAMPLESNEEDED samples in it. If the cluster is
* found to be degenerate, a prototype of the specified style
* is generated and marked as insignificant. A cluster is
* also degenerate if it does not have at least MinSamples
* samples in it.
*
* If the cluster is not degenerate, NULL is returned.
*
* @param N number of dimensions
* @param Cluster cluster being analyzed
* @param Statistics statistical info about cluster
* @param Style type of prototype to be generated
* @param MinSamples minimum number of samples in a cluster
* @return Pointer to degenerate prototype or NULL.
* @note Exceptions: None
* @note History: 6/20/89, DSJ, Created.
* 7/12/89, DSJ, Changed name and added check for 0 stddev.
* 8/8/89, DSJ, Removed check for 0 stddev (handled elsewhere).
*/
PROTOTYPE *MakeDegenerateProto( //this was MinSample
uinT16 N,
CLUSTER *Cluster,
STATISTICS *Statistics,
PROTOSTYLE Style,
inT32 MinSamples) {
PROTOTYPE *Proto = NULL;
if (MinSamples < MINSAMPLESNEEDED)
MinSamples = MINSAMPLESNEEDED;
if (Cluster->SampleCount < MinSamples) {
switch (Style) {
case spherical:
Proto = NewSphericalProto (N, Cluster, Statistics);
break;
case elliptical:
case automatic:
Proto = NewEllipticalProto (N, Cluster, Statistics);
break;
case mixed:
Proto = NewMixedProto (N, Cluster, Statistics);
break;
}
Proto->Significant = FALSE;
}
return (Proto);
} // MakeDegenerateProto
/**
* This routine tests the specified cluster to see if **
* there is a statistically significant difference between
* the sub-clusters that would be made if the cluster were to
* be split. If not, then a new prototype is formed and
* returned to the caller. If there is, then NULL is returned
* to the caller.
* @param Clusterer data struct containing samples being clustered
* @param Config provides the magic number of samples that make a good cluster
* @param Cluster cluster to be made into an elliptical prototype
* @param Statistics statistical info about cluster
* @return Pointer to new elliptical prototype or NULL.
*/
PROTOTYPE *TestEllipticalProto(CLUSTERER *Clusterer,
CLUSTERCONFIG *Config,
CLUSTER *Cluster,
STATISTICS *Statistics) {
// Fraction of the number of samples used as a range around 1 within
// which a cluster has the magic size that allows a boost to the
// FTable by kFTableBoostMargin, thus allowing clusters near the
// magic size (equal to the number of sample characters) to be more
// likely to stay together.
const double kMagicSampleMargin = 0.0625;
const double kFTableBoostMargin = 2.0;
int N = Clusterer->SampleSize;
CLUSTER* Left = Cluster->Left;
CLUSTER* Right = Cluster->Right;
if (Left == NULL || Right == NULL)
return NULL;
int TotalDims = Left->SampleCount + Right->SampleCount;
if (TotalDims < N + 1 || TotalDims < 2)
return NULL;
const int kMatrixSize = N * N * sizeof(FLOAT32);
FLOAT32* Covariance = reinterpret_cast<FLOAT32 *>(Emalloc(kMatrixSize));
FLOAT32* Inverse = reinterpret_cast<FLOAT32 *>(Emalloc(kMatrixSize));
FLOAT32* Delta = reinterpret_cast<FLOAT32*>(Emalloc(N * sizeof(FLOAT32)));
// Compute a new covariance matrix that only uses essential features.
for (int i = 0; i < N; ++i) {
int row_offset = i * N;
if (!Clusterer->ParamDesc[i].NonEssential) {
for (int j = 0; j < N; ++j) {
if (!Clusterer->ParamDesc[j].NonEssential)
Covariance[j + row_offset] = Statistics->CoVariance[j + row_offset];
else
Covariance[j + row_offset] = 0.0f;
}
} else {
for (int j = 0; j < N; ++j) {
if (i == j)
Covariance[j + row_offset] = 1.0f;
else
Covariance[j + row_offset] = 0.0f;
}
}
}
double err = InvertMatrix(Covariance, N, Inverse);
if (err > 1) {
tprintf("Clustering error: Matrix inverse failed with error %g\n", err);
}
int EssentialN = 0;
for (int dim = 0; dim < N; ++dim) {
if (!Clusterer->ParamDesc[dim].NonEssential) {
Delta[dim] = Left->Mean[dim] - Right->Mean[dim];
++EssentialN;
} else {
Delta[dim] = 0.0f;
}
}
// Compute Hotelling's T-squared.
double Tsq = 0.0;
for (int x = 0; x < N; ++x) {
double temp = 0.0;
for (int y = 0; y < N; ++y) {
temp += Inverse[y + N*x] * Delta[y];
}
Tsq += Delta[x] * temp;
}
memfree(Covariance);
memfree(Inverse);
memfree(Delta);
// Changed this function to match the formula in
// Statistical Methods in Medical Research p 473
// By Peter Armitage, Geoffrey Berry, J. N. S. Matthews.
// Tsq *= Left->SampleCount * Right->SampleCount / TotalDims;
double F = Tsq * (TotalDims - EssentialN - 1) / ((TotalDims - 2)*EssentialN);
int Fx = EssentialN;
if (Fx > FTABLE_X)
Fx = FTABLE_X;
--Fx;
int Fy = TotalDims - EssentialN - 1;
if (Fy > FTABLE_Y)
Fy = FTABLE_Y;
--Fy;
double FTarget = FTable[Fy][Fx];
if (Config->MagicSamples > 0 &&
TotalDims >= Config->MagicSamples * (1.0 - kMagicSampleMargin) &&
TotalDims <= Config->MagicSamples * (1.0 + kMagicSampleMargin)) {
// Give magic-sized clusters a magic FTable boost.
FTarget += kFTableBoostMargin;
}
if (F < FTarget) {
return NewEllipticalProto (Clusterer->SampleSize, Cluster, Statistics);
}
return NULL;
}
/**
* This routine tests the specified cluster to see if it can
* be approximated by a spherical normal distribution. If it
* can be, then a new prototype is formed and returned to the
* caller. If it can't be, then NULL is returned to the caller.
* @param Clusterer data struct containing samples being clustered
* @param Cluster cluster to be made into a spherical prototype
* @param Statistics statistical info about cluster
* @param Buckets histogram struct used to analyze distribution
* @return Pointer to new spherical prototype or NULL.
* @note Exceptions: None
* @note History: 6/1/89, DSJ, Created.
*/
PROTOTYPE *MakeSphericalProto(CLUSTERER *Clusterer,
CLUSTER *Cluster,
STATISTICS *Statistics,
BUCKETS *Buckets) {
PROTOTYPE *Proto = NULL;
int i;
// check that each dimension is a normal distribution
for (i = 0; i < Clusterer->SampleSize; i++) {
if (Clusterer->ParamDesc[i].NonEssential)
continue;
FillBuckets (Buckets, Cluster, i, &(Clusterer->ParamDesc[i]),
Cluster->Mean[i],
sqrt ((FLOAT64) (Statistics->AvgVariance)));
if (!DistributionOK (Buckets))
break;
}
// if all dimensions matched a normal distribution, make a proto
if (i >= Clusterer->SampleSize)
Proto = NewSphericalProto (Clusterer->SampleSize, Cluster, Statistics);
return (Proto);
} // MakeSphericalProto
/**
* This routine tests the specified cluster to see if it can
* be approximated by an elliptical normal distribution. If it
* can be, then a new prototype is formed and returned to the
* caller. If it can't be, then NULL is returned to the caller.
