mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2024-11-24 11:09:06 +08:00
4d514d5a60
git-svn-id: https://tesseract-ocr.googlecode.com/svn/trunk@878 d0cd1f9f-072b-0410-8dd7-cf729c803f20
588 lines
24 KiB
C++
588 lines
24 KiB
C++
///////////////////////////////////////////////////////////////////////
|
|
// File: blamer.cpp
|
|
// Description: Module allowing precise error causes to be allocated.
|
|
// Author: Rike Antonova
|
|
// Refactored: Ray Smith
|
|
// Created: Mon Feb 04 14:37:01 PST 2013
|
|
//
|
|
// (C) Copyright 2013, Google Inc.
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////
|
|
|
|
#include "blamer.h"
|
|
#include "blobs.h"
|
|
#include "matrix.h"
|
|
#include "normalis.h"
|
|
#include "pageres.h"
|
|
|
|
// Names for each value of IncorrectResultReason enum. Keep in sync.
|
|
const char kBlameCorrect[] = "corr";
|
|
const char kBlameClassifier[] = "cl";
|
|
const char kBlameChopper[] = "chop";
|
|
const char kBlameClassLMTradeoff[] = "cl/LM";
|
|
const char kBlamePageLayout[] = "pglt";
|
|
const char kBlameSegsearchHeur[] = "ss_heur";
|
|
const char kBlameSegsearchPP[] = "ss_pp";
|
|
const char kBlameClassOldLMTradeoff[] = "cl/old_LM";
|
|
const char kBlameAdaption[] = "adapt";
|
|
const char kBlameNoTruthSplit[] = "no_tr_spl";
|
|
const char kBlameNoTruth[] = "no_tr";
|
|
const char kBlameUnknown[] = "unkn";
|
|
|
|
const char * const kIncorrectResultReasonNames[] = {
|
|
kBlameCorrect,
|
|
kBlameClassifier,
|
|
kBlameChopper,
|
|
kBlameClassLMTradeoff,
|
|
kBlamePageLayout,
|
|
kBlameSegsearchHeur,
|
|
kBlameSegsearchPP,
|
|
kBlameClassOldLMTradeoff,
|
|
kBlameAdaption,
|
|
kBlameNoTruthSplit,
|
|
kBlameNoTruth,
|
|
kBlameUnknown
|
|
};
|
|
|
|
const char *BlamerBundle::IncorrectReasonName(IncorrectResultReason irr) {
|
|
return kIncorrectResultReasonNames[irr];
|
|
}
|
|
|
|
const char *BlamerBundle::IncorrectReason() const {
|
|
return kIncorrectResultReasonNames[incorrect_result_reason_];
|
|
}
|
|
|
|
// Functions to setup the blamer.
|
|
// Whole word string, whole word bounding box.
|
|
void BlamerBundle::SetWordTruth(const UNICHARSET& unicharset,
|
|
const char* truth_str, const TBOX& word_box) {
|
|
truth_word_.InsertBox(0, word_box);
|
|
truth_has_char_boxes_ = false;
|
|
// Encode the string as UNICHAR_IDs.
|
|
GenericVector<UNICHAR_ID> encoding;
|
|
GenericVector<char> lengths;
|
|
unicharset.encode_string(truth_str, false, &encoding, &lengths, NULL);
|
|
int total_length = 0;
|
|
for (int i = 0; i < encoding.size(); total_length += lengths[i++]) {
|
|
STRING uch(truth_str + total_length);
|
|
uch.truncate_at(lengths[i] - total_length);
|
|
UNICHAR_ID id = encoding[i];
|
|
if (id != INVALID_UNICHAR_ID) uch = unicharset.get_normed_unichar(id);
|
|
truth_text_.push_back(uch);
|
|
}
|
|
}
|
|
|
|
// Single "character" string, "character" bounding box.
|
|
// May be called multiple times to indicate the characters in a word.
