mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2024-11-27 20:59:36 +08:00
ec026cadfe
git-svn-id: https://tesseract-ocr.googlecode.com/svn/trunk@876 d0cd1f9f-072b-0410-8dd7-cf729c803f20
292 lines
12 KiB
C++
292 lines
12 KiB
C++
/**********************************************************************
|
|
* File: coutln.c (Formerly: coutline.c)
|
|
* Description: Code for the C_OUTLINE class.
|
|
* Author: Ray Smith
|
|
* Created: Mon Oct 07 16:01:57 BST 1991
|
|
*
|
|
* (C) Copyright 1991, Hewlett-Packard Ltd.
|
|
** Licensed under the Apache License, Version 2.0 (the "License");
|
|
** you may not use this file except in compliance with the License.
|
|
** You may obtain a copy of the License at
|
|
** http://www.apache.org/licenses/LICENSE-2.0
|
|
** Unless required by applicable law or agreed to in writing, software
|
|
** distributed under the License is distributed on an "AS IS" BASIS,
|
|
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
** See the License for the specific language governing permissions and
|
|
** limitations under the License.
|
|
*
|
|
**********************************************************************/
|
|
|
|
#ifndef COUTLN_H
|
|
#define COUTLN_H
|
|
|
|
#include "crakedge.h"
|
|
#include "mod128.h"
|
|
#include "bits16.h"
|
|
#include "rect.h"
|
|
#include "blckerr.h"
|
|
#include "scrollview.h"
|
|
|
|
class DENORM;
|
|
|
|
#define INTERSECTING MAX_INT16//no winding number
|
|
|
|
//mask to get step
|
|
#define STEP_MASK 3
|
|
|
|
enum C_OUTLINE_FLAGS
|
|
{
|
|
COUT_INVERSE //White on black blob
|
|
};
|
|
|
|
// Simple struct to hold the 3 values needed to compute a more precise edge
|
|
// position and direction. The offset_numerator is the difference between the
|
|
// grey threshold and the mean pixel value. pixel_diff is the difference between
|
|
// the pixels in the edge. Consider the following row of pixels: p1 p2 p3 p4 p5
|
|
// Say the image was thresholded at threshold t, making p1, p2, p3 black
|
|
// and p4, p5 white (p1, p2, p3 < t, and p4, p5 >= t), but suppose that
|
|
// max(p[i+1] - p[i]) is p3 - p2. Then the extrapolated position of the edge,
|
|
// based on the maximum gradient, is at the crack between p2 and p3 plus the
|
|
// offset (t - (p2+p3)/2)/(p3 - p2). We store the pixel difference p3-p2
|
|
// denominator in pixel_diff and the offset numerator, relative to the original
|
|
// binary edge (t - (p2+p3)/2) - (p3 -p2) in offset_numerator.
|
|
// The sign of offset_numerator and pixel_diff are manipulated to ensure
|
|
// that the pixel_diff, which will be used as a weight, is always positive.
|
|
// The direction stores the quantized feature direction for the given step
|
|
// computed from the edge gradient. (Using binary_angle_plus_pi.)
|
|
// If the pixel_diff is zero, it means that the direction of the gradient
|
|
// is in conflict with the step direction, so this step is to be ignored.
|
|
struct EdgeOffset {
|
|
inT8 offset_numerator;
|
|
uinT8 pixel_diff;
|
|
uinT8 direction;
|
|
};
|
|
|
|
class DLLSYM C_OUTLINE; //forward declaration
|
|
struct Pix;
|
|
|
|
ELISTIZEH (C_OUTLINE)
|
|
class DLLSYM C_OUTLINE:public ELIST_LINK {
|
|
public:
|
|
C_OUTLINE() { //empty constructor
|
|
steps = NULL;
|
|
offsets = NULL;
|
|
}
|
|
C_OUTLINE( //constructor
|
|
CRACKEDGE *startpt, //from edge detector
|
|
ICOORD bot_left, //bounding box //length of loop
|
|
ICOORD top_right,
|
|
inT16 length);
|
|
C_OUTLINE(ICOORD startpt, //start of loop
|
|
DIR128 *new_steps, //steps in loop
|
|
inT16 length); //length of loop
|
|
//outline to copy
|
|
C_OUTLINE(C_OUTLINE *srcline, FCOORD rotation); //and rotate
|
|
|
|
// Build a fake outline, given just a bounding box and append to the list.
