mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2025-01-18 06:30:14 +08:00
55fde61a8f
All of them were found by codespell. Signed-off-by: Stefan Weil <sw@weilnetz.de>
534 lines
24 KiB
C++
534 lines
24 KiB
C++
/******************************************************************************
|
|
** Filename: intfx.c
|
|
** Purpose: Integer character normalization & feature extraction
|
|
** Author: Robert Moss, rays@google.com (Ray Smith)
|
|
** History: Tue May 21 15:51:57 MDT 1991, RWM, Created.
|
|
** Tue Feb 28 10:42:00 PST 2012, vastly rewritten to allow
|
|
greyscale fx and non-linear
|
|
normalization.
|
|
**
|
|
** (c) Copyright Hewlett-Packard Company, 1988.
|
|
** Licensed under the Apache License, Version 2.0 (the "License");
|
|
** you may not use this file except in compliance with the License.
|
|
** You may obtain a copy of the License at
|
|
** http://www.apache.org/licenses/LICENSE-2.0
|
|
** Unless required by applicable law or agreed to in writing, software
|
|
** distributed under the License is distributed on an "AS IS" BASIS,
|
|
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
** See the License for the specific language governing permissions and
|
|
** limitations under the License.
|
|
******************************************************************************/
|
|
/**----------------------------------------------------------------------------
|
|
Include Files and Type Defines
|
|
----------------------------------------------------------------------------**/
|
|
#include "intfx.h"
|
|
#include "allheaders.h"
|
|
#include "ccutil.h"
|
|
#include "classify.h"
|
|
#include "const.h"
|
|
#include "helpers.h"
|
|
#include "intmatcher.h"
|
|
#include "linlsq.h"
|
|
#include "ndminx.h"
|
|
#include "normalis.h"
|
|
#include "statistc.h"
|
|
#include "trainingsample.h"
|
|
|
|
using tesseract::TrainingSample;
|
|
|
|
/**----------------------------------------------------------------------------
|
|
Global Data Definitions and Declarations
|
|
----------------------------------------------------------------------------**/
|
|
// Look up table for cos and sin to turn the intfx feature angle to a vector.
|
|
// Protected by atan_table_mutex.
|
|
// The entries are in binary degrees where a full circle is 256 binary degrees.
|
|
static float cos_table[INT_CHAR_NORM_RANGE];
|
|
static float sin_table[INT_CHAR_NORM_RANGE];
|
|
// Guards write access to AtanTable so we don't create it more than once.
|
|
tesseract::CCUtilMutex atan_table_mutex;
|
|
|
|
|
|
/**----------------------------------------------------------------------------
|
|
Public Code
|
|
----------------------------------------------------------------------------**/
|
|
/*---------------------------------------------------------------------------*/
|
|
void InitIntegerFX() {
|
|
static bool atan_table_init = false;
|
|
atan_table_mutex.Lock();
|
|
if (!atan_table_init) {
|
|
for (int i = 0; i < INT_CHAR_NORM_RANGE; ++i) {
|
|
cos_table[i] = cos(i * 2 * PI / INT_CHAR_NORM_RANGE + PI);
|
|
sin_table[i] = sin(i * 2 * PI / INT_CHAR_NORM_RANGE + PI);
|
|
}
|
|
atan_table_init = true;
|
|
}
|
|
atan_table_mutex.Unlock();
|
|
}
|
|
|
|
// Returns a vector representing the direction of a feature with the given
|
|
// theta direction in an INT_FEATURE_STRUCT.
|
|
FCOORD FeatureDirection(uinT8 theta) {
|
|
return FCOORD(cos_table[theta], sin_table[theta]);
|
|
}
|
|
|
|
namespace tesseract {
|
|
|
|
// Generates a TrainingSample from a TBLOB. Extracts features and sets
|
|
// the bounding box, so classifiers that operate on the image can work.
|
|
// TODO(rays) Make BlobToTrainingSample a member of Classify now that
|
|
// the FlexFx and FeatureDescription code have been removed and LearnBlob
|
|
// is now a member of Classify.