* @param Clusterer data struct containing samples being clustered
* @param Cluster cluster to be made into an elliptical prototype
* @param Statistics statistical info about cluster
* @param Buckets histogram struct used to analyze distribution
* @return Pointer to new elliptical prototype or NULL.
* @note Exceptions: None
* @note History: 6/12/89, DSJ, Created.
*/
PROTOTYPE *MakeEllipticalProto(CLUSTERER *Clusterer,
CLUSTER *Cluster,
STATISTICS *Statistics,
BUCKETS *Buckets) {
PROTOTYPE *Proto = NULL;
int i;
// check that each dimension is a normal distribution
for (i = 0; i < Clusterer->SampleSize; i++) {
if (Clusterer->ParamDesc[i].NonEssential)
continue;
FillBuckets (Buckets, Cluster, i, &(Clusterer->ParamDesc[i]),
Cluster->Mean[i],
sqrt ((FLOAT64) Statistics->
CoVariance[i * (Clusterer->SampleSize + 1)]));
if (!DistributionOK (Buckets))
break;
}
// if all dimensions matched a normal distribution, make a proto
if (i >= Clusterer->SampleSize)
Proto = NewEllipticalProto (Clusterer->SampleSize, Cluster, Statistics);
return (Proto);
} // MakeEllipticalProto
/**
* This routine tests each dimension of the specified cluster to
* see what distribution would best approximate that dimension.
* Each dimension is compared to the following distributions
* in order: normal, random, uniform. If each dimension can
* be represented by one of these distributions,
* then a new prototype is formed and returned to the
* caller. If it can't be, then NULL is returned to the caller.
* @param Clusterer data struct containing samples being clustered
* @param Cluster cluster to be made into a prototype
* @param Statistics statistical info about cluster
* @param NormalBuckets histogram struct used to analyze distribution
* @param Confidence confidence level for alternate distributions
* @return Pointer to new mixed prototype or NULL.
* @note Exceptions: None
* @note History: 6/12/89, DSJ, Created.
*/
PROTOTYPE *MakeMixedProto(CLUSTERER *Clusterer,
CLUSTER *Cluster,
STATISTICS *Statistics,
BUCKETS *NormalBuckets,
FLOAT64 Confidence) {
PROTOTYPE *Proto;
int i;
BUCKETS *UniformBuckets = NULL;
BUCKETS *RandomBuckets = NULL;
// create a mixed proto to work on - initially assume all dimensions normal*/
Proto = NewMixedProto (Clusterer->SampleSize, Cluster, Statistics);
// find the proper distribution for each dimension
for (i = 0; i < Clusterer->SampleSize; i++) {
if (Clusterer->ParamDesc[i].NonEssential)
continue;
FillBuckets (NormalBuckets, Cluster, i, &(Clusterer->ParamDesc[i]),
Proto->Mean[i],
sqrt ((FLOAT64) Proto->Variance.Elliptical[i]));
if (DistributionOK (NormalBuckets))
continue;
if (RandomBuckets == NULL)
RandomBuckets =
GetBuckets(Clusterer, D_random, Cluster->SampleCount, Confidence);
MakeDimRandom (i, Proto, &(Clusterer->ParamDesc[i]));
FillBuckets (RandomBuckets, Cluster, i, &(Clusterer->ParamDesc[i]),
Proto->Mean[i], Proto->Variance.Elliptical[i]);
if (DistributionOK (RandomBuckets))
continue;
if (UniformBuckets == NULL)
UniformBuckets =
GetBuckets(Clusterer, uniform, Cluster->SampleCount, Confidence);
MakeDimUniform(i, Proto, Statistics);
FillBuckets (UniformBuckets, Cluster, i, &(Clusterer->ParamDesc[i]),
Proto->Mean[i], Proto->Variance.Elliptical[i]);
if (DistributionOK (UniformBuckets))
continue;
break;
}
// if any dimension failed to match a distribution, discard the proto
if (i < Clusterer->SampleSize) {
FreePrototype(Proto);
Proto = NULL;
}
return (Proto);
} // MakeMixedProto
/**
* This routine alters the ith dimension of the specified
* mixed prototype to be D_random.
* @param i index of dimension to be changed
* @param Proto prototype whose dimension is to be altered
* @param ParamDesc description of specified dimension
* @return None
* @note Exceptions: None
* @note History: 6/20/89, DSJ, Created.
*/
void MakeDimRandom(uinT16 i, PROTOTYPE *Proto, PARAM_DESC *ParamDesc) {
Proto->Distrib[i] = D_random;
Proto->Mean[i] = ParamDesc->MidRange;
Proto->Variance.Elliptical[i] = ParamDesc->HalfRange;
// subtract out the previous magnitude of this dimension from the total
Proto->TotalMagnitude /= Proto->Magnitude.Elliptical[i];
Proto->Magnitude.Elliptical[i] = 1.0 / ParamDesc->Range;
Proto->TotalMagnitude *= Proto->Magnitude.Elliptical[i];
Proto->LogMagnitude = log ((double) Proto->TotalMagnitude);
// note that the proto Weight is irrelevant for D_random protos
} // MakeDimRandom
/**
* This routine alters the ith dimension of the specified
* mixed prototype to be uniform.
* @param i index of dimension to be changed
* @param Proto prototype whose dimension is to be altered
* @param Statistics statistical info about prototype
* @return None
* @note Exceptions: None
* @note History: 6/20/89, DSJ, Created.
*/
void MakeDimUniform(uinT16 i, PROTOTYPE *Proto, STATISTICS *Statistics) {
Proto->Distrib[i] = uniform;
Proto->Mean[i] = Proto->Cluster->Mean[i] +
(Statistics->Min[i] + Statistics->Max[i]) / 2;
Proto->Variance.Elliptical[i] =
(Statistics->Max[i] - Statistics->Min[i]) / 2;
if (Proto->Variance.Elliptical[i] < MINVARIANCE)
Proto->Variance.Elliptical[i] = MINVARIANCE;
// subtract out the previous magnitude of this dimension from the total
Proto->TotalMagnitude /= Proto->Magnitude.Elliptical[i];
Proto->Magnitude.Elliptical[i] =
1.0 / (2.0 * Proto->Variance.Elliptical[i]);
Proto->TotalMagnitude *= Proto->Magnitude.Elliptical[i];
Proto->LogMagnitude = log ((double) Proto->TotalMagnitude);
// note that the proto Weight is irrelevant for uniform protos
} // MakeDimUniform
/**
* This routine searches the cluster tree for all leaf nodes
* which are samples in the specified cluster. It computes
* a full covariance matrix for these samples as well as
* keeping track of the ranges (min and max) for each
* dimension. A special data structure is allocated to
* return this information to the caller. An incremental
* algorithm for computing statistics is not used because
* it will not work with circular dimensions.
* @param N number of dimensions
* @param ParamDesc array of dimension descriptions
* @param Cluster cluster whose stats are to be computed
* @return Pointer to new data structure containing statistics
* @note Exceptions: None
* @note History: 6/2/89, DSJ, Created.