|
|
void BlamerBundle::SetSymbolTruth(const UNICHARSET& unicharset,
|
|
const char* char_str, const TBOX& char_box) {
|
|
STRING symbol_str(char_str);
|
|
UNICHAR_ID id = unicharset.unichar_to_id(char_str);
|
|
if (id != INVALID_UNICHAR_ID) {
|
|
STRING normed_uch(unicharset.get_normed_unichar(id));
|
|
if (normed_uch.length() > 0) symbol_str = normed_uch;
|
|
}
|
|
int length = truth_word_.length();
|
|
truth_text_.push_back(symbol_str);
|
|
truth_word_.InsertBox(length, char_box);
|
|
if (length == 0)
|
|
truth_has_char_boxes_ = true;
|
|
else if (truth_word_.BlobBox(length - 1) == char_box)
|
|
truth_has_char_boxes_ = false;
|
|
}
|
|
|
|
// Marks that there is something wrong with the truth text, like it contains
|
|
// reject characters.
|
|
void BlamerBundle::SetRejectedTruth() {
|
|
incorrect_result_reason_ = IRR_NO_TRUTH;
|
|
truth_has_char_boxes_ = false;
|
|
}
|
|
|
|
// Returns true if the provided word_choice is correct.
|
|
bool BlamerBundle::ChoiceIsCorrect(const WERD_CHOICE* word_choice) const {
|
|
if (word_choice == NULL) return false;
|
|
const UNICHARSET* uni_set = word_choice->unicharset();
|
|
STRING normed_choice_str;
|
|
for (int i = 0; i < word_choice->length(); ++i) {
|
|
normed_choice_str +=
|
|
uni_set->get_normed_unichar(word_choice->unichar_id(i));
|
|
}
|
|
STRING truth_str = TruthString();
|
|
return truth_str == normed_choice_str;
|
|
}
|
|
|
|
void BlamerBundle::FillDebugString(const STRING &msg,
|
|
const WERD_CHOICE *choice,
|
|
STRING *debug) {
|
|
(*debug) += "Truth ";
|
|
for (int i = 0; i < this->truth_text_.length(); ++i) {
|
|
(*debug) += this->truth_text_[i];
|
|
}
|
|
if (!this->truth_has_char_boxes_) (*debug) += " (no char boxes)";
|
|
if (choice != NULL) {
|
|
(*debug) += " Choice ";
|
|
STRING choice_str;
|
|
choice->string_and_lengths(&choice_str, NULL);
|
|
(*debug) += choice_str;
|
|
}
|
|
if (msg.length() > 0) {
|
|
(*debug) += "\n";
|
|
(*debug) += msg;
|
|
}
|
|
(*debug) += "\n";
|
|
}
|
|
|
|
// Sets up the norm_truth_word from truth_word using the given DENORM.
|
|
void BlamerBundle::SetupNormTruthWord(const DENORM& denorm) {
|
|
// TODO(rays) Is this the last use of denorm in WERD_RES and can it go?
|
|
norm_box_tolerance_ = kBlamerBoxTolerance * denorm.x_scale();
|
|
TPOINT topleft;
|
|
TPOINT botright;
|
|
TPOINT norm_topleft;
|
|
TPOINT norm_botright;
|
|
for (int b = 0; b < truth_word_.length(); ++b) {
|
|
const TBOX &box = truth_word_.BlobBox(b);
|
|
topleft.x = box.left();
|
|
topleft.y = box.top();
|
|
botright.x = box.right();
|
|
botright.y = box.bottom();
|
|
denorm.NormTransform(NULL, topleft, &norm_topleft);
|
|
denorm.NormTransform(NULL, botright, &norm_botright);
|
|
TBOX norm_box(norm_topleft.x, norm_botright.y,
|
|
norm_botright.x, norm_topleft.y);
|
|
norm_truth_word_.InsertBox(b, norm_box);
|
|
}
|
|
}
|
|
|
|
// Splits *this into two pieces in bundle1 and bundle2 (preallocated, empty
|
|
// bundles) where the right edge/ of the left-hand word is word1_right,
|
|
// and the left edge of the right-hand word is word2_left.
