mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2025-01-18 14:41:36 +08:00
01026af5a2
git-svn-id: https://tesseract-ocr.googlecode.com/svn/trunk@652 d0cd1f9f-072b-0410-8dd7-cf729c803f20
163 lines
6.3 KiB
C++
163 lines
6.3 KiB
C++
/* -*-C-*-
|
|
********************************************************************************
|
|
*
|
|
* File: wordclass.c (Formerly wordclass.c)
|
|
* Description: Word classifier
|
|
* Author: Mark Seaman, OCR Technology
|
|
* Created: Tue Jan 30 14:03:25 1990
|
|
* Modified: Fri Jul 12 16:03:06 1991 (Mark Seaman) marks@hpgrlt
|
|
* Language: C
|
|
* Package: N/A
|
|
* Status: Experimental (Do Not Distribute)
|
|
*
|
|
* (c) Copyright 1990, Hewlett-Packard Company.
|
|
** Licensed under the Apache License, Version 2.0 (the "License");
|
|
** you may not use this file except in compliance with the License.
|
|
** You may obtain a copy of the License at
|
|
** http://www.apache.org/licenses/LICENSE-2.0
|
|
** Unless required by applicable law or agreed to in writing, software
|
|
** distributed under the License is distributed on an "AS IS" BASIS,
|
|
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
** See the License for the specific language governing permissions and
|
|
** limitations under the License.
|
|
*
|
|
*********************************************************************************/
|
|
/*----------------------------------------------------------------------
|
|
I N C L U D E S
|
|
----------------------------------------------------------------------*/
|
|
#include <stdio.h>
|
|
#ifdef __UNIX__
|
|
#include <assert.h>
|
|
#endif
|
|
|
|
#include "wordclass.h"
|
|
#include "associate.h"
|
|
#include "render.h"
|
|
#include "matchtab.h"
|
|
#include "permute.h"
|
|
#include "callcpp.h"
|
|
#include <assert.h>
|
|
#include "wordrec.h"
|
|
|
|
// Include automatically generated configuration file if running autoconf.
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config_auto.h"
|
|
#endif
|
|
|
|
/*----------------------------------------------------------------------
|
|
F u n c t i o n s
|
|
----------------------------------------------------------------------*/
|
|
namespace tesseract {
|
|
/**
|
|
* @name classify_blob
|
|
*
|
|
* Classify the this blob if it is not already recorded in the match
|
|
* table. Attempt to recognize this blob as a character. The recognition
|
|
* rating for this blob will be stored as a part of the blob. This value
|
|
* will also be returned to the caller.
|
|
* @param blob Current blob
|
|
* @param string The string to display in ScrollView
|
|
* @param color The colour to use when displayed with ScrollView
|
|
*/
|
|
BLOB_CHOICE_LIST *Wordrec::classify_blob(TBLOB *blob, const DENORM& denorm,
|
|
const char *string, C_COL color,
|
|
BlamerBundle *blamer_bundle) {
|
|
fflush(stdout);
|
|
BLOB_CHOICE_LIST *choices = NULL;
|
|
#ifndef GRAPHICS_DISABLED
|
|
if (wordrec_display_all_blobs)
|
|
display_blob(blob, color);
|
|
#endif
|
|
choices = blob_match_table.get_match(blob);
|
|
if (choices == NULL) {
|
|
choices = call_matcher(&denorm, blob);
|
|
blob_match_table.put_match(blob, choices);
|
|
// If a blob with the same bounding box as one of the truth character
|
|
// bounding boxes is not classified as the corresponding truth character
|
|
// blame character classifier for incorrect answer.