|
|
TrainingSample* BlobToTrainingSample(
|
|
const TBLOB& blob, bool nonlinear_norm, INT_FX_RESULT_STRUCT* fx_info,
|
|
GenericVector<INT_FEATURE_STRUCT>* bl_features) {
|
|
GenericVector<INT_FEATURE_STRUCT> cn_features;
|
|
Classify::ExtractFeatures(blob, nonlinear_norm, bl_features,
|
|
&cn_features, fx_info, NULL);
|
|
// TODO(rays) Use blob->PreciseBoundingBox() instead.
|
|
TBOX box = blob.bounding_box();
|
|
TrainingSample* sample = NULL;
|
|
int num_features = fx_info->NumCN;
|
|
if (num_features > 0) {
|
|
sample = TrainingSample::CopyFromFeatures(*fx_info, box, &cn_features[0],
|
|
num_features);
|
|
}
|
|
if (sample != NULL) {
|
|
// Set the bounding box (in original image coordinates) in the sample.
|
|
TPOINT topleft, botright;
|
|
topleft.x = box.left();
|
|
topleft.y = box.top();
|
|
botright.x = box.right();
|
|
botright.y = box.bottom();
|
|
TPOINT original_topleft, original_botright;
|
|
blob.denorm().DenormTransform(NULL, topleft, &original_topleft);
|
|
blob.denorm().DenormTransform(NULL, botright, &original_botright);
|
|
sample->set_bounding_box(TBOX(original_topleft.x, original_botright.y,
|
|
original_botright.x, original_topleft.y));
|
|
}
|
|
return sample;
|
|
}
|
|
|
|
// Computes the DENORMS for bl(baseline) and cn(character) normalization
|
|
// during feature extraction. The input denorm describes the current state
|
|
// of the blob, which is usually a baseline-normalized word.
|
|
// The Transforms setup are as follows:
|
|
// Baseline Normalized (bl) Output:
|
|
// We center the grapheme by aligning the x-coordinate of its centroid with
|
|
// x=128 and leaving the already-baseline-normalized y as-is.
|
|
//
|
|
// Character Normalized (cn) Output:
|
|
// We align the grapheme's centroid at the origin and scale it
|
|
// asymmetrically in x and y so that the 2nd moments are a standard value
|
|
// (51.2) ie the result is vaguely square.
|
|
// If classify_nonlinear_norm is true:
|
|
// A non-linear normalization is setup that attempts to evenly distribute
|
|
// edges across x and y.
|
|
//
|
|
// Some of the fields of fx_info are also setup:
|
|
// Length: Total length of outline.
|
|
// Rx: Rounded y second moment. (Reversed by convention.)
|
|
// Ry: rounded x second moment.
|
|
// Xmean: Rounded x center of mass of the blob.
|
|
// Ymean: Rounded y center of mass of the blob.
|
|
void Classify::SetupBLCNDenorms(const TBLOB& blob, bool nonlinear_norm,
|
|
DENORM* bl_denorm, DENORM* cn_denorm,
|
|
INT_FX_RESULT_STRUCT* fx_info) {
|
|
// Compute 1st and 2nd moments of the original outline.
|
|
FCOORD center, second_moments;
|
|
int length = blob.ComputeMoments(¢er, &second_moments);
|
|
if (fx_info != NULL) {
|
|
fx_info->Length = length;
|
|
fx_info->Rx = IntCastRounded(second_moments.y());
|
|
fx_info->Ry = IntCastRounded(second_moments.x());
|
|
|
|
fx_info->Xmean = IntCastRounded(center.x());
|
|
fx_info->Ymean = IntCastRounded(center.y());
|
|
}
|
|
// Setup the denorm for Baseline normalization.
|
|
bl_denorm->SetupNormalization(NULL, NULL, &blob.denorm(), center.x(), 128.0f,
|
|
1.0f, 1.0f, 128.0f, 128.0f);
|
|
// Setup the denorm for character normalization.
