mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2024-12-12 15:39:04 +08:00
5bc5e2a0b4
git-svn-id: https://tesseract-ocr.googlecode.com/svn/trunk@650 d0cd1f9f-072b-0410-8dd7-cf729c803f20
386 lines
16 KiB
C++
386 lines
16 KiB
C++
// Copyright 2011 Google Inc. All Rights Reserved.
|
|
// Author: rays@google.com (Ray Smith)
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////
|
|
|
|
#include "errorcounter.h"
|
|
|
|
#include "fontinfo.h"
|
|
#include "ndminx.h"
|
|
#include "sampleiterator.h"
|
|
#include "shapeclassifier.h"
|
|
#include "shapetable.h"
|
|
#include "trainingsample.h"
|
|
#include "trainingsampleset.h"
|
|
#include "unicity_table.h"
|
|
|
|
namespace tesseract {
|
|
|
|
// Tests a classifier, computing its error rate.
|
|
// See errorcounter.h for description of arguments.
|
|
// Iterates over the samples, calling the classifier in normal/silent mode.
|
|
// If the classifier makes a CT_UNICHAR_TOPN_ERR error, and the appropriate
|
|
// report_level is set (4 or greater), it will then call the classifier again
|
|
// with a debug flag and a keep_this argument to find out what is going on.
|
|
double ErrorCounter::ComputeErrorRate(ShapeClassifier* classifier,
|
|
int report_level, CountTypes boosting_mode,
|
|
const UnicityTable<FontInfo>& fontinfo_table,
|
|
const GenericVector<Pix*>& page_images, SampleIterator* it,
|
|
double* unichar_error, double* scaled_error, STRING* fonts_report) {
|
|
int charsetsize = it->shape_table()->unicharset().size();
|
|
int shapesize = it->CompactCharsetSize();
|
|
int fontsize = it->sample_set()->NumFonts();
|
|
ErrorCounter counter(charsetsize, shapesize, fontsize);
|
|
GenericVector<ShapeRating> results;
|
|
|
|
clock_t start = clock();
|
|
int total_samples = 0;
|
|
double unscaled_error = 0.0;
|
|
// Set a number of samples on which to run the classify debug mode.
|
|
int error_samples = report_level > 3 ? report_level * report_level : 0;
|
|
// Iterate over all the samples, accumulating errors.
|
|
for (it->Begin(); !it->AtEnd(); it->Next()) {
|
|
TrainingSample* mutable_sample = it->MutableSample();
|
|
int page_index = mutable_sample->page_num();
|
|
Pix* page_pix = 0 <= page_index && page_index < page_images.size()
|
|
? page_images[page_index] : NULL;
|
|
// No debug, no keep this.
|
|
classifier->ClassifySample(*mutable_sample, page_pix, 0, INVALID_UNICHAR_ID,
|
|
&results);
|
|
if (mutable_sample->class_id() == 0) {
|
|
// This is junk so use the special counter.
|
|
counter.AccumulateJunk(*it->shape_table(), results, mutable_sample);
|
|
} else if (counter.AccumulateErrors(report_level > 3, boosting_mode,
|
|
fontinfo_table, *it->shape_table(),
|
|
results, mutable_sample) &&
|
|
error_samples > 0) {
|
|
// Running debug, keep the correct answer, and debug the classifier.
|
|
tprintf("Error on sample %d: Classifier debug output:\n",
|
|
it->GlobalSampleIndex());
|
|
int keep_this = it->GetSparseClassID();
|
|
classifier->ClassifySample(*mutable_sample, page_pix, 1, keep_this,
|
|
&results);
|
|
--error_samples;
|
|
}
|
|
++total_samples;
|
|
}
|
|
double total_time = 1.0 * (clock() - start) / CLOCKS_PER_SEC;
|
|
// Create the appropriate error report.