*/
STATISTICS *
ComputeStatistics (inT16 N, PARAM_DESC ParamDesc[], CLUSTER * Cluster) {
STATISTICS *Statistics;
int i, j;
FLOAT32 *CoVariance;
FLOAT32 *Distance;
LIST SearchState;
SAMPLE *Sample;
uinT32 SampleCountAdjustedForBias;
// allocate memory to hold the statistics results
Statistics = (STATISTICS *) Emalloc (sizeof (STATISTICS));
Statistics->CoVariance = (FLOAT32 *) Emalloc (N * N * sizeof (FLOAT32));
Statistics->Min = (FLOAT32 *) Emalloc (N * sizeof (FLOAT32));
Statistics->Max = (FLOAT32 *) Emalloc (N * sizeof (FLOAT32));
// allocate temporary memory to hold the sample to mean distances
Distance = (FLOAT32 *) Emalloc (N * sizeof (FLOAT32));
// initialize the statistics
Statistics->AvgVariance = 1.0;
CoVariance = Statistics->CoVariance;
for (i = 0; i < N; i++) {
Statistics->Min[i] = 0.0;
Statistics->Max[i] = 0.0;
for (j = 0; j < N; j++, CoVariance++)
*CoVariance = 0;
}
// find each sample in the cluster and merge it into the statistics
InitSampleSearch(SearchState, Cluster);
while ((Sample = NextSample (&SearchState)) != NULL) {
for (i = 0; i < N; i++) {
Distance[i] = Sample->Mean[i] - Cluster->Mean[i];
if (ParamDesc[i].Circular) {
if (Distance[i] > ParamDesc[i].HalfRange)
Distance[i] -= ParamDesc[i].Range;
if (Distance[i] < -ParamDesc[i].HalfRange)
Distance[i] += ParamDesc[i].Range;
}
if (Distance[i] < Statistics->Min[i])
Statistics->Min[i] = Distance[i];
if (Distance[i] > Statistics->Max[i])
Statistics->Max[i] = Distance[i];
}
CoVariance = Statistics->CoVariance;
for (i = 0; i < N; i++)
for (j = 0; j < N; j++, CoVariance++)
*CoVariance += Distance[i] * Distance[j];
}
// normalize the variances by the total number of samples
// use SampleCount-1 instead of SampleCount to get an unbiased estimate
// also compute the geometic mean of the diagonal variances
// ensure that clusters with only 1 sample are handled correctly
if (Cluster->SampleCount > 1)
SampleCountAdjustedForBias = Cluster->SampleCount - 1;
else
SampleCountAdjustedForBias = 1;
CoVariance = Statistics->CoVariance;
for (i = 0; i < N; i++)
for (j = 0; j < N; j++, CoVariance++) {
*CoVariance /= SampleCountAdjustedForBias;
if (j == i) {
if (*CoVariance < MINVARIANCE)
*CoVariance = MINVARIANCE;
Statistics->AvgVariance *= *CoVariance;
}
}
Statistics->AvgVariance = (float)pow((double)Statistics->AvgVariance,
1.0 / N);
// release temporary memory and return
memfree(Distance);
return (Statistics);
} // ComputeStatistics
/**
* This routine creates a spherical prototype data structure to
* approximate the samples in the specified cluster.
* Spherical prototypes have a single variance which is
* common across all dimensions. All dimensions are normally
* distributed and independent.
* @param N number of dimensions
* @param Cluster cluster to be made into a spherical prototype
* @param Statistics statistical info about samples in cluster
* @return Pointer to a new spherical prototype data structure
* @note Exceptions: None
* @note History: 6/19/89, DSJ, Created.
*/
PROTOTYPE *NewSphericalProto(uinT16 N,
CLUSTER *Cluster,
STATISTICS *Statistics) {
PROTOTYPE *Proto;
Proto = NewSimpleProto (N, Cluster);
Proto->Variance.Spherical = Statistics->AvgVariance;
if (Proto->Variance.Spherical < MINVARIANCE)
Proto->Variance.Spherical = MINVARIANCE;
Proto->Magnitude.Spherical =
1.0 / sqrt ((double) (2.0 * PI * Proto->Variance.Spherical));
Proto->TotalMagnitude = (float)pow((double)Proto->Magnitude.Spherical,
(double) N);
Proto->Weight.Spherical = 1.0 / Proto->Variance.Spherical;
Proto->LogMagnitude = log ((double) Proto->TotalMagnitude);
return (Proto);
} // NewSphericalProto
/**
* This routine creates an elliptical prototype data structure to
* approximate the samples in the specified cluster.
* Elliptical prototypes have a variance for each dimension.
* All dimensions are normally distributed and independent.
* @param N number of dimensions
* @param Cluster cluster to be made into an elliptical prototype
* @param Statistics statistical info about samples in cluster
* @return Pointer to a new elliptical prototype data structure
* @note Exceptions: None
* @note History: 6/19/89, DSJ, Created.
*/
PROTOTYPE *NewEllipticalProto(inT16 N,
CLUSTER *Cluster,
STATISTICS *Statistics) {
PROTOTYPE *Proto;
FLOAT32 *CoVariance;
int i;
Proto = NewSimpleProto (N, Cluster);
Proto->Variance.Elliptical = (FLOAT32 *) Emalloc (N * sizeof (FLOAT32));
Proto->Magnitude.Elliptical = (FLOAT32 *) Emalloc (N * sizeof (FLOAT32));
Proto->Weight.Elliptical = (FLOAT32 *) Emalloc (N * sizeof (FLOAT32));
CoVariance = Statistics->CoVariance;
Proto->TotalMagnitude = 1.0;
for (i = 0; i < N; i++, CoVariance += N + 1) {
Proto->Variance.Elliptical[i] = *CoVariance;
if (Proto->Variance.Elliptical[i] < MINVARIANCE)
Proto->Variance.Elliptical[i] = MINVARIANCE;
Proto->Magnitude.Elliptical[i] =
1.0 / sqrt ((double) (2.0 * PI * Proto->Variance.Elliptical[i]));
Proto->Weight.Elliptical[i] = 1.0 / Proto->Variance.Elliptical[i];
Proto->TotalMagnitude *= Proto->Magnitude.Elliptical[i];
}
Proto->LogMagnitude = log ((double) Proto->TotalMagnitude);
Proto->Style = elliptical;
return (Proto);
} // NewEllipticalProto
/**
* This routine creates a mixed prototype data structure to
* approximate the samples in the specified cluster.
* Mixed prototypes can have different distributions for
* each dimension. All dimensions are independent. The
* structure is initially filled in as though it were an
* elliptical prototype. The actual distributions of the
* dimensions can be altered by other routines.
* @param N number of dimensions
* @param Cluster cluster to be made into a mixed prototype
* @param Statistics statistical info about samples in cluster
* @return Pointer to a new mixed prototype data structure
* @note Exceptions: None
* @note History: 6/19/89, DSJ, Created.
*/
PROTOTYPE *NewMixedProto(inT16 N, CLUSTER *Cluster, STATISTICS *Statistics) {
PROTOTYPE *Proto;
int i;
Proto = NewEllipticalProto (N, Cluster, Statistics);
Proto->Distrib = (DISTRIBUTION *) Emalloc (N * sizeof (DISTRIBUTION));
for (i = 0; i < N; i++) {
Proto->Distrib[i] = normal;
}
Proto->Style = mixed;
return (Proto);
} // NewMixedProto
/**
* This routine allocates memory to hold a simple prototype
* data structure, i.e. one without independent distributions
* and variances for each dimension.