|
|
static void FakeOutline(const TBOX& box, C_OUTLINE_LIST* outlines);
|
|
|
|
~C_OUTLINE () { //destructor
|
|
if (steps != NULL)
|
|
free_mem(steps);
|
|
steps = NULL;
|
|
delete [] offsets;
|
|
}
|
|
|
|
BOOL8 flag( //test flag
|
|
C_OUTLINE_FLAGS mask) const { //flag to test
|
|
return flags.bit (mask);
|
|
}
|
|
void set_flag( //set flag value
|
|
C_OUTLINE_FLAGS mask, //flag to test
|
|
BOOL8 value) { //value to set
|
|
flags.set_bit (mask, value);
|
|
}
|
|
|
|
C_OUTLINE_LIST *child() { //get child list
|
|
return &children;
|
|
}
|
|
|
|
//access function
|
|
const TBOX &bounding_box() const {
|
|
return box;
|
|
}
|
|
void set_step( //set a step
|
|
inT16 stepindex, //index of step
|
|
inT8 stepdir) { //chain code
|
|
int shift = stepindex%4 * 2;
|
|
uinT8 mask = 3 << shift;
|
|
steps[stepindex/4] = ((stepdir << shift) & mask) |
|
|
(steps[stepindex/4] & ~mask);
|
|
//squeeze 4 into byte
|
|
}
|
|
void set_step( //set a step
|
|
inT16 stepindex, //index of step
|
|
DIR128 stepdir) { //direction
|
|
//clean it
|
|
inT8 chaindir = stepdir.get_dir() >> (DIRBITS - 2);
|
|
//difference
|
|
set_step(stepindex, chaindir);
|
|
//squeeze 4 into byte
|
|
}
|
|
|
|
inT32 pathlength() const { //get path length
|
|
return stepcount;
|
|
}
|
|
// Return step at a given index as a DIR128.
|
|
DIR128 step_dir(int index) const {
|
|
return DIR128((inT16)(((steps[index/4] >> (index%4 * 2)) & STEP_MASK) <<
|
|
(DIRBITS - 2)));
|
|
}
|
|
// Return the step vector for the given outline position.
|
|
ICOORD step(int index) const { // index of step
|
|
return step_coords[chain_code(index)];
|
|
}
|
|
// get start position
|
|
const ICOORD &start_pos() const {
|
|
return start;
|
|
}
|
|
// Returns the position at the given index on the outline.
|
|
// NOT to be used lightly, as it has to iterate the outline to find out.
|
|
ICOORD position_at_index(int index) const {
|
|
ICOORD pos = start;
|
|
for (int i = 0; i < index; ++i)
|
|
pos += step(i);
|
|
return pos;
|
|
}
|
|
// Returns the sub-pixel accurate position given the integer position pos
|
|
// at the given index on the outline. pos may be a return value of
|
|
// position_at_index, or computed by repeatedly adding step to the
|
|
// start_pos() in the usual way.
|
|
FCOORD sub_pixel_pos_at_index(const ICOORD& pos, int index) const {
|
|
const ICOORD& step_to_next(step(index));
|
|
FCOORD f_pos(pos.x() + step_to_next.x() / 2.0f,
|
|
pos.y() + step_to_next.y() / 2.0f);
|
|
if (offsets != NULL && offsets[index].pixel_diff > 0) {
|
|
float offset = offsets[index].offset_numerator;
|
|
offset /= offsets[index].pixel_diff;
|
|
if (step_to_next.x() != 0)
|
|
f_pos.set_y(f_pos.y() + offset);
|
|
else
|
|
f_pos.set_x(f_pos.x() + offset);
|
|
}
|
|
return f_pos;
|
|
}
|
|
// Returns the step direction for the given index or -1 if there is none.
|
|
int direction_at_index(int index) const {
|
|
if (offsets != NULL && offsets[index].pixel_diff > 0)
|
|
return offsets[index].direction;
|
|
return -1;
|
|
}
|
|
// Returns the edge strength for the given index.
|
|
// If there are no recorded edge strengths, returns 1 (assuming the image
|
|
// is binary). Returns 0 if the gradient direction conflicts with the
|
|
// step direction, indicating that this position could be skipped.
|
|
int edge_strength_at_index(int index) const {
|
|
if (offsets != NULL)
|
|
return offsets[index].pixel_diff;
|
|
return 1;
|
|
}
|
|
// Return the step as a chain code (0-3) related to the standard feature
|
|
// direction of binary_angle_plus_pi by:
|
|
// chain_code * 64 = feature direction.
|
|
int chain_code(int index) const { // index of step
|
|
return (steps[index / 4] >> (index % 4 * 2)) & STEP_MASK;
|
|
}
|
|
|
|
inT32 area() const; // Returns area of self and 1st level children.
