tesseract/wordrec/language_model.h
2014-09-17 18:22:32 -07:00

419 lines
20 KiB
C++

///////////////////////////////////////////////////////////////////////
// File: language_model.h
// Description: Functions that utilize the knowledge about the properties,
// structure and statistics of the language to help segmentation
// search.
// Author: Daria Antonova
// Created: Mon Nov 11 11:26:43 PST 2009
//
// (C) Copyright 2009, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
///////////////////////////////////////////////////////////////////////
#ifndef TESSERACT_WORDREC_LANGUAGE_MODEL_H_
#define TESSERACT_WORDREC_LANGUAGE_MODEL_H_
#include "associate.h"
#include "dawg.h"
#include "dict.h"
#include "fontinfo.h"
#include "intproto.h"
#include "lm_consistency.h"
#include "lm_pain_points.h"
#include "lm_state.h"
#include "matrix.h"
#include "params.h"
#include "pageres.h"
#include "params_model.h"
namespace tesseract {
// This class that contains the data structures and functions necessary
// to represent and use the knowledge about the language.
class LanguageModel {
public:
// Masks for keeping track of top choices that should not be pruned out.
static const LanguageModelFlagsType kSmallestRatingFlag = 0x1;
static const LanguageModelFlagsType kLowerCaseFlag = 0x2;
static const LanguageModelFlagsType kUpperCaseFlag = 0x4;
static const LanguageModelFlagsType kDigitFlag = 0x8;
static const LanguageModelFlagsType kXhtConsistentFlag = 0x10;
// Denominator for normalizing per-letter ngram cost when deriving
// penalty adjustments.
static const float kMaxAvgNgramCost;
LanguageModel(const UnicityTable<FontInfo> *fontinfo_table, Dict *dict);
~LanguageModel();
// Fills the given floats array with features extracted from path represented
// by the given ViterbiStateEntry. See ccstruct/params_training_featdef.h
// for feature information.
// Note: the function assumes that features points to an array of size
// PTRAIN_NUM_FEATURE_TYPES.
static void ExtractFeaturesFromPath(const ViterbiStateEntry &vse,
float features[]);
// Updates data structures that are used for the duration of the segmentation
// search on the current word;
void InitForWord(const WERD_CHOICE *prev_word,
bool fixed_pitch, float max_char_wh_ratio,
float rating_cert_scale);
// Updates language model state of the given BLOB_CHOICE_LIST (from
// the ratings matrix) a its parent. Updates pain_points if new
// problematic points are found in the segmentation graph.
//
// At most language_model_viterbi_list_size are kept in each
// LanguageModelState.viterbi_state_entries list.
// At most language_model_viterbi_list_max_num_prunable of those are prunable
// (non-dictionary) paths.
// The entries that represent dictionary word paths are kept at the front
// of the list.
// The list ordered by cost that is computed collectively by several
// language model components (currently dawg and ngram components).
bool UpdateState(
bool just_classified,
int curr_col, int curr_row,
BLOB_CHOICE_LIST *curr_list,
LanguageModelState *parent_node,
LMPainPoints *pain_points,
WERD_RES *word_res,
BestChoiceBundle *best_choice_bundle,
BlamerBundle *blamer_bundle);
// Returns true if an acceptable best choice was discovered.
inline bool AcceptableChoiceFound() { return acceptable_choice_found_; }
inline void SetAcceptableChoiceFound(bool val) {
acceptable_choice_found_ = val;
}
// Returns the reference to ParamsModel.
inline ParamsModel &getParamsModel() { return params_model_; }
protected:
inline float CertaintyScore(float cert) {
if (language_model_use_sigmoidal_certainty) {
// cert is assumed to be between 0 and -dict_->certainty_scale.
// If you enable language_model_use_sigmoidal_certainty, you
// need to adjust language_model_ngram_nonmatch_score as well.
cert = -cert / dict_->certainty_scale;
return 1.0f / (1.0f + exp(10.0f * cert));
} else {
return (-1.0f / cert);
}
}
inline float ComputeAdjustment(int num_problems, float penalty) {
if (num_problems == 0) return 0.0f;
if (num_problems == 1) return penalty;
return (penalty + (language_model_penalty_increment *
static_cast<float>(num_problems-1)));
}
// Computes the adjustment to the ratings sum based on the given
// consistency_info. The paths with invalid punctuation, inconsistent
// case and character type are penalized proportionally to the number
// of inconsistencies on the path.