|
|
unscaled_error = counter.ReportErrors(report_level, boosting_mode,
|
|
fontinfo_table,
|
|
*it, unichar_error, fonts_report);
|
|
if (scaled_error != NULL) *scaled_error = counter.scaled_error_;
|
|
if (report_level > 1) {
|
|
// It is useful to know the time in microseconds/char.
|
|
tprintf("Errors computed in %.2fs at %.1f μs/char\n",
|
|
total_time, 1000000.0 * total_time / total_samples);
|
|
}
|
|
return unscaled_error;
|
|
}
|
|
|
|
// Constructor is private. Only anticipated use of ErrorCounter is via
|
|
// the static ComputeErrorRate.
|
|
ErrorCounter::ErrorCounter(int charsetsize, int shapesize, int fontsize)
|
|
: scaled_error_(0.0), unichar_counts_(charsetsize, shapesize, 0) {
|
|
Counts empty_counts;
|
|
font_counts_.init_to_size(fontsize, empty_counts);
|
|
}
|
|
ErrorCounter::~ErrorCounter() {
|
|
}
|
|
|
|
// Accumulates the errors from the classifier results on a single sample.
|
|
// Returns true if debug is true and a CT_UNICHAR_TOPN_ERR error occurred.
|
|
// boosting_mode selects the type of error to be used for boosting and the
|
|
// is_error_ member of sample is set according to whether the required type
|
|
// of error occurred. The font_table provides access to font properties
|
|
// for error counting and shape_table is used to understand the relationship
|
|
// between unichar_ids and shape_ids in the results
|
|
bool ErrorCounter::AccumulateErrors(bool debug, CountTypes boosting_mode,
|
|
const UnicityTable<FontInfo>& font_table,
|
|
const ShapeTable& shape_table,
|
|
const GenericVector<ShapeRating>& results,
|
|
TrainingSample* sample) {
|
|
int num_results = results.size();
|
|
int res_index = 0;
|
|
bool debug_it = false;
|
|
int font_id = sample->font_id();
|
|
int unichar_id = sample->class_id();
|
|
sample->set_is_error(false);
|
|
if (num_results == 0) {
|
|
// Reject. We count rejects as a separate category, but still mark the
|
|
// sample as an error in case any training module wants to use that to
|
|
// improve the classifier.
|
|
sample->set_is_error(true);
|
|
++font_counts_[font_id].n[CT_REJECT];
|
|
} else if (shape_table.GetShape(results[0].shape_id).
|
|
ContainsUnicharAndFont(unichar_id, font_id)) {
|
|
++font_counts_[font_id].n[CT_SHAPE_TOP_CORRECT];
|
|
// Unichar and font OK, but count if multiple unichars.
|
|
if (shape_table.GetShape(results[0].shape_id).size() > 1)
|
|
++font_counts_[font_id].n[CT_OK_MULTI_UNICHAR];
|
|
} else {
|
|
// This is a top shape error.
|
|
++font_counts_[font_id].n[CT_SHAPE_TOP_ERR];
|
|
// Check to see if any font in the top choice has attributes that match.
|
|
bool attributes_match = false;
|
|
uinT32 font_props = font_table.get(font_id).properties;
|
|
const Shape& shape = shape_table.GetShape(results[0].shape_id);
|
|
for (int c = 0; c < shape.size() && !attributes_match; ++c) {
|
|
for (int f = 0; f < shape[c].font_ids.size(); ++f) {
|
|
if (font_table.get(shape[c].font_ids[f]).properties == font_props) {
|
|
attributes_match = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// TODO(rays) It is easy to add counters for individual font attributes
|
|
// here if we want them.
|
|
if (!attributes_match)
|
|
++font_counts_[font_id].n[CT_FONT_ATTR_ERR];
|
|
if (boosting_mode == CT_SHAPE_TOP_ERR) sample->set_is_error(true);
|
|
// Find rank of correct unichar answer. (Ignoring the font.)
|
|
while (res_index < num_results &&
|
|
!shape_table.GetShape(results[res_index].shape_id).