|
|
void BlamerBundle::SplitBundle(int word1_right, int word2_left, bool debug,
|
|
BlamerBundle* bundle1,
|
|
BlamerBundle* bundle2) const {
|
|
STRING debug_str;
|
|
// Find truth boxes that correspond to the split in the blobs.
|
|
int b;
|
|
int begin2_truth_index = -1;
|
|
if (incorrect_result_reason_ != IRR_NO_TRUTH &&
|
|
truth_has_char_boxes_) {
|
|
debug_str = "Looking for truth split at";
|
|
debug_str.add_str_int(" end1_x ", word1_right);
|
|
debug_str.add_str_int(" begin2_x ", word2_left);
|
|
debug_str += "\nnorm_truth_word boxes:\n";
|
|
if (norm_truth_word_.length() > 1) {
|
|
norm_truth_word_.BlobBox(0).print_to_str(&debug_str);
|
|
for (b = 1; b < norm_truth_word_.length(); ++b) {
|
|
norm_truth_word_.BlobBox(b).print_to_str(&debug_str);
|
|
if ((abs(word1_right - norm_truth_word_.BlobBox(b - 1).right()) <
|
|
norm_box_tolerance_) &&
|
|
(abs(word2_left - norm_truth_word_.BlobBox(b).left()) <
|
|
norm_box_tolerance_)) {
|
|
begin2_truth_index = b;
|
|
debug_str += "Split found";
|
|
break;
|
|
}
|
|
}
|
|
debug_str += '\n';
|
|
}
|
|
}
|
|
// Populate truth information in word and word2 with the first and second
|
|
// part of the original truth.
|
|
if (begin2_truth_index > 0) {
|
|
bundle1->truth_has_char_boxes_ = true;
|
|
bundle1->norm_box_tolerance_ = norm_box_tolerance_;
|
|
bundle2->truth_has_char_boxes_ = true;
|
|
bundle2->norm_box_tolerance_ = norm_box_tolerance_;
|
|
BlamerBundle *curr_bb = bundle1;
|
|
for (b = 0; b < norm_truth_word_.length(); ++b) {
|
|
if (b == begin2_truth_index) curr_bb = bundle2;
|
|
curr_bb->norm_truth_word_.InsertBox(b, norm_truth_word_.BlobBox(b));
|
|
curr_bb->truth_word_.InsertBox(b, truth_word_.BlobBox(b));
|
|
curr_bb->truth_text_.push_back(truth_text_[b]);
|
|
}
|
|
} else if (incorrect_result_reason_ == IRR_NO_TRUTH) {
|
|
bundle1->incorrect_result_reason_ = IRR_NO_TRUTH;
|
|
bundle2->incorrect_result_reason_ = IRR_NO_TRUTH;
|
|
} else {
|
|
debug_str += "Truth split not found";
|
|
debug_str += truth_has_char_boxes_ ?
|
|
"\n" : " (no truth char boxes)\n";
|
|
bundle1->SetBlame(IRR_NO_TRUTH_SPLIT, debug_str, NULL, debug);
|
|
bundle2->SetBlame(IRR_NO_TRUTH_SPLIT, debug_str, NULL, debug);
|
|
}
|
|
}
|
|
|
|
// "Joins" the blames from bundle1 and bundle2 into *this.