* @param N number of dimensions
* @param Cluster cluster to be made into a prototype
* @return Pointer to new simple prototype
* @note Exceptions: None
* @note History: 6/19/89, DSJ, Created.
*/
PROTOTYPE *NewSimpleProto(inT16 N, CLUSTER *Cluster) {
PROTOTYPE *Proto;
int i;
Proto = (PROTOTYPE *) Emalloc (sizeof (PROTOTYPE));
Proto->Mean = (FLOAT32 *) Emalloc (N * sizeof (FLOAT32));
for (i = 0; i < N; i++)
Proto->Mean[i] = Cluster->Mean[i];
Proto->Distrib = NULL;
Proto->Significant = TRUE;
Proto->Merged = FALSE;
Proto->Style = spherical;
Proto->NumSamples = Cluster->SampleCount;
Proto->Cluster = Cluster;
Proto->Cluster->Prototype = TRUE;
return (Proto);
} // NewSimpleProto
/**
* This routine returns TRUE if the specified covariance
* matrix indicates that all N dimensions are independent of
* one another. One dimension is judged to be independent of
* another when the magnitude of the corresponding correlation
* coefficient is
* less than the specified Independence factor. The
* correlation coefficient is calculated as: (see Duda and
* Hart, pg. 247)
* coeff[ij] = stddev[ij] / sqrt (stddev[ii] * stddev[jj])
* The covariance matrix is assumed to be symmetric (which
* should always be true).
* @param ParamDesc descriptions of each feature space dimension
* @param N number of dimensions
* @param CoVariance ptr to a covariance matrix
* @param Independence max off-diagonal correlation coefficient
* @return TRUE if dimensions are independent, FALSE otherwise
* @note Exceptions: None
* @note History: 6/4/89, DSJ, Created.
*/
BOOL8
Independent (PARAM_DESC ParamDesc[],
inT16 N, FLOAT32 * CoVariance, FLOAT32 Independence) {
int i, j;
FLOAT32 *VARii; // points to ith on-diagonal element
FLOAT32 *VARjj; // points to jth on-diagonal element
FLOAT32 CorrelationCoeff;
VARii = CoVariance;
for (i = 0; i < N; i++, VARii += N + 1) {
if (ParamDesc[i].NonEssential)
continue;
VARjj = VARii + N + 1;
CoVariance = VARii + 1;
for (j = i + 1; j < N; j++, CoVariance++, VARjj += N + 1) {
if (ParamDesc[j].NonEssential)
continue;
if ((*VARii == 0.0) || (*VARjj == 0.0))
CorrelationCoeff = 0.0;
else
CorrelationCoeff =
sqrt (sqrt (*CoVariance * *CoVariance / (*VARii * *VARjj)));
if (CorrelationCoeff > Independence)
return (FALSE);
}
}
return (TRUE);
} // Independent
/**
* This routine returns a histogram data structure which can
* be used by other routines to place samples into histogram
* buckets, and then apply a goodness of fit test to the
* histogram data to determine if the samples belong to the
* specified probability distribution. The routine keeps
* a list of bucket data structures which have already been
* created so that it minimizes the computation time needed
* to create a new bucket.
* @param clusterer which keeps a bucket_cache for us.
* @param Distribution type of probability distribution to test for
* @param SampleCount number of samples that are available
* @param Confidence probability of a Type I error
* @return Bucket data structure
* @note Exceptions: none
* @note History: Thu Aug 3 12:58:10 1989, DSJ, Created.
*/
BUCKETS *GetBuckets(CLUSTERER* clusterer,
DISTRIBUTION Distribution,
uinT32 SampleCount,
FLOAT64 Confidence) {
// Get an old bucket structure with the same number of buckets.
uinT16 NumberOfBuckets = OptimumNumberOfBuckets(SampleCount);
BUCKETS *Buckets =
clusterer->bucket_cache[Distribution][NumberOfBuckets - MINBUCKETS];
// If a matching bucket structure is not found, make one and save it.
if (Buckets == NULL) {
Buckets = MakeBuckets(Distribution, SampleCount, Confidence);
clusterer->bucket_cache[Distribution][NumberOfBuckets - MINBUCKETS] =
Buckets;
} else {
// Just adjust the existing buckets.
if (SampleCount != Buckets->SampleCount)
AdjustBuckets(Buckets, SampleCount);
if (Confidence != Buckets->Confidence) {
Buckets->Confidence = Confidence;
Buckets->ChiSquared = ComputeChiSquared(
DegreesOfFreedom(Distribution, Buckets->NumberOfBuckets),
Confidence);
}
InitBuckets(Buckets);
}
return Buckets;
} // GetBuckets
/**
* This routine creates a histogram data structure which can
* be used by other routines to place samples into histogram
* buckets, and then apply a goodness of fit test to the
* histogram data to determine if the samples belong to the
* specified probability distribution. The buckets are
* allocated in such a way that the expected frequency of
* samples in each bucket is approximately the same. In
* order to make this possible, a mapping table is
* computed which maps "normalized" samples into the
* appropriate bucket.
* @param Distribution type of probability distribution to test for
* @param SampleCount number of samples that are available
* @param Confidence probability of a Type I error
* @return Pointer to new histogram data structure
* @note Exceptions: None
* @note History: 6/4/89, DSJ, Created.