|
|
if (nonlinear_norm) {
|
|
GenericVector<GenericVector<int> > x_coords;
|
|
GenericVector<GenericVector<int> > y_coords;
|
|
TBOX box;
|
|
blob.GetPreciseBoundingBox(&box);
|
|
box.pad(1, 1);
|
|
blob.GetEdgeCoords(box, &x_coords, &y_coords);
|
|
cn_denorm->SetupNonLinear(&blob.denorm(), box, MAX_UINT8, MAX_UINT8,
|
|
0.0f, 0.0f, x_coords, y_coords);
|
|
} else {
|
|
cn_denorm->SetupNormalization(NULL, NULL, &blob.denorm(),
|
|
center.x(), center.y(),
|
|
51.2f / second_moments.x(),
|
|
51.2f / second_moments.y(),
|
|
128.0f, 128.0f);
|
|
}
|
|
}
|
|
|
|
// Helper normalizes the direction, assuming that it is at the given
|
|
// unnormed_pos, using the given denorm, starting at the root_denorm.
|
|
uinT8 NormalizeDirection(uinT8 dir, const FCOORD& unnormed_pos,
|
|
const DENORM& denorm, const DENORM* root_denorm) {
|
|
// Convert direction to a vector.
|
|
FCOORD unnormed_end;
|
|
unnormed_end.from_direction(dir);
|
|
unnormed_end += unnormed_pos;
|
|
FCOORD normed_pos, normed_end;
|
|
denorm.NormTransform(root_denorm, unnormed_pos, &normed_pos);
|
|
denorm.NormTransform(root_denorm, unnormed_end, &normed_end);
|
|
normed_end -= normed_pos;
|
|
return normed_end.to_direction();
|
|
}
|
|
|
|
// Helper returns the mean direction vector from the given stats. Use the
|
|
// mean direction from dirs if there is information available, otherwise, use
|
|
// the fit_vector from point_diffs.
|
|
static FCOORD MeanDirectionVector(const LLSQ& point_diffs, const LLSQ& dirs,
|
|
const FCOORD& start_pt,
|
|
const FCOORD& end_pt) {
|
|
FCOORD fit_vector;
|
|
if (dirs.count() > 0) {
|
|
// There were directions, so use them. To avoid wrap-around problems, we
|
|
// have 2 accumulators in dirs: x for normal directions and y for
|
|
// directions offset by 128. We will use the one with the least variance.
|
|
FCOORD mean_pt = dirs.mean_point();
|
|
double mean_dir = 0.0;
|
|
if (dirs.x_variance() <= dirs.y_variance()) {
|
|
mean_dir = mean_pt.x();
|
|
} else {
|
|
mean_dir = mean_pt.y() + 128;
|
|
}
|
|
fit_vector.from_direction(Modulo(IntCastRounded(mean_dir), 256));
|
|
} else {
|
|
// There were no directions, so we rely on the vector_fit to the points.
|
|
// Since the vector_fit is 180 degrees ambiguous, we align with the
|
|
// supplied feature_dir by making the scalar product non-negative.
|
|
FCOORD feature_dir(end_pt - start_pt);
|
|
fit_vector = point_diffs.vector_fit();
|
|
if (fit_vector.x() == 0.0f && fit_vector.y() == 0.0f) {
|
|
// There was only a single point. Use feature_dir directly.
|
|
fit_vector = feature_dir;
|
|
} else {
|
|
// Sometimes the least mean squares fit is wrong, due to the small sample
|
|
// of points and scaling. Use a 90 degree rotated vector if that matches
|
|
// feature_dir better.
|
|
FCOORD fit_vector2 = !fit_vector;
|
|
// The fit_vector is 180 degrees ambiguous, so resolve the ambiguity by
|
|
// insisting that the scalar product with the feature_dir should be +ve.
|
|
if (fit_vector % feature_dir < 0.0)
|
|
fit_vector = -fit_vector;
|
|
if (fit_vector2 % feature_dir < 0.0)
|
|
fit_vector2 = -fit_vector2;
|
|
// Even though fit_vector2 has a higher mean squared error, it might be
|
|
// a better fit, so use it if the dot product with feature_dir is bigger.