inline float ComputeConsistencyAdjustment(
const LanguageModelDawgInfo *dawg_info,
const LMConsistencyInfo &consistency_info) {
if (dawg_info != NULL) {
return ComputeAdjustment(consistency_info.NumInconsistentCase(),
language_model_penalty_case) +
(consistency_info.inconsistent_script ?
language_model_penalty_script : 0.0f);
}
return (ComputeAdjustment(consistency_info.NumInconsistentPunc(),
language_model_penalty_punc) +
ComputeAdjustment(consistency_info.NumInconsistentCase(),
language_model_penalty_case) +
ComputeAdjustment(consistency_info.NumInconsistentChartype(),
language_model_penalty_chartype) +
ComputeAdjustment(consistency_info.NumInconsistentSpaces(),
language_model_penalty_spacing) +
(consistency_info.inconsistent_script ?
language_model_penalty_script : 0.0f) +
(consistency_info.inconsistent_font ?
language_model_penalty_font : 0.0f));
}
// Returns an adjusted ratings sum that includes inconsistency penalties,
// penalties for non-dictionary paths and paths with dips in ngram
// probability.
float ComputeAdjustedPathCost(ViterbiStateEntry *vse);
// Finds the first lower and upper case letter and first digit in curr_list.
// Uses the first character in the list in place of empty results.
// Returns true if both alpha and digits are found.
bool GetTopLowerUpperDigit(BLOB_CHOICE_LIST *curr_list,
BLOB_CHOICE **first_lower,
BLOB_CHOICE **first_upper,
BLOB_CHOICE **first_digit) const;
// Forces there to be at least one entry in the overall set of the
// viterbi_state_entries of each element of parent_node that has the
// top_choice_flag set for lower, upper and digit using the same rules as
// GetTopLowerUpperDigit, setting the flag on the first found suitable
// candidate, whether or not the flag is set on some other parent.
// Returns 1 if both alpha and digits are found among the parents, -1 if no
// parents are found at all (a legitimate case), and 0 otherwise.
int SetTopParentLowerUpperDigit(LanguageModelState *parent_node) const;
// Finds the next ViterbiStateEntry with which the given unichar_id can
// combine sensibly, taking into account any mixed alnum/mixed case
// situation, and whether this combination has been inspected before.
ViterbiStateEntry* GetNextParentVSE(
bool just_classified, bool mixed_alnum,
const BLOB_CHOICE* bc, LanguageModelFlagsType blob_choice_flags,
const UNICHARSET& unicharset, WERD_RES* word_res,
ViterbiStateEntry_IT* vse_it,
LanguageModelFlagsType* top_choice_flags) const;
// Helper function that computes the cost of the path composed of the
// path in the given parent ViterbiStateEntry and the given BLOB_CHOICE.
// If the new path looks good enough, adds a new ViterbiStateEntry to the
// list of viterbi entries in the given BLOB_CHOICE and returns true.
bool AddViterbiStateEntry(
LanguageModelFlagsType top_choice_flags, float denom, bool word_end,
int curr_col, int curr_row, BLOB_CHOICE *b,
LanguageModelState *curr_state, ViterbiStateEntry *parent_vse,
LMPainPoints *pain_points, WERD_RES *word_res,
BestChoiceBundle *best_choice_bundle, BlamerBundle *blamer_bundle);
// Determines whether a potential entry is a true top choice and
// updates changed accordingly.
//
// Note: The function assumes that b, top_choice_flags and changed
// are not NULL.
void GenerateTopChoiceInfo(ViterbiStateEntry *new_vse,
const ViterbiStateEntry *parent_vse,
LanguageModelState *lms);
// Calls dict_->LetterIsOk() with DawgArgs initialized from parent_vse and
// unichar from b.unichar_id(). Constructs and returns LanguageModelDawgInfo
// with updated active dawgs, constraints and permuter.
//
// Note: the caller is responsible for deleting the returned pointer.
LanguageModelDawgInfo *GenerateDawgInfo(bool word_end,
int curr_col, int curr_row,
const BLOB_CHOICE &b,
const ViterbiStateEntry *parent_vse);
// Computes p(unichar | parent context) and records it in ngram_cost.
// If b.unichar_id() is an unlikely continuation of the parent context
// sets found_small_prob to true and returns NULL.
// Otherwise creates a new LanguageModelNgramInfo entry containing the
// updated context (that includes b.unichar_id() at the end) and returns it.
//
// Note: the caller is responsible for deleting the returned pointer.