|
|
ContainsUnichar(unichar_id)) {
|
|
++res_index;
|
|
}
|
|
if (res_index == 0) {
|
|
// Unichar OK, but count if multiple unichars.
|
|
if (shape_table.GetShape(results[res_index].shape_id).size() > 1) {
|
|
++font_counts_[font_id].n[CT_OK_MULTI_UNICHAR];
|
|
}
|
|
} else {
|
|
// Count maps from unichar id to shape id.
|
|
if (num_results > 0)
|
|
++unichar_counts_(unichar_id, results[0].shape_id);
|
|
// This is a unichar error.
|
|
++font_counts_[font_id].n[CT_UNICHAR_TOP1_ERR];
|
|
if (boosting_mode == CT_UNICHAR_TOP1_ERR) sample->set_is_error(true);
|
|
if (res_index >= MIN(2, num_results)) {
|
|
// It is also a 2nd choice unichar error.
|
|
++font_counts_[font_id].n[CT_UNICHAR_TOP2_ERR];
|
|
if (boosting_mode == CT_UNICHAR_TOP2_ERR) sample->set_is_error(true);
|
|
}
|
|
if (res_index >= num_results) {
|
|
// It is also a top-n choice unichar error.
|
|
++font_counts_[font_id].n[CT_UNICHAR_TOPN_ERR];
|
|
if (boosting_mode == CT_UNICHAR_TOPN_ERR) sample->set_is_error(true);
|
|
debug_it = debug;
|
|
}
|
|
}
|
|
}
|
|
// Compute mean number of return values and mean rank of correct answer.
|
|
font_counts_[font_id].n[CT_NUM_RESULTS] += num_results;
|
|
font_counts_[font_id].n[CT_RANK] += res_index;
|
|
// If it was an error for boosting then sum the weight.
|
|
if (sample->is_error()) {
|
|
scaled_error_ += sample->weight();
|
|
}
|
|
if (debug_it) {
|
|
tprintf("%d results for char %s font %d :",
|
|
num_results, shape_table.unicharset().id_to_unichar(unichar_id),
|
|
font_id);
|
|
for (int i = 0; i < num_results; ++i) {
|
|
tprintf(" %.3f/%.3f:%s",
|
|
results[i].rating, results[i].font,
|
|
shape_table.DebugStr(results[i].shape_id).string());
|
|
}
|
|
tprintf("\n");
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Accumulates counts for junk. Counts only whether the junk was correctly
|
|
// rejected or not.
|
|
void ErrorCounter::AccumulateJunk(const ShapeTable& shape_table,
|
|
const GenericVector<ShapeRating>& results,
|
|
TrainingSample* sample) {
|
|
// For junk we accept no answer, or an explicit shape answer matching the
|
|
// class id of the sample.
|
|
int num_results = results.size();
|
|
int font_id = sample->font_id();
|
|
int unichar_id = sample->class_id();
|
|
if (num_results > 0 &&
|
|
!shape_table.GetShape(results[0].shape_id).ContainsUnichar(unichar_id)) {
|
|
// This is a junk error.
|
|
++font_counts_[font_id].n[CT_ACCEPTED_JUNK];
|
|
sample->set_is_error(true);
|
|
// It counts as an error for boosting too so sum the weight.
|
|
scaled_error_ += sample->weight();
|
|
} else {
|
|
// Correctly rejected.
|
|
++font_counts_[font_id].n[CT_REJECTED_JUNK];
|
|
sample->set_is_error(false);
|
|
}
|
|
}
|
|
|
|
// Creates a report of the error rate. The report_level controls the detail
|
|
// that is reported to stderr via tprintf:
|
|
// 0 -> no output.
|
|
// >=1 -> bottom-line error rate.
|
|
// >=3 -> font-level error rate.
|
|
// boosting_mode determines the return value. It selects which (un-weighted)
|
|
// error rate to return.
