mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2025-01-12 06:07:48 +08:00
216 lines
6.8 KiB
C++
216 lines
6.8 KiB
C++
// (C) Copyright 2017, Google Inc.
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "networkio.h"
|
|
#include "include_gunit.h"
|
|
#include "stridemap.h"
|
|
#ifdef INCLUDE_TENSORFLOW
|
|
# include <tensorflow/compiler/xla/array2d.h> // for xla::Array2D
|
|
#endif
|
|
|
|
namespace tesseract {
|
|
|
|
class NetworkioTest : public ::testing::Test {
|
|
protected:
|
|
void SetUp() override {
|
|
std::locale::global(std::locale(""));
|
|
}
|
|
|
|
#ifdef INCLUDE_TENSORFLOW
|
|
// Sets up an Array2d object of the given size, initialized to increasing
|
|
// values starting with start.
|
|
std::unique_ptr<xla::Array2D<int>> SetupArray(int ysize, int xsize, int start) {
|
|
std::unique_ptr<xla::Array2D<int>> a(new xla::Array2D<int>(ysize, xsize));
|
|
int value = start;
|
|
for (int y = 0; y < ysize; ++y) {
|
|
for (int x = 0; x < xsize; ++x) {
|
|
(*a)(y, x) = value++;
|
|
}
|
|
}
|
|
return a;
|
|
}
|
|
// Sets up a NetworkIO with a batch of 2 "images" of known values.
|
|
void SetupNetworkIO(NetworkIO *nio) {
|
|
std::vector<std::unique_ptr<xla::Array2D<int>>> arrays;
|
|
arrays.push_back(SetupArray(3, 4, 0));
|
|
arrays.push_back(SetupArray(4, 5, 12));
|
|
std::vector<std::pair<int, int>> h_w_sizes;
|
|
for (size_t i = 0; i < arrays.size(); ++i) {
|
|
h_w_sizes.emplace_back(arrays[i].get()->height(), arrays[i].get()->width());
|
|
}
|
|
StrideMap stride_map;
|
|
stride_map.SetStride(h_w_sizes);
|
|
nio->ResizeToMap(true, stride_map, 2);
|
|
// Iterate over the map, setting nio's contents from the arrays.
|
|
StrideMap::Index index(stride_map);
|
|
do {
|
|
int value = (*arrays[index.index(FD_BATCH)])(index.index(FD_HEIGHT), index.index(FD_WIDTH));
|
|
nio->SetPixel(index.t(), 0, 128 + value, 0.0f, 128.0f);
|
|
nio->SetPixel(index.t(), 1, 128 - value, 0.0f, 128.0f);
|
|
} while (index.Increment());
|
|
}
|
|
#endif
|
|
};
|
|
|
|
// Tests that the initialization via SetPixel works and the resize correctly
|
|
// fills with zero where image sizes don't match.
|
|
TEST_F(NetworkioTest, InitWithZeroFill) {
|
|
#ifdef INCLUDE_TENSORFLOW
|
|
NetworkIO nio;
|
|
nio.Resize2d(true, 32, 2);
|
|
int width = nio.Width();
|
|
for (int t = 0; t < width; ++t) {
|
|
nio.SetPixel(t, 0, 0, 0.0f, 128.0f);
|
|
nio.SetPixel(t, 1, 0, 0.0f, 128.0f);
|
|
}
|
|
// The initialization will wipe out all previously set values.
|
|
SetupNetworkIO(&nio);
|
|
nio.ZeroInvalidElements();
|
|
StrideMap::Index index(nio.stride_map());
|
|
int next_t = 0;
|
|
int pos = 0;
|
|
do {
|
|
int t = index.t();
|
|
// The indexed values just increase monotonically.
|
|
int value = nio.i(t)[0];
|
|
EXPECT_EQ(value, pos);
|
|
value = nio.i(t)[1];
|
|
EXPECT_EQ(value, -pos);
|
|
// When we skip t values, the data is always 0.
|
|
while (next_t < t) {
|
|
EXPECT_EQ(nio.i(next_t)[0], 0);
|
|
EXPECT_EQ(nio.i(next_t)[1], 0);
|
|
++next_t;
|
|
}
|
|
++pos;
|
|
++next_t;
|
|
} while (index.Increment());
|
|
EXPECT_EQ(pos, 32);
|
|
EXPECT_EQ(next_t, 40);
|
|
#else
|
|
LOG(INFO) << "Skip test because of missing xla::Array2D";
|
|
GTEST_SKIP();
|
|
#endif
|
|
}
|
|
|
|
// Tests that CopyWithYReversal works.