|
|
if (fit_vector2 % feature_dir > fit_vector % feature_dir)
|
|
fit_vector = fit_vector2;
|
|
}
|
|
}
|
|
return fit_vector;
|
|
}
|
|
|
|
// Helper computes one or more features corresponding to the given points.
|
|
// Emitted features are on the line defined by:
|
|
// start_pt + lambda * (end_pt - start_pt) for scalar lambda.
|
|
// Features are spaced at feature_length intervals.
|
|
static int ComputeFeatures(const FCOORD& start_pt, const FCOORD& end_pt,
|
|
double feature_length,
|
|
GenericVector<INT_FEATURE_STRUCT>* features) {
|
|
FCOORD feature_vector(end_pt - start_pt);
|
|
if (feature_vector.x() == 0.0f && feature_vector.y() == 0.0f) return 0;
|
|
// Compute theta for the feature based on its direction.
|
|
uinT8 theta = feature_vector.to_direction();
|
|
// Compute the number of features and lambda_step.
|
|
double target_length = feature_vector.length();
|
|
int num_features = IntCastRounded(target_length / feature_length);
|
|
if (num_features == 0) return 0;
|
|
// Divide the length evenly into num_features pieces.
|
|
double lambda_step = 1.0 / num_features;
|
|
double lambda = lambda_step / 2.0;
|
|
for (int f = 0; f < num_features; ++f, lambda += lambda_step) {
|
|
FCOORD feature_pt(start_pt);
|
|
feature_pt += feature_vector * lambda;
|
|
INT_FEATURE_STRUCT feature(feature_pt, theta);
|
|
features->push_back(feature);
|
|
}
|
|
return num_features;
|
|
}
|
|
|
|
// Gathers outline points and their directions from start_index into dirs by
|
|
// stepping along the outline and normalizing the coordinates until the
|
|
// required feature_length has been collected or end_index is reached.
|
|
// On input pos must point to the position corresponding to start_index and on
|
|
// return pos is updated to the current raw position, and pos_normed is set to
|
|
// the normed version of pos.
|
|
// Since directions wrap-around, they need special treatment to get the mean.
|
|
// Provided the cluster of directions doesn't straddle the wrap-around point,
|
|
// the simple mean works. If they do, then, unless the directions are wildly
|
|
// varying, the cluster rotated by 180 degrees will not straddle the wrap-
|
|
// around point, so mean(dir + 180 degrees) - 180 degrees will work. Since
|
|
// LLSQ conveniently stores the mean of 2 variables, we use it to store
|
|
// dir and dir+128 (128 is 180 degrees) and then use the resulting mean
|
|
// with the least variance.
|
|
static int GatherPoints(const C_OUTLINE* outline, double feature_length,
|
|
const DENORM& denorm, const DENORM* root_denorm,
|
|
int start_index, int end_index,
|
|
ICOORD* pos, FCOORD* pos_normed,
|
|
LLSQ* points, LLSQ* dirs) {
|
|
int step_length = outline->pathlength();
|
|
ICOORD step = outline->step(start_index % step_length);
|
|
// Prev_normed is the start point of this collection and will be set on the
|
|
// first iteration, and on later iterations used to determine the length
|
|
// that has been collected.
|
|
FCOORD prev_normed;
|
|
points->clear();
|
|
dirs->clear();
|
|
int num_points = 0;
|
|
int index;
|
|
for (index = start_index; index <= end_index; ++index, *pos += step) {
|
|
step = outline->step(index % step_length);
|
|
int edge_weight = outline->edge_strength_at_index(index % step_length);
|
|
if (edge_weight == 0) {
|
|
// This point has conflicting gradient and step direction, so ignore it.
|
|
continue;
|
|
}
|
|
// Get the sub-pixel precise location and normalize.
|
|
FCOORD f_pos = outline->sub_pixel_pos_at_index(*pos, index % step_length);
|
|
denorm.NormTransform(root_denorm, f_pos, pos_normed);
|
|
if (num_points == 0) {
|
|
// The start of this segment.
