tesseract/src/training/unicharset/lstmtester.cpp
Stefan Weil 0f56340151 Improve format of logging from lstmtraining
- always use C ("classic") locale
- limit output of floating point values to 3 digits
- remove unneeded linefeed after log message "wrote checkpoint"

Signed-off-by: Stefan Weil <sw@weilnetz.de>
2023-05-05 12:28:24 +02:00

158 lines
6.0 KiB
C++

///////////////////////////////////////////////////////////////////////
// File: lstmtester.cpp
// Description: Top-level line evaluation class for LSTM-based networks.
// Author: Ray Smith
//
// (C) Copyright 2016, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
///////////////////////////////////////////////////////////////////////
#include "lstmtester.h"
#include <iomanip> // for std::setprecision
#include <thread> // for std::thread
#include "fileio.h" // for LoadFileLinesToStrings
namespace tesseract {
LSTMTester::LSTMTester(int64_t max_memory) : test_data_(max_memory) {}
// Loads a set of lstmf files that were created using the lstm.train config to
// tesseract into memory ready for testing. Returns false if nothing was
// loaded. The arg is a filename of a file that lists the filenames.
bool LSTMTester::LoadAllEvalData(const char *filenames_file) {
std::vector<std::string> filenames;
if (!LoadFileLinesToStrings(filenames_file, &filenames)) {
tprintf("Failed to load list of eval filenames from %s\n", filenames_file);
return false;
}
return LoadAllEvalData(filenames);
}
// Loads a set of lstmf files that were created using the lstm.train config to
// tesseract into memory ready for testing. Returns false if nothing was
// loaded.
bool LSTMTester::LoadAllEvalData(const std::vector<std::string> &filenames) {
test_data_.Clear();
bool result = test_data_.LoadDocuments(filenames, CS_SEQUENTIAL, nullptr);
total_pages_ = test_data_.TotalPages();
return result;
}
// Runs an evaluation asynchronously on the stored data and returns a string
// describing the results of the previous test.
std::string LSTMTester::RunEvalAsync(int iteration, const double *training_errors,
const TessdataManager &model_mgr, int training_stage) {
std::string result;
if (total_pages_ == 0) {
result += "No test data at iteration " + std::to_string(iteration);
return result;
}
if (!LockIfNotRunning()) {
result += "Previous test incomplete, skipping test at iteration " + std::to_string(iteration);
return result;
}
// Save the args.
std::string prev_result = test_result_;
test_result_ = "";
if (training_errors != nullptr) {
test_iteration_ = iteration;
test_training_errors_ = training_errors;
test_model_mgr_ = model_mgr;
test_training_stage_ = training_stage;
std::thread t(&LSTMTester::ThreadFunc, this);
t.detach();
} else {
UnlockRunning();
}
return prev_result;
}
// Runs an evaluation synchronously on the stored data and returns a string
// describing the results.
std::string LSTMTester::RunEvalSync(int iteration, const double *training_errors,
const TessdataManager &model_mgr, int training_stage,
int verbosity) {
LSTMTrainer trainer;
trainer.InitCharSet(model_mgr);
TFile fp;
if (!model_mgr.GetComponent(TESSDATA_LSTM, &fp) || !trainer.DeSerialize(&model_mgr, &fp)) {
return "Deserialize failed";
}
int eval_iteration = 0;
double char_error = 0.0;
double word_error = 0.0;
int error_count = 0;
while (error_count < total_pages_) {
const ImageData *trainingdata = test_data_.GetPageBySerial(eval_iteration);
trainer.SetIteration(++eval_iteration);
NetworkIO fwd_outputs, targets;
Trainability result = trainer.PrepareForBackward(trainingdata, &fwd_outputs, &targets);
if (result != UNENCODABLE) {
char_error += trainer.NewSingleError(tesseract::ET_CHAR_ERROR);
word_error += trainer.NewSingleError(tesseract::ET_WORD_RECERR);
++error_count;
if (verbosity > 1 || (verbosity > 0 && result != PERFECT)) {
tprintf("Truth:%s\n", trainingdata->transcription().c_str());
std::vector<int> ocr_labels;
std::vector<int> xcoords;
trainer.LabelsFromOutputs(fwd_outputs, &ocr_labels, &xcoords);
std::string ocr_text = trainer.DecodeLabels(ocr_labels);
tprintf("OCR :%s\n", ocr_text.c_str());
if (verbosity > 2 || (verbosity > 1 && result != PERFECT)) {
tprintf("Line BCER=%f, BWER=%f\n\n",
trainer.NewSingleError(tesseract::ET_CHAR_ERROR),
trainer.NewSingleError(tesseract::ET_WORD_RECERR));
}
}
}
}
char_error *= 100.0 / total_pages_;
word_error *= 100.0 / total_pages_;
std::stringstream result;
result.imbue(std::locale::classic());
result << std::fixed << std::setprecision(3);
if (iteration != 0 || training_stage != 0) {
result << "At iteration " << iteration
<< ", stage " << training_stage << ", ";
}
result << "BCER eval=" << char_error << ", BWER eval=" << word_error;
return result.str();
}
// Helper thread function for RunEvalAsync.
// LockIfNotRunning must have returned true before calling ThreadFunc, and
// it will call UnlockRunning to release the lock after RunEvalSync completes.
void LSTMTester::ThreadFunc() {
test_result_ =
RunEvalSync(test_iteration_, test_training_errors_, test_model_mgr_, test_training_stage_,
/*verbosity*/ 0);
UnlockRunning();
}
// Returns true if there is currently nothing running, and takes the lock
// if there is nothing running.
bool LSTMTester::LockIfNotRunning() {
std::lock_guard<std::mutex> lock(running_mutex_);
if (async_running_) {
return false;
}
async_running_ = true;
return true;
}
// Releases the running lock.
void LSTMTester::UnlockRunning() {
std::lock_guard<std::mutex> lock(running_mutex_);
async_running_ = false;
}
} // namespace tesseract