LanguageModelNgramInfo *GenerateNgramInfo(
const char *unichar, float certainty, float denom,
int curr_col, int curr_row, float outline_length,
const ViterbiStateEntry *parent_vse);
// Computes -(log(prob(classifier)) + log(prob(ngram model)))
// for the given unichar in the given context. If there are multiple
// unichars at one position - takes the average of their probabilities.
// UNICHAR::utf8_step() is used to separate out individual UTF8 characters,
// since probability_in_context() can only handle one at a time (while
// unicharset might contain ngrams and glyphs composed from multiple UTF8
// characters).
float ComputeNgramCost(const char *unichar, float certainty, float denom,
const char *context, int *unichar_step_len,
bool *found_small_prob, float *ngram_prob);
// Computes the normalization factors for the classifier confidences
// (used by ComputeNgramCost()).
float ComputeDenom(BLOB_CHOICE_LIST *curr_list);
// Fills the given consistenty_info based on parent_vse.consistency_info
// and on the consistency of the given unichar_id with parent_vse.
void FillConsistencyInfo(
int curr_col, bool word_end, BLOB_CHOICE *b,
ViterbiStateEntry *parent_vse,
WERD_RES *word_res,
LMConsistencyInfo *consistency_info);
// Constructs WERD_CHOICE by recording unichar_ids of the BLOB_CHOICEs
// on the path represented by the given BLOB_CHOICE and language model
// state entries (lmse, dse). The path is re-constructed by following
// the parent pointers in the the lang model state entries). If the
// constructed WERD_CHOICE is better than the best/raw choice recorded
// in the best_choice_bundle, this function updates the corresponding
// fields and sets best_choice_bunldle->updated to true.
void UpdateBestChoice(ViterbiStateEntry *vse,
LMPainPoints *pain_points,
WERD_RES *word_res,
BestChoiceBundle *best_choice_bundle,
BlamerBundle *blamer_bundle);
// Constructs a WERD_CHOICE by tracing parent pointers starting with
// the given LanguageModelStateEntry. Returns the constructed word.
// Updates best_char_choices, certainties and state if they are not
// NULL (best_char_choices and certainties are assumed to have the
// length equal to lmse->length).
// The caller is responsible for freeing memory associated with the
// returned WERD_CHOICE.
WERD_CHOICE *ConstructWord(ViterbiStateEntry *vse,
WERD_RES *word_res,
DANGERR *fixpt,
BlamerBundle *blamer_bundle,
bool *truth_path);
// Wrapper around AssociateUtils::ComputeStats().
inline void ComputeAssociateStats(int col, int row,
float max_char_wh_ratio,
ViterbiStateEntry *parent_vse,
WERD_RES *word_res,
AssociateStats *associate_stats) {
AssociateUtils::ComputeStats(
col, row,
(parent_vse != NULL) ? &(parent_vse->associate_stats) : NULL,
(parent_vse != NULL) ? parent_vse->length : 0,
fixed_pitch_, max_char_wh_ratio,
word_res, language_model_debug_level > 2, associate_stats);
}
// Returns true if the path with such top_choice_flags and dawg_info
// could be pruned out (i.e. is neither a system/user/frequent dictionary
// nor a top choice path).
// In non-space delimited languages all paths can be "somewhat" dictionary
// words. In such languages we can not do dictionary-driven path pruning,
// so paths with non-empty dawg_info are considered prunable.
inline bool PrunablePath(const ViterbiStateEntry &vse) {
if (vse.top_choice_flags) return false;
if (vse.dawg_info != NULL &&
(vse.dawg_info->permuter == SYSTEM_DAWG_PERM ||
vse.dawg_info->permuter == USER_DAWG_PERM ||
vse.dawg_info->permuter == FREQ_DAWG_PERM)) return false;
return true;
}
// Returns true if the given ViterbiStateEntry represents an acceptable path.
inline bool AcceptablePath(const ViterbiStateEntry &vse) {
return (vse.dawg_info != NULL || vse.Consistent() ||
(vse.ngram_info != NULL && !vse.ngram_info->pruned));
}
public:
// Parameters.