*/
BUCKETS *MakeBuckets(DISTRIBUTION Distribution,
uinT32 SampleCount,
FLOAT64 Confidence) {
const DENSITYFUNC DensityFunction[] =
{ NormalDensity, UniformDensity, UniformDensity };
int i, j;
BUCKETS *Buckets;
FLOAT64 BucketProbability;
FLOAT64 NextBucketBoundary;
FLOAT64 Probability;
FLOAT64 ProbabilityDelta;
FLOAT64 LastProbDensity;
FLOAT64 ProbDensity;
uinT16 CurrentBucket;
BOOL8 Symmetrical;
// allocate memory needed for data structure
Buckets = reinterpret_cast<BUCKETS*>(Emalloc(sizeof(BUCKETS)));
Buckets->NumberOfBuckets = OptimumNumberOfBuckets(SampleCount);
Buckets->SampleCount = SampleCount;
Buckets->Confidence = Confidence;
Buckets->Count = reinterpret_cast<uinT32*>(
Emalloc(Buckets->NumberOfBuckets * sizeof(uinT32)));
Buckets->ExpectedCount = reinterpret_cast<FLOAT32*>(
Emalloc(Buckets->NumberOfBuckets * sizeof(FLOAT32)));
// initialize simple fields
Buckets->Distribution = Distribution;
for (i = 0; i < Buckets->NumberOfBuckets; i++) {
Buckets->Count[i] = 0;
Buckets->ExpectedCount[i] = 0.0;
}
// all currently defined distributions are symmetrical
Symmetrical = TRUE;
Buckets->ChiSquared = ComputeChiSquared(
DegreesOfFreedom(Distribution, Buckets->NumberOfBuckets), Confidence);
if (Symmetrical) {
// allocate buckets so that all have approx. equal probability
BucketProbability = 1.0 / (FLOAT64) (Buckets->NumberOfBuckets);
// distribution is symmetric so fill in upper half then copy
CurrentBucket = Buckets->NumberOfBuckets / 2;
if (Odd (Buckets->NumberOfBuckets))
NextBucketBoundary = BucketProbability / 2;
else
NextBucketBoundary = BucketProbability;
Probability = 0.0;
LastProbDensity =
(*DensityFunction[(int) Distribution]) (BUCKETTABLESIZE / 2);
for (i = BUCKETTABLESIZE / 2; i < BUCKETTABLESIZE; i++) {
ProbDensity = (*DensityFunction[(int) Distribution]) (i + 1);
ProbabilityDelta = Integral (LastProbDensity, ProbDensity, 1.0);
Probability += ProbabilityDelta;
if (Probability > NextBucketBoundary) {
if (CurrentBucket < Buckets->NumberOfBuckets - 1)
CurrentBucket++;
NextBucketBoundary += BucketProbability;
}
Buckets->Bucket[i] = CurrentBucket;
Buckets->ExpectedCount[CurrentBucket] +=
(FLOAT32) (ProbabilityDelta * SampleCount);
LastProbDensity = ProbDensity;
}
// place any leftover probability into the last bucket
Buckets->ExpectedCount[CurrentBucket] +=
(FLOAT32) ((0.5 - Probability) * SampleCount);
// copy upper half of distribution to lower half
for (i = 0, j = BUCKETTABLESIZE - 1; i < j; i++, j--)
Buckets->Bucket[i] =
Mirror(Buckets->Bucket[j], Buckets->NumberOfBuckets);
// copy upper half of expected counts to lower half
for (i = 0, j = Buckets->NumberOfBuckets - 1; i <= j; i++, j--)
Buckets->ExpectedCount[i] += Buckets->ExpectedCount[j];
}
return Buckets;
} // MakeBuckets
/**
* This routine computes the optimum number of histogram
* buckets that should be used in a chi-squared goodness of
* fit test for the specified number of samples. The optimum
* number is computed based on Table 4.1 on pg. 147 of
* "Measurement and Analysis of Random Data" by Bendat & Piersol.
* Linear interpolation is used to interpolate between table
* values. The table is intended for a 0.05 level of
* significance (alpha). This routine assumes that it is
* equally valid for other alpha's, which may not be true.
* @param SampleCount number of samples to be tested
* @return Optimum number of histogram buckets
* @note Exceptions: None
* @note History: 6/5/89, DSJ, Created.
*/
uinT16 OptimumNumberOfBuckets(uinT32 SampleCount) {
uinT8 Last, Next;
FLOAT32 Slope;
if (SampleCount < kCountTable[0])
return kBucketsTable[0];
for (Last = 0, Next = 1; Next < LOOKUPTABLESIZE; Last++, Next++) {
if (SampleCount <= kCountTable[Next]) {
Slope = (FLOAT32) (kBucketsTable[Next] - kBucketsTable[Last]) /
(FLOAT32) (kCountTable[Next] - kCountTable[Last]);
return ((uinT16) (kBucketsTable[Last] +
Slope * (SampleCount - kCountTable[Last])));
}
}
return kBucketsTable[Last];
} // OptimumNumberOfBuckets
/**
* This routine computes the chi-squared value which will
* leave a cumulative probability of Alpha in the right tail
* of a chi-squared distribution with the specified number of
* degrees of freedom. Alpha must be between 0 and 1.
* DegreesOfFreedom must be even. The routine maintains an
* array of lists. Each list corresponds to a different
* number of degrees of freedom. Each entry in the list
* corresponds to a different alpha value and its corresponding
* chi-squared value. Therefore, once a particular chi-squared
* value is computed, it is stored in the list and never
* needs to be computed again.
* @param DegreesOfFreedom determines shape of distribution
* @param Alpha probability of right tail
* @return Desired chi-squared value
* @note Exceptions: none
* @note History: 6/5/89, DSJ, Created.
*/
FLOAT64
ComputeChiSquared (uinT16 DegreesOfFreedom, FLOAT64 Alpha)
#define CHIACCURACY 0.01
#define MINALPHA (1e-200)
{
static LIST ChiWith[MAXDEGREESOFFREEDOM + 1];
CHISTRUCT *OldChiSquared;
CHISTRUCT SearchKey;
// limit the minimum alpha that can be used - if alpha is too small
// it may not be possible to compute chi-squared.
Alpha = ClipToRange(Alpha, MINALPHA, 1.0);
if (Odd (DegreesOfFreedom))
DegreesOfFreedom++;
/* find the list of chi-squared values which have already been computed
for the specified number of degrees of freedom. Search the list for
the desired chi-squared. */
SearchKey.Alpha = Alpha;
OldChiSquared = (CHISTRUCT *) first_node (search (ChiWith[DegreesOfFreedom],
&SearchKey, AlphaMatch));
if (OldChiSquared == NULL) {
OldChiSquared = NewChiStruct (DegreesOfFreedom, Alpha);
OldChiSquared->ChiSquared = Solve (ChiArea, OldChiSquared,
(FLOAT64) DegreesOfFreedom,
(FLOAT64) CHIACCURACY);
ChiWith[DegreesOfFreedom] = push (ChiWith[DegreesOfFreedom],
OldChiSquared);
}
else {
// further optimization might move OldChiSquared to front of list
}
return (OldChiSquared->ChiSquared);
} // ComputeChiSquared
/**
* This routine computes the probability density function
* of a discrete normal distribution defined by the global
* variables kNormalMean, kNormalVariance, and kNormalMagnitude.
* Normal magnitude could, of course, be computed in terms of
* the normal variance but it is precomputed for efficiency.
* @param x number to compute the normal probability density for
* @note Globals:
* kNormalMean mean of a discrete normal distribution
* kNormalVariance variance of a discrete normal distribution
* kNormalMagnitude magnitude of a discrete normal distribution
* @return The value of the normal distribution at x.
* @note Exceptions: None
* @note History: 6/4/89, DSJ, Created.
*/
FLOAT64 NormalDensity(inT32 x) {
FLOAT64 Distance;
Distance = x - kNormalMean;
return kNormalMagnitude * exp(-0.5 * Distance * Distance / kNormalVariance);
} // NormalDensity
/**
* This routine computes the probability density function
* of a uniform distribution at the specified point. The
* range of the distribution is from 0 to BUCKETTABLESIZE.
* @param x number to compute the uniform probability density for
* @return The value of the uniform distribution at x.
* @note Exceptions: None
* @note History: 6/5/89, DSJ, Created.
*/
FLOAT64 UniformDensity(inT32 x) {
static FLOAT64 UniformDistributionDensity = (FLOAT64) 1.0 / BUCKETTABLESIZE;
if ((x >= 0.0) && (x <= BUCKETTABLESIZE))
return UniformDistributionDensity;
else
return (FLOAT64) 0.0;
} // UniformDensity
/**
* This routine computes a trapezoidal approximation to the
* integral of a function over a small delta in x.
* @param f1 value of function at x1
* @param f2 value of function at x2
* @param Dx x2 - x1 (should always be positive)
* @return Approximation of the integral of the function from x1 to x2.
* @note Exceptions: None
* @note History: 6/5/89, DSJ, Created.