|
|
prev_normed = *pos_normed;
|
|
} else {
|
|
FCOORD offset = *pos_normed - prev_normed;
|
|
float length = offset.length();
|
|
if (length > feature_length) {
|
|
// We have gone far enough from the start. We will use this point in
|
|
// the next set so return what we have so far.
|
|
return index;
|
|
}
|
|
}
|
|
points->add(pos_normed->x(), pos_normed->y(), edge_weight);
|
|
int direction = outline->direction_at_index(index % step_length);
|
|
if (direction >= 0) {
|
|
direction = NormalizeDirection(direction, f_pos, denorm, root_denorm);
|
|
// Use both the direction and direction +128 so we are not trying to
|
|
// take the mean of something straddling the wrap-around point.
|
|
dirs->add(direction, Modulo(direction + 128, 256));
|
|
}
|
|
++num_points;
|
|
}
|
|
return index;
|
|
}
|
|
|
|
// Extracts Tesseract features and appends them to the features vector.
|
|
// Startpt to lastpt, inclusive, MUST have the same src_outline member,
|
|
// which may be NULL. The vector from lastpt to its next is included in
|
|
// the feature extraction. Hidden edges should be excluded by the caller.
|
|
// If force_poly is true, the features will be extracted from the polygonal
|
|
// approximation even if more accurate data is available.
|
|
static void ExtractFeaturesFromRun(
|
|
const EDGEPT* startpt, const EDGEPT* lastpt,
|
|
const DENORM& denorm, double feature_length, bool force_poly,
|
|
GenericVector<INT_FEATURE_STRUCT>* features) {
|
|
const EDGEPT* endpt = lastpt->next;
|
|
const C_OUTLINE* outline = startpt->src_outline;
|
|
if (outline != NULL && !force_poly) {
|
|
// Detailed information is available. We have to normalize only from
|
|
// the root_denorm to denorm.
|
|
const DENORM* root_denorm = denorm.RootDenorm();
|
|
int total_features = 0;
|
|
// Get the features from the outline.
|
|
int step_length = outline->pathlength();
|
|
int start_index = startpt->start_step;
|
|
// pos is the integer coordinates of the binary image steps.
|
|
ICOORD pos = outline->position_at_index(start_index);
|
|
// We use an end_index that allows us to use a positive increment, but that
|
|
// may be beyond the bounds of the outline steps/ due to wrap-around, to
|
|
// so we use % step_length everywhere, except for start_index.
|
|
int end_index = lastpt->start_step + lastpt->step_count;
|
|
if (end_index <= start_index)
|
|
end_index += step_length;
|
|
LLSQ prev_points;
|
|
LLSQ prev_dirs;
|
|
FCOORD prev_normed_pos = outline->sub_pixel_pos_at_index(pos, start_index);
|
|
denorm.NormTransform(root_denorm, prev_normed_pos, &prev_normed_pos);
|
|
LLSQ points;
|
|
LLSQ dirs;
|
|
FCOORD normed_pos;
|
|
int index = GatherPoints(outline, feature_length, denorm, root_denorm,
|
|
start_index, end_index, &pos, &normed_pos,
|
|
&points, &dirs);
|
|
while (index <= end_index) {
|
|
// At each iteration we nominally have 3 accumulated sets of points and
|
|
// dirs: prev_points/dirs, points/dirs, next_points/dirs and sum them
|
|
// into sum_points/dirs, but we don't necessarily get any features out,
|
|
// so if that is the case, we keep accumulating instead of rotating the
|
|
// accumulators.
|
|
LLSQ next_points;
|
|
LLSQ next_dirs;
|
|
FCOORD next_normed_pos;
|
|
index = GatherPoints(outline, feature_length, denorm, root_denorm,
|
|
index, end_index, &pos, &next_normed_pos,
|
|
&next_points, &next_dirs);
|
|
LLSQ sum_points(prev_points);
|
|
// TODO(rays) find out why it is better to use just dirs and next_dirs
|
|
// in sum_dirs, instead of using prev_dirs as well.