|
|
// The fontinfo_table from MasterTrainer provides the names of fonts.
|
|
// The it determines the current subset of the training samples.
|
|
// If not NULL, the top-choice unichar error rate is saved in unichar_error.
|
|
// If not NULL, the report string is saved in fonts_report.
|
|
// (Ignoring report_level).
|
|
double ErrorCounter::ReportErrors(int report_level, CountTypes boosting_mode,
|
|
const UnicityTable<FontInfo>& fontinfo_table,
|
|
const SampleIterator& it,
|
|
double* unichar_error,
|
|
STRING* fonts_report) {
|
|
// Compute totals over all the fonts and report individual font results
|
|
// when required.
|
|
Counts totals;
|
|
int fontsize = font_counts_.size();
|
|
for (int f = 0; f < fontsize; ++f) {
|
|
// Accumulate counts over fonts.
|
|
totals += font_counts_[f];
|
|
STRING font_report;
|
|
if (ReportString(font_counts_[f], &font_report)) {
|
|
if (fonts_report != NULL) {
|
|
*fonts_report += fontinfo_table.get(f).name;
|
|
*fonts_report += ": ";
|
|
*fonts_report += font_report;
|
|
*fonts_report += "\n";
|
|
}
|
|
if (report_level > 2) {
|
|
// Report individual font error rates.
|
|
tprintf("%s: %s\n", fontinfo_table.get(f).name, font_report.string());
|
|
}
|
|
}
|
|
}
|
|
if (report_level > 0) {
|
|
// Report the totals.
|
|
STRING total_report;
|
|
if (ReportString(totals, &total_report)) {
|
|
tprintf("TOTAL Scaled Err=%.4g%%, %s\n",
|
|
scaled_error_ * 100.0, total_report.string());
|
|
}
|
|
// Report the worst substitution error only for now.
|
|
if (totals.n[CT_UNICHAR_TOP1_ERR] > 0) {
|
|
const UNICHARSET& unicharset = it.shape_table()->unicharset();
|
|
int charsetsize = unicharset.size();
|
|
int shapesize = it.CompactCharsetSize();
|
|
int worst_uni_id = 0;
|
|
int worst_shape_id = 0;
|
|
int worst_err = 0;
|
|
for (int u = 0; u < charsetsize; ++u) {
|
|
for (int s = 0; s < shapesize; ++s) {
|
|
if (unichar_counts_(u, s) > worst_err) {
|
|
worst_err = unichar_counts_(u, s);
|
|
worst_uni_id = u;
|
|
worst_shape_id = s;
|
|
}
|
|
}
|
|
}
|
|
if (worst_err > 0) {
|
|
tprintf("Worst error = %d:%s -> %s with %d/%d=%.2f%% errors\n",
|
|
worst_uni_id, unicharset.id_to_unichar(worst_uni_id),
|
|
it.shape_table()->DebugStr(worst_shape_id).string(),
|
|
worst_err, totals.n[CT_UNICHAR_TOP1_ERR],
|
|
100.0 * worst_err / totals.n[CT_UNICHAR_TOP1_ERR]);
|
|
}
|
|
}
|
|
}
|
|
double rates[CT_SIZE];
|
|
if (!ComputeRates(totals, rates))
|
|
return 0.0;
|
|
// Set output values if asked for.
|
|
if (unichar_error != NULL)
|
|
*unichar_error = rates[CT_UNICHAR_TOP1_ERR];
|
|
return rates[boosting_mode];
|
|
}
|
|
|
|
// Sets the report string to a combined human and machine-readable report
|
|
// string of the error rates.
|
|
// Returns false if there is no data, leaving report unchanged.
|
|
bool ErrorCounter::ReportString(const Counts& counts, STRING* report) {
|
|
// Compute the error rates.
|
|
double rates[CT_SIZE];
|
|
if (!ComputeRates(counts, rates))
|
|
return false;
|
|
// Using %.4g%%, the length of the output string should exactly match the
|
|
// length of the format string, but in case of overflow, allow for +eddd
|
|
// on each number.