|
|
void BlamerBundle::JoinBlames(const BlamerBundle& bundle1,
|
|
const BlamerBundle& bundle2, bool debug) {
|
|
STRING debug_str;
|
|
IncorrectResultReason irr = incorrect_result_reason_;
|
|
if (irr != IRR_NO_TRUTH_SPLIT) debug_str = "";
|
|
if (bundle1.incorrect_result_reason_ != IRR_CORRECT &&
|
|
bundle1.incorrect_result_reason_ != IRR_NO_TRUTH &&
|
|
bundle1.incorrect_result_reason_ != IRR_NO_TRUTH_SPLIT) {
|
|
debug_str += "Blame from part 1: ";
|
|
debug_str += bundle1.debug_;
|
|
irr = bundle1.incorrect_result_reason_;
|
|
}
|
|
if (bundle2.incorrect_result_reason_ != IRR_CORRECT &&
|
|
bundle2.incorrect_result_reason_ != IRR_NO_TRUTH &&
|
|
bundle2.incorrect_result_reason_ != IRR_NO_TRUTH_SPLIT) {
|
|
debug_str += "Blame from part 2: ";
|
|
debug_str += bundle2.debug_;
|
|
if (irr == IRR_CORRECT) {
|
|
irr = bundle2.incorrect_result_reason_;
|
|
} else if (irr != bundle2.incorrect_result_reason_) {
|
|
irr = IRR_UNKNOWN;
|
|
}
|
|
}
|
|
incorrect_result_reason_ = irr;
|
|
if (irr != IRR_CORRECT && irr != IRR_NO_TRUTH) {
|
|
SetBlame(irr, debug_str, NULL, debug);
|
|
}
|
|
}
|
|
|
|
// If a blob with the same bounding box as one of the truth character
|
|
// bounding boxes is not classified as the corresponding truth character
|
|
// blames character classifier for incorrect answer.
|
|
void BlamerBundle::BlameClassifier(const UNICHARSET& unicharset,
|
|
const TBOX& blob_box,
|
|
const BLOB_CHOICE_LIST& choices,
|
|
bool debug) {
|
|
if (!truth_has_char_boxes_ ||
|
|
incorrect_result_reason_ != IRR_CORRECT)
|
|
return; // Nothing to do here.
|
|
|
|
for (int b = 0; b < norm_truth_word_.length(); ++b) {
|
|
const TBOX &truth_box = norm_truth_word_.BlobBox(b);
|
|
// Note that we are more strict on the bounding box boundaries here
|
|
// than in other places (chopper, segmentation search), since we do
|
|
// not have the ability to check the previous and next bounding box.
|
|
if (blob_box.x_almost_equal(truth_box, norm_box_tolerance_/2)) {
|
|
bool found = false;
|
|
bool incorrect_adapted = false;
|
|
UNICHAR_ID incorrect_adapted_id = INVALID_UNICHAR_ID;
|
|
const char *truth_str = truth_text_[b].string();
|
|
// We promise not to modify the list or its contents, using a
|
|
// const BLOB_CHOICE* below.
|
|
BLOB_CHOICE_IT choices_it(const_cast<BLOB_CHOICE_LIST*>(&choices));
|
|
for (choices_it.mark_cycle_pt(); !choices_it.cycled_list();
|
|
choices_it.forward()) {
|
|
const BLOB_CHOICE* choice = choices_it.data();
|
|
if (strcmp(truth_str, unicharset.get_normed_unichar(
|
|
choice->unichar_id())) == 0) {
|
|
found = true;
|
|
break;
|
|
} else if (choice->IsAdapted()) {
|
|
incorrect_adapted = true;
|
|
incorrect_adapted_id = choice->unichar_id();
|
|
}
|
|
} // end choices_it for loop
|
|
if (!found) {
|
|
STRING debug_str = "unichar ";
|
|
debug_str += truth_str;
|
|
debug_str += " not found in classification list";
|
|
SetBlame(IRR_CLASSIFIER, debug_str, NULL, debug);
|
|
} else if (incorrect_adapted) {
|
|
STRING debug_str = "better rating for adapted ";
|
|
debug_str += unicharset.id_to_unichar(incorrect_adapted_id);
|
|
debug_str += " than for correct ";
|
|
debug_str += truth_str;
|
|
SetBlame(IRR_ADAPTION, debug_str, NULL, debug);
|
|
}
|
|
break;
|
|
}
|
|
} // end iterating over blamer_bundle->norm_truth_word
|
|
}
|
|
|
|
// Checks whether chops were made at all the character bounding box
|
|
// boundaries in word->truth_word. If not - blames the chopper for an
|
|
// incorrect answer.