*/
FLOAT64 Integral(FLOAT64 f1, FLOAT64 f2, FLOAT64 Dx) {
return (f1 + f2) * Dx / 2.0;
} // Integral
/**
* This routine counts the number of cluster samples which
* fall within the various histogram buckets in Buckets. Only
* one dimension of each sample is examined. The exact meaning
* of the Mean and StdDev parameters depends on the
* distribution which is being analyzed (this info is in the
* Buckets data structure). For normal distributions, Mean
* and StdDev have the expected meanings. For uniform and
* random distributions the Mean is the center point of the
* range and the StdDev is 1/2 the range. A dimension with
* zero standard deviation cannot be statistically analyzed.
* In this case, a pseudo-analysis is used.
* @param Buckets histogram buckets to count samples
* @param Cluster cluster whose samples are being analyzed
* @param Dim dimension of samples which is being analyzed
* @param ParamDesc description of the dimension
* @param Mean "mean" of the distribution
* @param StdDev "standard deviation" of the distribution
* @return None (the Buckets data structure is filled in)
* @note Exceptions: None
* @note History: 6/5/89, DSJ, Created.
*/
void FillBuckets(BUCKETS *Buckets,
CLUSTER *Cluster,
uinT16 Dim,
PARAM_DESC *ParamDesc,
FLOAT32 Mean,
FLOAT32 StdDev) {
uinT16 BucketID;
int i;
LIST SearchState;
SAMPLE *Sample;
// initialize the histogram bucket counts to 0
for (i = 0; i < Buckets->NumberOfBuckets; i++)
Buckets->Count[i] = 0;
if (StdDev == 0.0) {
/* if the standard deviation is zero, then we can't statistically
analyze the cluster. Use a pseudo-analysis: samples exactly on
the mean are distributed evenly across all buckets. Samples greater
than the mean are placed in the last bucket; samples less than the
mean are placed in the first bucket. */
InitSampleSearch(SearchState, Cluster);
i = 0;
while ((Sample = NextSample (&SearchState)) != NULL) {
if (Sample->Mean[Dim] > Mean)
BucketID = Buckets->NumberOfBuckets - 1;
else if (Sample->Mean[Dim] < Mean)
BucketID = 0;
else
BucketID = i;
Buckets->Count[BucketID] += 1;
i++;
if (i >= Buckets->NumberOfBuckets)
i = 0;
}
}
else {
// search for all samples in the cluster and add to histogram buckets
InitSampleSearch(SearchState, Cluster);
while ((Sample = NextSample (&SearchState)) != NULL) {
switch (Buckets->Distribution) {
case normal:
BucketID = NormalBucket (ParamDesc, Sample->Mean[Dim],
Mean, StdDev);
break;
case D_random:
case uniform:
BucketID = UniformBucket (ParamDesc, Sample->Mean[Dim],
Mean, StdDev);
break;
default:
BucketID = 0;
}
Buckets->Count[Buckets->Bucket[BucketID]] += 1;
}
}
} // FillBuckets
/**
* This routine determines which bucket x falls into in the
* discrete normal distribution defined by kNormalMean
* and kNormalStdDev. x values which exceed the range of
* the discrete distribution are clipped.
* @param ParamDesc used to identify circular dimensions
* @param x value to be normalized
* @param Mean mean of normal distribution
* @param StdDev standard deviation of normal distribution
* @return Bucket number into which x falls
* @note Exceptions: None
* @note History: 6/5/89, DSJ, Created.
*/
uinT16 NormalBucket(PARAM_DESC *ParamDesc,
FLOAT32 x,
FLOAT32 Mean,
FLOAT32 StdDev) {
FLOAT32 X;
// wraparound circular parameters if necessary
if (ParamDesc->Circular) {
if (x - Mean > ParamDesc->HalfRange)
x -= ParamDesc->Range;
else if (x - Mean < -ParamDesc->HalfRange)
x += ParamDesc->Range;
}
X = ((x - Mean) / StdDev) * kNormalStdDev + kNormalMean;
if (X < 0)
return 0;
if (X > BUCKETTABLESIZE - 1)
return ((uinT16) (BUCKETTABLESIZE - 1));
return (uinT16) floor((FLOAT64) X);
} // NormalBucket
/**
* This routine determines which bucket x falls into in the
* discrete uniform distribution defined by
* BUCKETTABLESIZE. x values which exceed the range of
* the discrete distribution are clipped.
* @param ParamDesc used to identify circular dimensions
* @param x value to be normalized
* @param Mean center of range of uniform distribution
* @param StdDev 1/2 the range of the uniform distribution
* @return Bucket number into which x falls
* @note Exceptions: None
* @note History: 6/5/89, DSJ, Created.
*/
uinT16 UniformBucket(PARAM_DESC *ParamDesc,
FLOAT32 x,
FLOAT32 Mean,
FLOAT32 StdDev) {
FLOAT32 X;
// wraparound circular parameters if necessary
if (ParamDesc->Circular) {
if (x - Mean > ParamDesc->HalfRange)
x -= ParamDesc->Range;
else if (x - Mean < -ParamDesc->HalfRange)
x += ParamDesc->Range;
}
X = ((x - Mean) / (2 * StdDev) * BUCKETTABLESIZE + BUCKETTABLESIZE / 2.0);
if (X < 0)
return 0;
if (X > BUCKETTABLESIZE - 1)
return (uinT16) (BUCKETTABLESIZE - 1);
return (uinT16) floor((FLOAT64) X);
} // UniformBucket
/**
* This routine performs a chi-square goodness of fit test
* on the histogram data in the Buckets data structure. TRUE
* is returned if the histogram matches the probability
* distribution which was specified when the Buckets
* structure was originally created. Otherwise FALSE is
* returned.
* @param Buckets histogram data to perform chi-square test on
* @return TRUE if samples match distribution, FALSE otherwise
* @note Exceptions: None
* @note History: 6/5/89, DSJ, Created.
*/
BOOL8 DistributionOK(BUCKETS *Buckets) {
FLOAT32 FrequencyDifference;
FLOAT32 TotalDifference;
int i;
// compute how well the histogram matches the expected histogram
TotalDifference = 0.0;
for (i = 0; i < Buckets->NumberOfBuckets; i++) {
FrequencyDifference = Buckets->Count[i] - Buckets->ExpectedCount[i];
TotalDifference += (FrequencyDifference * FrequencyDifference) /
Buckets->ExpectedCount[i];
}
// test to see if the difference is more than expected
if (TotalDifference > Buckets->ChiSquared)
return FALSE;
else
return TRUE;
} // DistributionOK
/**
* This routine frees the memory used by the statistics
* data structure.
* @param Statistics pointer to data structure to be freed
* @return None
* @note Exceptions: None
* @note History: 6/5/89, DSJ, Created.
*/
void FreeStatistics(STATISTICS *Statistics) {
memfree (Statistics->CoVariance);
memfree (Statistics->Min);
memfree (Statistics->Max);
memfree(Statistics);
} // FreeStatistics
/**
* This routine properly frees the memory used by a BUCKETS.
*
* @param buckets pointer to data structure to be freed
*/
void FreeBuckets(BUCKETS *buckets) {
Efree(buckets->Count);
Efree(buckets->ExpectedCount);
Efree(buckets);
} // FreeBuckets
/**
* This routine frees the memory consumed by the specified
* cluster and all of its subclusters. This is done by
* recursive calls to FreeCluster().