INT_VAR_H(language_model_debug_level, 0, "Language model debug level");
BOOL_VAR_H(language_model_ngram_on, false,
"Turn on/off the use of character ngram model");
INT_VAR_H(language_model_ngram_order, 8,
"Maximum order of the character ngram model");
INT_VAR_H(language_model_viterbi_list_max_num_prunable, 10,
"Maximum number of prunable (those for which PrunablePath() is"
" true) entries in each viterbi list recorded in BLOB_CHOICEs");
INT_VAR_H(language_model_viterbi_list_max_size, 500,
"Maximum size of viterbi lists recorded in BLOB_CHOICEs");
double_VAR_H(language_model_ngram_small_prob, 0.000001,
"To avoid overly small denominators use this as the floor"
" of the probability returned by the ngram model");
double_VAR_H(language_model_ngram_nonmatch_score, -40.0,
"Average classifier score of a non-matching unichar");
BOOL_VAR_H(language_model_ngram_use_only_first_uft8_step, false,
"Use only the first UTF8 step of the given string"
" when computing log probabilities");
double_VAR_H(language_model_ngram_scale_factor, 0.03,
"Strength of the character ngram model relative to the"
" character classifier ");
double_VAR_H(language_model_ngram_rating_factor, 16.0,
"Factor to bring log-probs into the same range as ratings"
" when multiplied by outline length ");
BOOL_VAR_H(language_model_ngram_space_delimited_language, true,
"Words are delimited by space");
INT_VAR_H(language_model_min_compound_length, 3,
"Minimum length of compound words");
// Penalties used for adjusting path costs and final word rating.
double_VAR_H(language_model_penalty_non_freq_dict_word, 0.1,
"Penalty for words not in the frequent word dictionary");
double_VAR_H(language_model_penalty_non_dict_word, 0.15,
"Penalty for non-dictionary words");
double_VAR_H(language_model_penalty_punc, 0.2,
"Penalty for inconsistent punctuation");
double_VAR_H(language_model_penalty_case, 0.1,
"Penalty for inconsistent case");
double_VAR_H(language_model_penalty_script, 0.5,
"Penalty for inconsistent script");
double_VAR_H(language_model_penalty_chartype, 0.3,
"Penalty for inconsistent character type");
double_VAR_H(language_model_penalty_font, 0.00,
"Penalty for inconsistent font");
double_VAR_H(language_model_penalty_spacing, 0.05,
"Penalty for inconsistent spacing");
double_VAR_H(language_model_penalty_increment, 0.01, "Penalty increment");
INT_VAR_H(wordrec_display_segmentations, 0, "Display Segmentations");
BOOL_VAR_H(language_model_use_sigmoidal_certainty, false,
"Use sigmoidal score for certainty");
protected:
// Member Variables.
// Temporary DawgArgs struct that is re-used across different words to
// avoid dynamic memory re-allocation (should be cleared before each use).
DawgArgs *dawg_args_;
// Scaling for recovering blob outline length from rating and certainty.
float rating_cert_scale_;
// The following variables are set at construction time.
// Pointer to fontinfo table (not owned by LanguageModel).
const UnicityTable<FontInfo> *fontinfo_table_;
// Pointer to Dict class, that is used for querying the dictionaries
// (the pointer is not owned by LanguageModel).
Dict *dict_;
// TODO(daria): the following variables should become LanguageModel params
// when the old code in bestfirst.cpp and heuristic.cpp is deprecated.
//
// Set to true if we are dealing with fixed pitch text
// (set to assume_fixed_pitch_char_segment).
bool fixed_pitch_;
// Max char width-to-height ratio allowed
// (set to segsearch_max_char_wh_ratio).
float max_char_wh_ratio_;
// The following variables are initialized with InitForWord().
// String representation of the classification of the previous word
// (since this is only used by the character ngram model component,
// only the last language_model_ngram_order of the word are stored).
STRING prev_word_str_;
int prev_word_unichar_step_len_;
// Active dawg vector.
DawgPositionVector *very_beginning_active_dawgs_; // includes continuation
DawgPositionVector *beginning_active_dawgs_;
// Set to true if acceptable choice was discovered.
// Note: it would be nice to use this to terminate the search once an
// acceptable choices is found. However we do not do that and once an
// acceptable choice is found we finish looking for alternative choices
// in the current segmentation graph and then exit the search (no more
// classifications are done after an acceptable choice is found).
// This is needed in order to let the search find the words very close to
// the best choice in rating (e.g. what/What, Cat/cat, etc) and log these
// choices. This way the stopper will know that the best choice is not
// ambiguous (i.e. there are best choices in the best choice list that have
// ratings close to the very best one) and will be less likely to mis-adapt.
bool acceptable_choice_found_;
// Set to true if a choice representing correct segmentation was explored.
bool correct_segmentation_explored_;
// Params models containing weights for for computing ViterbiStateEntry costs.
ParamsModel params_model_;
};
} // namespace tesseract
#endif // TESSERACT_WORDREC_LANGUAGE_MODEL_H_