|
|
void BlamerBundle::SetChopperBlame(const WERD_RES* word, bool debug) {
|
|
if (NoTruth() || !truth_has_char_boxes_ ||
|
|
word->chopped_word->blobs.empty()) {
|
|
return;
|
|
}
|
|
STRING debug_str;
|
|
bool missing_chop = false;
|
|
int num_blobs = word->chopped_word->blobs.size();
|
|
int box_index = 0;
|
|
int blob_index = 0;
|
|
inT16 truth_x;
|
|
while (box_index < truth_word_.length() && blob_index < num_blobs) {
|
|
truth_x = norm_truth_word_.BlobBox(box_index).right();
|
|
TBLOB * curr_blob = word->chopped_word->blobs[blob_index];
|
|
if (curr_blob->bounding_box().right() < truth_x - norm_box_tolerance_) {
|
|
++blob_index;
|
|
continue; // encountered an extra chop, keep looking
|
|
} else if (curr_blob->bounding_box().right() >
|
|
truth_x + norm_box_tolerance_) {
|
|
missing_chop = true;
|
|
break;
|
|
} else {
|
|
++blob_index;
|
|
}
|
|
}
|
|
if (missing_chop || box_index < norm_truth_word_.length()) {
|
|
STRING debug_str;
|
|
if (missing_chop) {
|
|
debug_str.add_str_int("Detected missing chop (tolerance=",
|
|
norm_box_tolerance_);
|
|
debug_str += ") at Bounding Box=";
|
|
TBLOB * curr_blob = word->chopped_word->blobs[blob_index];
|
|
curr_blob->bounding_box().print_to_str(&debug_str);
|
|
debug_str.add_str_int("\nNo chop for truth at x=", truth_x);
|
|
} else {
|
|
debug_str.add_str_int("Missing chops for last ",
|
|
norm_truth_word_.length() - box_index);
|
|
debug_str += " truth box(es)";
|
|
}
|
|
debug_str += "\nMaximally chopped word boxes:\n";
|
|
for (blob_index = 0; blob_index < num_blobs; ++blob_index) {
|
|
TBLOB * curr_blob = word->chopped_word->blobs[blob_index];
|
|
curr_blob->bounding_box().print_to_str(&debug_str);
|
|
debug_str += '\n';
|
|
}
|
|
debug_str += "Truth bounding boxes:\n";
|
|
for (box_index = 0; box_index < norm_truth_word_.length(); ++box_index) {
|
|
norm_truth_word_.BlobBox(box_index).print_to_str(&debug_str);
|
|
debug_str += '\n';
|
|
}
|
|
SetBlame(IRR_CHOPPER, debug_str, word->best_choice, debug);
|
|
}
|
|
}
|
|
|
|
// Blames the classifier or the language model if, after running only the
|
|
// chopper, best_choice is incorrect and no blame has been yet set.
|
|
// Blames the classifier if best_choice is classifier's top choice and is a
|
|
// dictionary word (i.e. language model could not have helped).
|
|
// Otherwise, blames the language model (formerly permuter word adjustment).
|
|
void BlamerBundle::BlameClassifierOrLangModel(
|
|
const WERD_RES* word,
|
|
const UNICHARSET& unicharset, bool valid_permuter, bool debug) {
|
|
if (valid_permuter) {
|
|
// Find out whether best choice is a top choice.
