tesseract/training/classifier_tester.cpp
theraysmith@gmail.com e33ae59f4d Fixed training leaks and randomness
git-svn-id: https://tesseract-ocr.googlecode.com/svn/trunk@653 d0cd1f9f-072b-0410-8dd7-cf729c803f20
2012-02-02 03:02:16 +00:00

140 lines
5.2 KiB
C++

// Copyright 2011 Google Inc. All Rights Reserved.
// Author: rays@google.com (Ray Smith)
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Filename: classifier_tester.cpp
// Purpose: Tests a character classifier on data as formatted for training,
// but doesn't have to be the same as the training data.
// Author: Ray Smith
#ifndef USE_STD_NAMESPACE
#include "base/commandlineflags.h"
#endif
#include "baseapi.h"
#include "commontraining.h"
#include "cubeclassifier.h"
#include "mastertrainer.h"
#include "params.h"
#include "strngs.h"
#include "tessclassifier.h"
STRING_PARAM_FLAG(classifier, "", "Classifier to test");
STRING_PARAM_FLAG(lang, "eng", "Language to test");
STRING_PARAM_FLAG(tessdata_dir, "", "Directory of traineddata files");
enum ClassifierName {
CN_PRUNER,
CN_FULL,
CN_CUBE,
CN_CUBETESS,
CN_COUNT
};
const char* names[] = {"pruner", "full", "cube", "cubetess", NULL };
// This program has complex setup requirements, so here is some help:
// Two different modes, tr files and serialized mastertrainer.
// From tr files:
// classifier_tester -U unicharset -F font_properties -X xheights
// -classifier x -lang lang [-output_trainer trainer] *.tr
// From a serialized trainer:
// classifier_tester -input_trainer trainer [-lang lang] -classifier x
//
// In the first case, the unicharset must be the unicharset from within
// the classifier under test, and the font_properties and xheights files must
// match the files used during training.
// In the second case, the trainer file must have been prepared from
// some previous run of shapeclustering, mftraining, or classifier_tester
// using the same conditions as above, ie matching unicharset/font_properties.
//
// Available values of classifier (x above) are:
// pruner : Tesseract class pruner only.
// full : Tesseract full classifier.
// cube : Cube classifier. (Not possible with an input trainer.)
// cubetess : Tesseract class pruner with rescoring by Cube. (Not possible
// with an input trainer.)
int main(int argc, char **argv) {
ParseArguments(&argc, &argv);
// Decode the classifier string.
ClassifierName classifier = CN_COUNT;
for (int c = 0; c < CN_COUNT; ++c) {
if (strcmp(FLAGS_classifier.c_str(), names[c]) == 0) {
classifier = static_cast<ClassifierName>(c);
break;
}
}
if (classifier == CN_COUNT) {
fprintf(stderr, "Invalid classifier name:%s\n", FLAGS_classifier.c_str());
return 1;
}
STRING file_prefix;
tesseract::MasterTrainer* trainer = tesseract::LoadTrainingData(
argc, argv, true, NULL, &file_prefix);
// We want to test junk as well if it is available.
trainer->IncludeJunk();
// We want to test with replicated samples too.
trainer->ReplicateAndRandomizeSamplesIfRequired();
// We need to initialize tesseract to test.
tesseract::TessBaseAPI api;
tesseract::OcrEngineMode engine_mode = tesseract::OEM_TESSERACT_ONLY;
if (classifier == CN_CUBE || classifier == CN_CUBETESS)
engine_mode = tesseract::OEM_TESSERACT_CUBE_COMBINED;
if (api.Init(FLAGS_tessdata_dir.c_str(), FLAGS_lang.c_str(),
engine_mode) < 0) {
fprintf(stderr, "Tesseract initialization failed!\n");
return 1;
}
tesseract::ShapeClassifier* shape_classifier = NULL;
tesseract::Tesseract* tesseract =
const_cast<tesseract::Tesseract*>(api.tesseract());
tesseract::Classify* classify =
reinterpret_cast<tesseract::Classify*>(tesseract);
// Copy the shape_table from the classifier and add the space character if
// not already present to count junk.
tesseract::ShapeTable shape_table;
shape_table.set_unicharset(classify->shape_table()->unicharset());
shape_table.AppendMasterShapes(*classify->shape_table());
if (shape_table.FindShape(0, -1) < 0)
shape_table.AddShape(0, 0);
if (classifier == CN_PRUNER) {
shape_classifier = new tesseract::TessClassifier(true, classify);
} else if (classifier == CN_FULL) {
shape_classifier = new tesseract::TessClassifier(false, classify);
} else if (classifier == CN_CUBE) {
shape_classifier = new tesseract::CubeClassifier(tesseract);
} else if (classifier == CN_CUBETESS) {
shape_classifier = new tesseract::CubeTessClassifier(tesseract);
} else {
fprintf(stderr, "%s tester not yet implemented\n",
FLAGS_classifier.c_str());
return 1;
}
tprintf("Testing classifier %s:\n", FLAGS_classifier.c_str());
trainer->TestClassifierOnSamples(3, false, shape_classifier, NULL);
if (classifier != CN_CUBE && classifier != CN_CUBETESS) {
// Test with replicated samples as well.
trainer->TestClassifierOnSamples(3, true, shape_classifier, NULL);
}
delete shape_classifier;
delete trainer;
return 0;
} /* main */