*
* @param Cluster pointer to cluster to be freed
*
* @return None
*
* @note Exceptions: None
* @note History: 6/6/89, DSJ, Created.
*/
void FreeCluster(CLUSTER *Cluster) {
if (Cluster != NULL) {
FreeCluster (Cluster->Left);
FreeCluster (Cluster->Right);
memfree(Cluster);
}
} // FreeCluster
/**
* This routine computes the degrees of freedom that should
* be used in a chi-squared test with the specified number of
* histogram buckets. The result is always rounded up to
* the next even number so that the value of chi-squared can be
* computed more easily. This will cause the value of
* chi-squared to be higher than the optimum value, resulting
* in the chi-square test being more lenient than optimum.
* @param Distribution distribution being tested for
* @param HistogramBuckets number of buckets in chi-square test
* @return The number of degrees of freedom for a chi-square test
* @note Exceptions: none
* @note History: Thu Aug 3 14:04:18 1989, DSJ, Created.
*/
uinT16 DegreesOfFreedom(DISTRIBUTION Distribution, uinT16 HistogramBuckets) {
static uinT8 DegreeOffsets[] = { 3, 3, 1 };
uinT16 AdjustedNumBuckets;
AdjustedNumBuckets = HistogramBuckets - DegreeOffsets[(int) Distribution];
if (Odd (AdjustedNumBuckets))
AdjustedNumBuckets++;
return (AdjustedNumBuckets);
} // DegreesOfFreedom
/**
* This routine is used to search a list of histogram data
* structures to find one with the specified number of
* buckets. It is called by the list search routines.
* @param arg1 current histogram being tested for a match
* @param arg2 match key
* @return TRUE if arg1 matches arg2
* @note Exceptions: none
* @note History: Thu Aug 3 14:17:33 1989, DSJ, Created.
*/
int NumBucketsMatch(void *arg1, // BUCKETS *Histogram,
void *arg2) { // uinT16 *DesiredNumberOfBuckets)
BUCKETS *Histogram = (BUCKETS *) arg1;
uinT16 *DesiredNumberOfBuckets = (uinT16 *) arg2;
return (*DesiredNumberOfBuckets == Histogram->NumberOfBuckets);
} // NumBucketsMatch
/**
* This routine is used to search a list for a list node
* whose contents match Key. It is called by the list
* delete_d routine.
* @return TRUE if ListNode matches Key
* @note Exceptions: none
* @note History: Thu Aug 3 14:23:58 1989, DSJ, Created.
*/
int ListEntryMatch(void *arg1, //ListNode
void *arg2) { //Key
return (arg1 == arg2);
} // ListEntryMatch
/**
* This routine multiplies each ExpectedCount histogram entry
* by NewSampleCount/OldSampleCount so that the histogram
* is now adjusted to the new sample count.
* @param Buckets histogram data structure to adjust
* @param NewSampleCount new sample count to adjust to
* @return none
* @note Exceptions: none
* @note History: Thu Aug 3 14:31:14 1989, DSJ, Created.
*/
void AdjustBuckets(BUCKETS *Buckets, uinT32 NewSampleCount) {
int i;
FLOAT64 AdjustFactor;
AdjustFactor = (((FLOAT64) NewSampleCount) /
((FLOAT64) Buckets->SampleCount));
for (i = 0; i < Buckets->NumberOfBuckets; i++) {
Buckets->ExpectedCount[i] *= AdjustFactor;
}
Buckets->SampleCount = NewSampleCount;
} // AdjustBuckets
/**
* This routine sets the bucket counts in the specified histogram
* to zero.
* @param Buckets histogram data structure to init
* @return none
* @note Exceptions: none
* @note History: Thu Aug 3 14:31:14 1989, DSJ, Created.
*/
void InitBuckets(BUCKETS *Buckets) {
int i;
for (i = 0; i < Buckets->NumberOfBuckets; i++) {
Buckets->Count[i] = 0;
}
} // InitBuckets
/**
* This routine is used to search a list of structures which
* hold pre-computed chi-squared values for a chi-squared
* value whose corresponding alpha field matches the alpha
* field of SearchKey.
*
* It is called by the list search routines.
*
* @param arg1 chi-squared struct being tested for a match
* @param arg2 chi-squared struct that is the search key
* @return TRUE if ChiStruct's Alpha matches SearchKey's Alpha
* @note Exceptions: none
* @note History: Thu Aug 3 14:17:33 1989, DSJ, Created.
*/
int AlphaMatch(void *arg1, //CHISTRUCT *ChiStruct,
void *arg2) { //CHISTRUCT *SearchKey)
CHISTRUCT *ChiStruct = (CHISTRUCT *) arg1;
CHISTRUCT *SearchKey = (CHISTRUCT *) arg2;
return (ChiStruct->Alpha == SearchKey->Alpha);
} // AlphaMatch
/**
* This routine allocates a new data structure which is used
* to hold a chi-squared value along with its associated
* number of degrees of freedom and alpha value.
*
* @param DegreesOfFreedom degrees of freedom for new chi value
* @param Alpha confidence level for new chi value
* @return none
* @note Exceptions: none
* @note History: Fri Aug 4 11:04:59 1989, DSJ, Created.
*/
CHISTRUCT *NewChiStruct(uinT16 DegreesOfFreedom, FLOAT64 Alpha) {
CHISTRUCT *NewChiStruct;
NewChiStruct = (CHISTRUCT *) Emalloc (sizeof (CHISTRUCT));
NewChiStruct->DegreesOfFreedom = DegreesOfFreedom;
NewChiStruct->Alpha = Alpha;
return (NewChiStruct);
} // NewChiStruct
/**
* This routine attempts to find an x value at which Function
* goes to zero (i.e. a root of the function ). It will only
* work correctly if a solution actually exists and there
* are no extrema between the solution and the InitialGuess.
* The algorithms used are extremely primitive.
*
* @param Function function whose zero is to be found
* @param FunctionParams arbitrary data to pass to function
* @param InitialGuess point to start solution search at
* @param Accuracy maximum allowed error
* @return Solution of function ( x for which f(x) = 0 ).
* @note Exceptions: none
* @note History: Fri Aug 4 11:08:59 1989, DSJ, Created.
*/
FLOAT64
Solve (SOLVEFUNC Function,
void *FunctionParams, FLOAT64 InitialGuess, FLOAT64 Accuracy)
#define INITIALDELTA 0.1
#define DELTARATIO 0.1
{
FLOAT64 x;
FLOAT64 f;
FLOAT64 Slope;
FLOAT64 Delta;
FLOAT64 NewDelta;
FLOAT64 xDelta;
FLOAT64 LastPosX, LastNegX;
x = InitialGuess;
Delta = INITIALDELTA;
LastPosX = MAX_FLOAT32;
LastNegX = -MAX_FLOAT32;
f = (*Function) ((CHISTRUCT *) FunctionParams, x);
while (Abs (LastPosX - LastNegX) > Accuracy) {
// keep track of outer bounds of current estimate
if (f < 0)
LastNegX = x;
else
LastPosX = x;
// compute the approx. slope of f(x) at the current point
Slope =
((*Function) ((CHISTRUCT *) FunctionParams, x + Delta) - f) / Delta;
// compute the next solution guess */
xDelta = f / Slope;
x -= xDelta;
// reduce the delta used for computing slope to be a fraction of
//the amount moved to get to the new guess
NewDelta = Abs (xDelta) * DELTARATIO;
if (NewDelta < Delta)
Delta = NewDelta;
// compute the value of the function at the new guess
f = (*Function) ((CHISTRUCT *) FunctionParams, x);
}
return (x);
} // Solve
/**
* This routine computes the area under a chi density curve
* from 0 to x, minus the desired area under the curve. The
* number of degrees of freedom of the chi curve is specified
* in the ChiParams structure. The desired area is also
* specified in the ChiParams structure as Alpha ( or 1 minus
* the desired area ). This routine is intended to be passed
* to the Solve() function to find the value of chi-squared
* which will yield a desired area under the right tail of
* the chi density curve. The function will only work for
* even degrees of freedom. The equations are based on
* integrating the chi density curve in parts to obtain
* a series that can be used to compute the area under the
* curve.