|
|
const int kMaxExtraLength = 5; // Length of +eddd.
|
|
// Keep this format string and the snprintf in sync with the CountTypes enum.
|
|
const char* format_str = "ShapeErr=%.4g%%, FontAttr=%.4g%%, "
|
|
"Unichar=%.4g%%[1], %.4g%%[2], %.4g%%[n], "
|
|
"Multi=%.4g%%, Rej=%.4g%%, "
|
|
"Answers=%.3g, Rank=%.3g, "
|
|
"OKjunk=%.4g%%, Badjunk=%.4g%%";
|
|
int max_str_len = strlen(format_str) + kMaxExtraLength * (CT_SIZE - 1) + 1;
|
|
char* formatted_str = new char[max_str_len];
|
|
snprintf(formatted_str, max_str_len, format_str,
|
|
rates[CT_SHAPE_TOP_ERR] * 100.0,
|
|
rates[CT_FONT_ATTR_ERR] * 100.0,
|
|
rates[CT_UNICHAR_TOP1_ERR] * 100.0,
|
|
rates[CT_UNICHAR_TOP2_ERR] * 100.0,
|
|
rates[CT_UNICHAR_TOPN_ERR] * 100.0,
|
|
rates[CT_OK_MULTI_UNICHAR] * 100.0,
|
|
rates[CT_REJECT] * 100.0,
|
|
rates[CT_NUM_RESULTS],
|
|
rates[CT_RANK],
|
|
100.0 * rates[CT_REJECTED_JUNK],
|
|
100.0 * rates[CT_ACCEPTED_JUNK]);
|
|
*report = formatted_str;
|
|
delete [] formatted_str;
|
|
// Now append each field of counts with a tab in front so the result can
|
|
// be loaded into a spreadsheet.
|
|
for (int ct = 0; ct < CT_SIZE; ++ct)
|
|
report->add_str_int("\t", counts.n[ct]);
|
|
return true;
|
|
}
|
|
|
|
// Computes the error rates and returns in rates which is an array of size
|
|
// CT_SIZE. Returns false if there is no data, leaving rates unchanged.
|
|
bool ErrorCounter::ComputeRates(const Counts& counts, double rates[CT_SIZE]) {
|
|
int ok_samples = counts.n[CT_SHAPE_TOP_CORRECT] + counts.n[CT_SHAPE_TOP_ERR] +
|
|
counts.n[CT_REJECT];
|
|
int junk_samples = counts.n[CT_REJECTED_JUNK] + counts.n[CT_ACCEPTED_JUNK];
|
|
if (ok_samples == 0 && junk_samples == 0) {
|
|
// There is no data.
|
|
return false;
|
|
}
|
|
// Compute rates for normal chars.
|
|
double denominator = static_cast<double>(MAX(ok_samples, 1));
|
|
for (int ct = 0; ct <= CT_RANK; ++ct)
|
|
rates[ct] = counts.n[ct] / denominator;
|
|
// Compute rates for junk.
|
|
denominator = static_cast<double>(MAX(junk_samples, 1));
|
|
for (int ct = CT_REJECTED_JUNK; ct <= CT_ACCEPTED_JUNK; ++ct)
|
|
rates[ct] = counts.n[ct] / denominator;
|
|
return true;
|
|
}
|
|
|
|
ErrorCounter::Counts::Counts() {
|
|
memset(n, 0, sizeof(n[0]) * CT_SIZE);
|
|
}
|
|
// Adds other into this for computing totals.
|
|
void ErrorCounter::Counts::operator+=(const Counts& other) {
|
|
for (int ct = 0; ct < CT_SIZE; ++ct)
|
|
n[ct] += other.n[ct];
|
|
}
|
|
|
|
|
|
} // namespace tesseract.
|
|
|
|
|
|
|
|
|
|
|