|
|
best_choice_is_dict_and_top_choice_ = true;
|
|
for (int i = 0; i < word->best_choice->length(); ++i) {
|
|
BLOB_CHOICE_IT blob_choice_it(word->GetBlobChoices(i));
|
|
ASSERT_HOST(!blob_choice_it.empty());
|
|
BLOB_CHOICE *first_choice = NULL;
|
|
for (blob_choice_it.mark_cycle_pt(); !blob_choice_it.cycled_list();
|
|
blob_choice_it.forward()) { // find first non-fragment choice
|
|
if (!(unicharset.get_fragment(blob_choice_it.data()->unichar_id()))) {
|
|
first_choice = blob_choice_it.data();
|
|
break;
|
|
}
|
|
}
|
|
ASSERT_HOST(first_choice != NULL);
|
|
if (first_choice->unichar_id() != word->best_choice->unichar_id(i)) {
|
|
best_choice_is_dict_and_top_choice_ = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
STRING debug_str;
|
|
if (best_choice_is_dict_and_top_choice_) {
|
|
debug_str = "Best choice is: incorrect, top choice, dictionary word";
|
|
debug_str += " with permuter ";
|
|
debug_str += word->best_choice->permuter_name();
|
|
} else {
|
|
debug_str = "Classifier/Old LM tradeoff is to blame";
|
|
}
|
|
SetBlame(best_choice_is_dict_and_top_choice_ ? IRR_CLASSIFIER
|
|
: IRR_CLASS_OLD_LM_TRADEOFF,
|
|
debug_str, word->best_choice, debug);
|
|
}
|
|
|
|
// Sets up the correct_segmentation_* to mark the correct bounding boxes.
|
|
void BlamerBundle::SetupCorrectSegmentation(const TWERD* word, bool debug) {
|
|
params_training_bundle_.StartHypothesisList();
|
|
if (incorrect_result_reason_ != IRR_CORRECT || !truth_has_char_boxes_)
|
|
return; // Nothing to do here.
|
|
|
|
STRING debug_str;
|
|
debug_str += "Blamer computing correct_segmentation_cols\n";
|
|
int curr_box_col = 0;
|
|
int next_box_col = 0;
|
|
int num_blobs = word->NumBlobs();
|
|
if (num_blobs == 0) return; // No blobs to play with.
|
|
int blob_index = 0;
|
|
inT16 next_box_x = word->blobs[blob_index]->bounding_box().right();
|
|
for (int truth_idx = 0; blob_index < num_blobs &&
|
|
truth_idx < norm_truth_word_.length();
|
|
++blob_index) {
|
|
++next_box_col;
|
|
inT16 curr_box_x = next_box_x;
|
|
if (blob_index + 1 < num_blobs)
|
|
next_box_x = word->blobs[blob_index + 1]->bounding_box().right();
|
|
inT16 truth_x = norm_truth_word_.BlobBox(truth_idx).right();
|
|
debug_str.add_str_int("Box x coord vs. truth: ", curr_box_x);
|
|
debug_str.add_str_int(" ", truth_x);
|
|
debug_str += "\n";
|
|
if (curr_box_x > (truth_x + norm_box_tolerance_)) {
|
|
break; // failed to find a matching box
|
|
} else if (curr_box_x >= truth_x - norm_box_tolerance_ && // matched
|
|
(blob_index + 1 >= num_blobs || // next box can't be included
|
|
next_box_x > truth_x + norm_box_tolerance_)) {
|
|
correct_segmentation_cols_.push_back(curr_box_col);
|
|
correct_segmentation_rows_.push_back(next_box_col-1);
|
|
++truth_idx;
|
|
debug_str.add_str_int("col=", curr_box_col);
|
|
debug_str.add_str_int(" row=", next_box_col-1);
|
|
debug_str += "\n";
|
|
curr_box_col = next_box_col;
|
|
}
|
|
}
|
|
if (blob_index < num_blobs || // trailing blobs
|
|
correct_segmentation_cols_.length() != norm_truth_word_.length()) {
|
|
debug_str.add_str_int("Blamer failed to find correct segmentation"
|
|
" (tolerance=", norm_box_tolerance_);
|
|
if (blob_index >= num_blobs) debug_str += " blob == NULL";
|
|
debug_str += ")\n";
|
|
debug_str.add_str_int(" path length ", correct_segmentation_cols_.length());
|
|
debug_str.add_str_int(" vs. truth ", norm_truth_word_.length());
|
|
debug_str += "\n";
|
|
SetBlame(IRR_UNKNOWN, debug_str, NULL, debug);
|
|
correct_segmentation_cols_.clear();
|
|
correct_segmentation_rows_.clear();
|
|
}
|
|
}
|
|
|
|
// Returns true if a guided segmentation search is needed.