* @param ChiParams contains degrees of freedom and alpha
* @param x value of chi-squared to evaluate
* @return Error between actual and desired area under the chi curve.
* @note Exceptions: none
* @note History: Fri Aug 4 12:48:41 1989, DSJ, Created.
*/
FLOAT64 ChiArea(CHISTRUCT *ChiParams, FLOAT64 x) {
int i, N;
FLOAT64 SeriesTotal;
FLOAT64 Denominator;
FLOAT64 PowerOfx;
N = ChiParams->DegreesOfFreedom / 2 - 1;
SeriesTotal = 1;
Denominator = 1;
PowerOfx = 1;
for (i = 1; i <= N; i++) {
Denominator *= 2 * i;
PowerOfx *= x;
SeriesTotal += PowerOfx / Denominator;
}
return ((SeriesTotal * exp (-0.5 * x)) - ChiParams->Alpha);
} // ChiArea
/**
* This routine looks at all samples in the specified cluster.
* It computes a running estimate of the percentage of the
* charaters which have more than 1 sample in the cluster.
* When this percentage exceeds MaxIllegal, TRUE is returned.
* Otherwise FALSE is returned. The CharID
* fields must contain integers which identify the training
* characters which were used to generate the sample. One
* integer is used for each sample. The NumChar field in
* the Clusterer must contain the number of characters in the
* training set. All CharID fields must be between 0 and
* NumChar-1. The main function of this routine is to help
* identify clusters which need to be split further, i.e. if
* numerous training characters have 2 or more features which are
* contained in the same cluster, then the cluster should be
* split.
*
* @param Clusterer data structure holding cluster tree
* @param Cluster cluster containing samples to be tested
* @param MaxIllegal max percentage of samples allowed to have
* more than 1 feature in the cluster
* @return TRUE if the cluster should be split, FALSE otherwise.
* @note Exceptions: none
* @note History: Wed Aug 30 11:13:05 1989, DSJ, Created.
* 2/22/90, DSJ, Added MaxIllegal control rather than always
* splitting illegal clusters.
*/
BOOL8
MultipleCharSamples (CLUSTERER * Clusterer,
CLUSTER * Cluster, FLOAT32 MaxIllegal)
#define ILLEGAL_CHAR 2
{
static BOOL8 *CharFlags = NULL;
static inT32 NumFlags = 0;
int i;
LIST SearchState;
SAMPLE *Sample;
inT32 CharID;
inT32 NumCharInCluster;
inT32 NumIllegalInCluster;
FLOAT32 PercentIllegal;
// initial estimate assumes that no illegal chars exist in the cluster
NumCharInCluster = Cluster->SampleCount;
NumIllegalInCluster = 0;
if (Clusterer->NumChar > NumFlags) {
if (CharFlags != NULL)
memfree(CharFlags);
NumFlags = Clusterer->NumChar;
CharFlags = (BOOL8 *) Emalloc (NumFlags * sizeof (BOOL8));
}
for (i = 0; i < NumFlags; i++)
CharFlags[i] = FALSE;
// find each sample in the cluster and check if we have seen it before
InitSampleSearch(SearchState, Cluster);
while ((Sample = NextSample (&SearchState)) != NULL) {
CharID = Sample->CharID;
if (CharFlags[CharID] == FALSE) {
CharFlags[CharID] = TRUE;
}
else {
if (CharFlags[CharID] == TRUE) {
NumIllegalInCluster++;
CharFlags[CharID] = ILLEGAL_CHAR;
}
NumCharInCluster--;
PercentIllegal = (FLOAT32) NumIllegalInCluster / NumCharInCluster;
if (PercentIllegal > MaxIllegal) {
destroy(SearchState);
return (TRUE);
}
}
}
return (FALSE);
} // MultipleCharSamples
/**
* Compute the inverse of a matrix using LU decomposition with partial pivoting.
* The return value is the sum of norms of the off-diagonal terms of the
* product of a and inv. (A measure of the error.)
*/
double InvertMatrix(const float* input, int size, float* inv) {
// Allocate memory for the 2D arrays.
GENERIC_2D_ARRAY<double> U(size, size, 0.0);
GENERIC_2D_ARRAY<double> U_inv(size, size, 0.0);
GENERIC_2D_ARRAY<double> L(size, size, 0.0);
// Initialize the working matrices. U starts as input, L as I and U_inv as O.
int row;
int col;
for (row = 0; row < size; row++) {
for (col = 0; col < size; col++) {
U[row][col] = input[row*size + col];
L[row][col] = row == col ? 1.0 : 0.0;
U_inv[row][col] = 0.0;
}
}
// Compute forward matrix by inversion by LU decomposition of input.
for (col = 0; col < size; ++col) {
// Find best pivot
int best_row = 0;
double best_pivot = -1.0;
for (row = col; row < size; ++row) {
if (Abs(U[row][col]) > best_pivot) {
best_pivot = Abs(U[row][col]);
best_row = row;
}
}
// Exchange pivot rows.
if (best_row != col) {
for (int k = 0; k < size; ++k) {
double tmp = U[best_row][k];
U[best_row][k] = U[col][k];
U[col][k] = tmp;
tmp = L[best_row][k];
L[best_row][k] = L[col][k];
L[col][k] = tmp;
}
}
// Now do the pivot itself.
for (row = col + 1; row < size; ++row) {
double ratio = -U[row][col] / U[col][col];
for (int j = col; j < size; ++j) {
U[row][j] += U[col][j] * ratio;
}
for (int k = 0; k < size; ++k) {
L[row][k] += L[col][k] * ratio;
}
}
}
// Next invert U.
for (col = 0; col < size; ++col) {
U_inv[col][col] = 1.0 / U[col][col];
for (row = col - 1; row >= 0; --row) {
double total = 0.0;
for (int k = col; k > row; --k) {
total += U[row][k] * U_inv[k][col];
}
U_inv[row][col] = -total / U[row][row];
}
}
// Now the answer is U_inv.L.
for (row = 0; row < size; row++) {
for (col = 0; col < size; col++) {
double sum = 0.0;
for (int k = row; k < size; ++k) {
sum += U_inv[row][k] * L[k][col];
}
inv[row*size + col] = sum;
}
}
// Check matrix product.
double error_sum = 0.0;
for (row = 0; row < size; row++) {
for (col = 0; col < size; col++) {
double sum = 0.0;
for (int k = 0; k < size; ++k) {
sum += input[row*size + k] * inv[k *size + col];
}
if (row != col) {
error_sum += Abs(sum);
}
}
}
return error_sum;
}