|
|
if (blamer_bundle != NULL && blamer_bundle->truth_has_char_boxes &&
|
|
blamer_bundle->incorrect_result_reason == IRR_CORRECT) {
|
|
for (int b = 0; b < blamer_bundle->norm_truth_word.length(); ++b) {
|
|
const TBOX &truth_box = blamer_bundle->norm_truth_word.BlobBox(b);
|
|
const TBOX &blob_box = blob->bounding_box();
|
|
// Note that we are more strict on the bounding box boundaries here
|
|
// than in other places (chopper, segmentation search), since we do
|
|
// not have the ability to check the previous and next bounding box.
|
|
if (blob_box.x_almost_equal(truth_box,
|
|
blamer_bundle->norm_box_tolerance/2)) {
|
|
BLOB_CHOICE_IT choices_it(choices);
|
|
bool found = false;
|
|
bool incorrect_adapted = false;
|
|
UNICHAR_ID incorrect_adapted_id = INVALID_UNICHAR_ID;
|
|
const char *truth_str = blamer_bundle->truth_text[b].string();
|
|
for (choices_it.mark_cycle_pt(); !choices_it.cycled_list();
|
|
choices_it.forward()) {
|
|
if (strcmp(truth_str, getDict().getUnicharset().get_normed_unichar(
|
|
choices_it.data()->unichar_id())) == 0) {
|
|
found = true;
|
|
break;
|
|
} else if (choices_it.data()->adapted()) {
|
|
incorrect_adapted = true;
|
|
incorrect_adapted_id = choices_it.data()->unichar_id();
|
|
}
|
|
} // end choices_it for loop
|
|
if (!found) {
|
|
STRING debug = "unichar ";
|
|
debug += truth_str;
|
|
debug += " not found in classification list";
|
|
blamer_bundle->SetBlame(IRR_CLASSIFIER, debug,
|
|
NULL, wordrec_debug_blamer);
|
|
} else if (incorrect_adapted) {
|
|
STRING debug = "better rating for adapted ";
|
|
debug += getDict().getUnicharset().id_to_unichar(
|
|
incorrect_adapted_id);
|
|
debug += " than for correct ";
|
|
debug += truth_str;
|
|
blamer_bundle->SetBlame(IRR_ADAPTION, debug,
|
|
NULL, wordrec_debug_blamer);
|
|
}
|
|
break;
|
|
}
|
|
} // end iterating over blamer_bundle->norm_truth_word
|
|
}
|
|
}
|
|
#ifndef GRAPHICS_DISABLED
|
|
if (classify_debug_level && string)
|
|
print_ratings_list(string, choices, getDict().getUnicharset());
|
|
|
|
if (wordrec_blob_pause)
|
|
window_wait(blob_window);
|
|
#endif
|
|
|
|
return (choices);
|
|
}
|
|
|
|
// Returns a valid BLOB_CHOICE_LIST representing the given result.
|
|
BLOB_CHOICE_LIST *Wordrec::fake_classify_blob(UNICHAR_ID class_id,
|
|
float rating, float certainty) {
|
|
BLOB_CHOICE_LIST *ratings = new BLOB_CHOICE_LIST(); // matcher result
|
|
BLOB_CHOICE *choice =
|
|
new BLOB_CHOICE(class_id, rating, certainty, -1, -1, 0, 0, 0, false);
|
|
BLOB_CHOICE_IT temp_it(ratings);
|
|
temp_it.add_after_stay_put(choice);
|
|
return ratings;
|
|
}
|
|
|
|
/**
|
|
* @name update_blob_classifications
|
|
*
|
|
* For each blob in the given word update match_table with the
|
|
* corresponding BLOB_CHOICES_LIST from choices.
|
|
*/
|
|
void Wordrec::update_blob_classifications(
|
|
TWERD *word, const BLOB_CHOICE_LIST_VECTOR &choices) {
|
|
TBLOB *tblob = word->blobs;
|
|
int index = 0;
|
|
for (; tblob != NULL && index < choices.length();
|
|
tblob = tblob->next, index++) {
|
|
blob_match_table.add_to_match(tblob, choices.get(index));
|
|
}
|
|
}
|
|
|
|
} // namespace tesseract;
|