|
|
bool BlamerBundle::GuidedSegsearchNeeded(const WERD_CHOICE *best_choice) const {
|
|
return incorrect_result_reason_ == IRR_CORRECT &&
|
|
!segsearch_is_looking_for_blame_ &&
|
|
truth_has_char_boxes_ &&
|
|
!ChoiceIsCorrect(best_choice);
|
|
}
|
|
|
|
// Setup ready to guide the segmentation search to the correct segmentation.
|
|
// The callback pp_cb is used to avoid a cyclic dependency.
|
|
// It calls into LMPainPoints::GenerateForBlamer by pre-binding the
|
|
// WERD_RES, and the LMPainPoints itself.
|
|
// pp_cb must be a permanent callback, and should be deleted by the caller.
|
|
void BlamerBundle::InitForSegSearch(const WERD_CHOICE *best_choice,
|
|
MATRIX* ratings, UNICHAR_ID wildcard_id,
|
|
bool debug, STRING *debug_str,
|
|
TessResultCallback2<bool, int, int>* cb) {
|
|
segsearch_is_looking_for_blame_ = true;
|
|
if (debug) {
|
|
tprintf("segsearch starting to look for blame\n");
|
|
}
|
|
// Fill pain points for any unclassifed blob corresponding to the
|
|
// correct segmentation state.
|
|
*debug_str += "Correct segmentation:\n";
|
|
for (int idx = 0; idx < correct_segmentation_cols_.length(); ++idx) {
|
|
debug_str->add_str_int("col=", correct_segmentation_cols_[idx]);
|
|
debug_str->add_str_int(" row=", correct_segmentation_rows_[idx]);
|
|
*debug_str += "\n";
|
|
if (!ratings->Classified(correct_segmentation_cols_[idx],
|
|
correct_segmentation_rows_[idx],
|
|
wildcard_id) &&
|
|
!cb->Run(correct_segmentation_cols_[idx],
|
|
correct_segmentation_rows_[idx])) {
|
|
segsearch_is_looking_for_blame_ = false;
|
|
*debug_str += "\nFailed to insert pain point\n";
|
|
SetBlame(IRR_SEGSEARCH_HEUR, *debug_str, best_choice, debug);
|
|
break;
|
|
}
|
|
} // end for blamer_bundle->correct_segmentation_cols/rows
|
|
}
|
|
// Returns true if the guided segsearch is in progress.
|
|
bool BlamerBundle::GuidedSegsearchStillGoing() const {
|
|
return segsearch_is_looking_for_blame_;
|
|
}
|
|
|
|
// The segmentation search has ended. Sets the blame appropriately.
|
|
void BlamerBundle::FinishSegSearch(const WERD_CHOICE *best_choice,
|
|
bool debug, STRING *debug_str) {
|
|
// If we are still looking for blame (i.e. best_choice is incorrect, but a
|
|
// path representing the correct segmentation could be constructed), we can
|
|
// blame segmentation search pain point prioritization if the rating of the
|
|
// path corresponding to the correct segmentation is better than that of
|
|
// best_choice (i.e. language model would have done the correct thing, but
|
|
// because of poor pain point prioritization the correct segmentation was
|
|
// never explored). Otherwise we blame the tradeoff between the language model
|
|
// and the classifier, since even after exploring the path corresponding to
|
|
// the correct segmentation incorrect best_choice would have been chosen.