|
|
TEST_F(NetworkioTest, CopyWithYReversal) {
|
|
#ifdef INCLUDE_TENSORFLOW
|
|
NetworkIO nio;
|
|
SetupNetworkIO(&nio);
|
|
NetworkIO copy;
|
|
copy.CopyWithYReversal(nio);
|
|
StrideMap::Index index(copy.stride_map());
|
|
int next_t = 0;
|
|
int pos = 0;
|
|
std::vector<int> expected_values = {8, 9, 10, 11, 4, 5, 6, 7, 0, 1, 2,
|
|
3, 27, 28, 29, 30, 31, 22, 23, 24, 25, 26,
|
|
17, 18, 19, 20, 21, 12, 13, 14, 15, 16};
|
|
do {
|
|
int t = index.t();
|
|
// The indexed values match the expected values.
|
|
int value = copy.i(t)[0];
|
|
EXPECT_EQ(value, expected_values[pos]);
|
|
value = copy.i(t)[1];
|
|
EXPECT_EQ(value, -expected_values[pos]);
|
|
// When we skip t values, the data is always 0.
|
|
while (next_t < t) {
|
|
EXPECT_EQ(copy.i(next_t)[0], 0) << "Failure t = " << next_t;
|
|
EXPECT_EQ(copy.i(next_t)[1], 0) << "Failure t = " << next_t;
|
|
++next_t;
|
|
}
|
|
++pos;
|
|
++next_t;
|
|
} while (index.Increment());
|
|
EXPECT_EQ(pos, 32);
|
|
EXPECT_EQ(next_t, 40);
|
|
#else
|
|
LOG(INFO) << "Skip test because of missing xla::Array2D";
|
|
GTEST_SKIP();
|
|
#endif
|
|
}
|
|
|
|
// Tests that CopyWithXReversal works.
|
|
TEST_F(NetworkioTest, CopyWithXReversal) {
|
|
#ifdef INCLUDE_TENSORFLOW
|
|
NetworkIO nio;
|
|
SetupNetworkIO(&nio);
|
|
NetworkIO copy;
|
|
copy.CopyWithXReversal(nio);
|
|
StrideMap::Index index(copy.stride_map());
|
|
int next_t = 0;
|
|
int pos = 0;
|
|
std::vector<int> expected_values = {3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9,
|
|
8, 16, 15, 14, 13, 12, 21, 20, 19, 18, 17,
|
|
26, 25, 24, 23, 22, 31, 30, 29, 28, 27};
|
|
do {
|
|
int t = index.t();
|
|
// The indexed values match the expected values.
|
|
int value = copy.i(t)[0];
|
|
EXPECT_EQ(value, expected_values[pos]);
|
|
value = copy.i(t)[1];
|
|
EXPECT_EQ(value, -expected_values[pos]);
|
|
// When we skip t values, the data is always 0.
|
|
while (next_t < t) {
|
|
EXPECT_EQ(copy.i(next_t)[0], 0) << "Failure t = " << next_t;
|
|
EXPECT_EQ(copy.i(next_t)[1], 0) << "Failure t = " << next_t;
|
|
++next_t;
|
|
}
|
|
++pos;
|
|
++next_t;
|
|
} while (index.Increment());
|
|
EXPECT_EQ(pos, 32);
|
|
EXPECT_EQ(next_t, 40);
|
|
#else
|
|
LOG(INFO) << "Skip test because of missing xla::Array2D";
|
|
GTEST_SKIP();
|
|
#endif
|
|
}
|
|
|
|
// Tests that CopyWithXYTranspose works.
|
|
TEST_F(NetworkioTest, CopyWithXYTranspose) {
|
|
#ifdef INCLUDE_TENSORFLOW
|
|
NetworkIO nio;
|
|
SetupNetworkIO(&nio);
|
|
NetworkIO copy;
|
|
copy.CopyWithXYTranspose(nio);
|
|
StrideMap::Index index(copy.stride_map());
|
|
int next_t = 0;
|
|
int pos = 0;
|
|
std::vector<int> expected_values = {0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7,
|
|
11, 12, 17, 22, 27, 13, 18, 23, 28, 14, 19,
|
|
24, 29, 15, 20, 25, 30, 16, 21, 26, 31};
|
|
do {
|
|
int t = index.t();
|
|
// The indexed values match the expected values.
|
|
int value = copy.i(t)[0];
|
|
EXPECT_EQ(value, expected_values[pos]);
|
|
value = copy.i(t)[1];
|
|
EXPECT_EQ(value, -expected_values[pos]);
|
|
// When we skip t values, the data is always 0.
|
|
while (next_t < t) {
|
|
EXPECT_EQ(copy.i(next_t)[0], 0);
|
|
EXPECT_EQ(copy.i(next_t)[1], 0);
|
|
++next_t;
|
|
}
|
|
++pos;
|
|
++next_t;
|
|
} while (index.Increment());
|
|
EXPECT_EQ(pos, 32);
|
|
EXPECT_EQ(next_t, 40);
|
|
#else
|
|
LOG(INFO) << "Skip test because of missing xla::Array2D";
|
|
GTEST_SKIP();
|
|
#endif
|
|
}
|
|
|
|
} // namespace tesseract
|