|
|
inT32 perimeter() const; // Total perimeter of self and 1st level children.
|
|
inT32 outer_area() const; // Returns area of self only.
|
|
inT32 count_transitions( //count maxima
|
|
inT32 threshold); //size threshold
|
|
|
|
BOOL8 operator< ( //containment test
|
|
const C_OUTLINE & other) const;
|
|
BOOL8 operator> ( //containment test
|
|
C_OUTLINE & other) const
|
|
{
|
|
return other < *this; //use the < to do it
|
|
}
|
|
inT16 winding_number( //get winding number
|
|
ICOORD testpt) const; //around this point
|
|
//get direction
|
|
inT16 turn_direction() const;
|
|
void reverse(); //reverse direction
|
|
|
|
void move( // reposition outline
|
|
const ICOORD vec); // by vector
|
|
|
|
// Returns true if *this and its children are legally nested.
|
|
// The outer area of a child should have the opposite sign to the
|
|
// parent. If not, it means we have discarded an outline in between
|
|
// (probably due to excessive length).
|
|
bool IsLegallyNested() const;
|
|
|
|
// If this outline is smaller than the given min_size, delete this and
|
|
// remove from its list, via *it, after checking that *it points to this.
|
|
// Otherwise, if any children of this are too small, delete them.
|
|
// On entry, *it must be an iterator pointing to this. If this gets deleted
|
|
// then this is extracted from *it, so an iteration can continue.
|
|
void RemoveSmallRecursive(int min_size, C_OUTLINE_IT* it);
|
|
|
|
// Adds sub-pixel resolution EdgeOffsets for the outline if the supplied
|
|
// pix is 8-bit. Does nothing otherwise.
|
|
void ComputeEdgeOffsets(int threshold, Pix* pix);
|
|
// Adds sub-pixel resolution EdgeOffsets for the outline using only
|
|
// a binary image source.
|
|
void ComputeBinaryOffsets();
|
|
|
|
// Renders the outline to the given pix, with left and top being
|
|
// the coords of the upper-left corner of the pix.
|
|
void render(int left, int top, Pix* pix) const;
|
|
|
|
// Renders just the outline to the given pix (no fill), with left and top
|
|
// being the coords of the upper-left corner of the pix.
|
|
void render_outline(int left, int top, Pix* pix) const;
|
|
|
|
#ifndef GRAPHICS_DISABLED
|
|
void plot( //draw one
|
|
ScrollView* window, //window to draw in
|
|
ScrollView::Color colour) const; //colour to draw it
|
|
// Draws the outline in the given colour, normalized using the given denorm,
|
|
// making use of sub-pixel accurate information if available.
|
|
void plot_normed(const DENORM& denorm, ScrollView::Color colour,
|
|
ScrollView* window) const;
|
|
#endif // GRAPHICS_DISABLED
|
|
|
|
C_OUTLINE& operator=(const C_OUTLINE& source);
|
|
|
|
static C_OUTLINE* deep_copy(const C_OUTLINE* src) {
|
|
C_OUTLINE* outline = new C_OUTLINE;
|
|
*outline = *src;
|
|
return outline;
|
|
}
|
|
|
|
static ICOORD chain_step(int chaindir);
|
|
|
|
// The maximum length of any outline. The stepcount is stored as 16 bits,
|
|
// but it is probably not a good idea to increase this constant by much
|
|
// and switch to 32 bits, as it plays an important role in keeping huge
|
|
// outlines invisible, which prevents bad speed behavior.
|
|
static const int kMaxOutlineLength = 16000;
|
|
|
|
private:
|
|
// Helper for ComputeBinaryOffsets. Increments pos, dir_counts, pos_totals
|
|
// by the step, increment, and vertical step ? x : y position * increment
|
|
// at step s Mod stepcount respectively. Used to add or subtract the
|
|
// direction and position to/from accumulators of a small neighbourhood.
|
|
void increment_step(int s, int increment, ICOORD* pos, int* dir_counts,
|
|
int* pos_totals) const;
|
|
int step_mem() const { return (stepcount+3) / 4; }
|
|
|
|
TBOX box; // bounding box
|
|
ICOORD start; // start coord
|
|
inT16 stepcount; // no of steps
|
|
BITS16 flags; // flags about outline
|
|
uinT8 *steps; // step array
|
|
EdgeOffset* offsets; // Higher precision edge.
|
|
C_OUTLINE_LIST children; // child elements
|
|
static ICOORD step_coords[4];
|
|
};
|
|
#endif
|