|
|
// One special case when we blame the classifier instead is when best choice
|
|
// is incorrect, but it is a dictionary word and it classifier's top choice.
|
|
if (segsearch_is_looking_for_blame_) {
|
|
segsearch_is_looking_for_blame_ = false;
|
|
if (best_choice_is_dict_and_top_choice_) {
|
|
*debug_str = "Best choice is: incorrect, top choice, dictionary word";
|
|
*debug_str += " with permuter ";
|
|
*debug_str += best_choice->permuter_name();
|
|
SetBlame(IRR_CLASSIFIER, *debug_str, best_choice, debug);
|
|
} else if (best_correctly_segmented_rating_ <
|
|
best_choice->rating()) {
|
|
*debug_str += "Correct segmentation state was not explored";
|
|
SetBlame(IRR_SEGSEARCH_PP, *debug_str, best_choice, debug);
|
|
} else {
|
|
if (best_correctly_segmented_rating_ >=
|
|
WERD_CHOICE::kBadRating) {
|
|
*debug_str += "Correct segmentation paths were pruned by LM\n";
|
|
} else {
|
|
debug_str->add_str_double("Best correct segmentation rating ",
|
|
best_correctly_segmented_rating_);
|
|
debug_str->add_str_double(" vs. best choice rating ",
|
|
best_choice->rating());
|
|
}
|
|
SetBlame(IRR_CLASS_LM_TRADEOFF, *debug_str, best_choice, debug);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the bundle is null or still does not indicate the correct result,
|
|
// fix it and use some backup reason for the blame.
|
|
void BlamerBundle::LastChanceBlame(bool debug, WERD_RES* word) {
|
|
if (word->blamer_bundle == NULL) {
|
|
word->blamer_bundle = new BlamerBundle();
|
|
word->blamer_bundle->SetBlame(IRR_PAGE_LAYOUT, "LastChanceBlame",
|
|
word->best_choice, debug);
|
|
} else if (word->blamer_bundle->incorrect_result_reason_ == IRR_NO_TRUTH) {
|
|
word->blamer_bundle->SetBlame(IRR_NO_TRUTH, "Rejected truth",
|
|
word->best_choice, debug);
|
|
} else {
|
|
bool correct = word->blamer_bundle->ChoiceIsCorrect(word->best_choice);
|
|
IncorrectResultReason irr = word->blamer_bundle->incorrect_result_reason_;
|
|
if (irr == IRR_CORRECT && !correct) {
|
|
STRING debug_str = "Choice is incorrect after recognition";
|
|
word->blamer_bundle->SetBlame(IRR_UNKNOWN, debug_str, word->best_choice,
|
|
debug);
|
|
} else if (irr != IRR_CORRECT && correct) {
|
|
if (debug) {
|
|
tprintf("Corrected %s\n", word->blamer_bundle->debug_.string());
|
|
}
|
|
word->blamer_bundle->incorrect_result_reason_ = IRR_CORRECT;
|
|
word->blamer_bundle->debug_ = "";
|
|
}
|
|
}
|
|
}
|
|
|
|
// Sets the misadaption debug if this word is incorrect, as this word is
|
|
// being adapted to.
|
|
void BlamerBundle::SetMisAdaptionDebug(const WERD_CHOICE *best_choice,
|
|
bool debug) {
|
|
if (incorrect_result_reason_ != IRR_NO_TRUTH &&
|
|
!ChoiceIsCorrect(best_choice)) {
|
|
misadaption_debug_ ="misadapt to word (";
|
|
misadaption_debug_ += best_choice->permuter_name();
|
|
misadaption_debug_ += "): ";
|
|
FillDebugString("", best_choice, &misadaption_debug_);
|
|
if (debug) {
|
|
tprintf("%s\n", misadaption_debug_.string());
|
|
}
|
|
}
|
|
}
|
|
|