|
|
LLSQ sum_dirs(dirs);
|
|
sum_points.add(points);
|
|
sum_points.add(next_points);
|
|
sum_dirs.add(next_dirs);
|
|
bool made_features = false;
|
|
// If we have some points, we can try making some features.
|
|
if (sum_points.count() > 0) {
|
|
// We have gone far enough from the start. Make a feature and restart.
|
|
FCOORD fit_pt = sum_points.mean_point();
|
|
FCOORD fit_vector = MeanDirectionVector(sum_points, sum_dirs,
|
|
prev_normed_pos, normed_pos);
|
|
// The segment to which we fit features is the line passing through
|
|
// fit_pt in direction of fit_vector that starts nearest to
|
|
// prev_normed_pos and ends nearest to normed_pos.
|
|
FCOORD start_pos = prev_normed_pos.nearest_pt_on_line(fit_pt,
|
|
fit_vector);
|
|
FCOORD end_pos = normed_pos.nearest_pt_on_line(fit_pt, fit_vector);
|
|
// Possible correction to match the adjacent polygon segment.
|
|
if (total_features == 0 && startpt != endpt) {
|
|
FCOORD poly_pos(startpt->pos.x, startpt->pos.y);
|
|
denorm.LocalNormTransform(poly_pos, &start_pos);
|
|
}
|
|
if (index > end_index && startpt != endpt) {
|
|
FCOORD poly_pos(endpt->pos.x, endpt->pos.y);
|
|
denorm.LocalNormTransform(poly_pos, &end_pos);
|
|
}
|
|
int num_features = ComputeFeatures(start_pos, end_pos, feature_length,
|
|
features);
|
|
if (num_features > 0) {
|
|
// We made some features so shuffle the accumulators.
|
|
prev_points = points;
|
|
prev_dirs = dirs;
|
|
prev_normed_pos = normed_pos;
|
|
points = next_points;
|
|
dirs = next_dirs;
|
|
made_features = true;
|
|
total_features += num_features;
|
|
}
|
|
// The end of the next set becomes the end next time around.
|
|
normed_pos = next_normed_pos;
|
|
}
|
|
if (!made_features) {
|
|
// We didn't make any features, so keep the prev accumulators and
|
|
// add the next ones into the current.
|
|
points.add(next_points);
|
|
dirs.add(next_dirs);
|
|
}
|
|
}
|
|
} else {
|
|
// There is no outline, so we are forced to use the polygonal approximation.
|
|
const EDGEPT* pt = startpt;
|
|
do {
|
|
FCOORD start_pos(pt->pos.x, pt->pos.y);
|
|
FCOORD end_pos(pt->next->pos.x, pt->next->pos.y);
|
|
denorm.LocalNormTransform(start_pos, &start_pos);
|
|
denorm.LocalNormTransform(end_pos, &end_pos);
|
|
ComputeFeatures(start_pos, end_pos, feature_length, features);
|
|
} while ((pt = pt->next) != endpt);
|
|
}
|
|
}
|
|
|
|
// Extracts sets of 3-D features of length kStandardFeatureLength (=12.8), as
|
|
// (x,y) position and angle as measured counterclockwise from the vector
|
|
// <-1, 0>, from blob using two normalizations defined by bl_denorm and
|
|
// cn_denorm. See SetpuBLCNDenorms for definitions.
|
|
// If outline_cn_counts is not NULL, on return it contains the cumulative
|
|
// number of cn features generated for each outline in the blob (in order).
|
|
// Thus after the first outline, there were (*outline_cn_counts)[0] features,
|
|
// after the second outline, there were (*outline_cn_counts)[1] features etc.
|
|
void Classify::ExtractFeatures(const TBLOB& blob,
|
|
bool nonlinear_norm,
|
|
GenericVector<INT_FEATURE_STRUCT>* bl_features,
|
|
GenericVector<INT_FEATURE_STRUCT>* cn_features,
|
|
INT_FX_RESULT_STRUCT* results,
|
|
GenericVector<int>* outline_cn_counts) {
|
|
DENORM bl_denorm, cn_denorm;
|
|
tesseract::Classify::SetupBLCNDenorms(blob, nonlinear_norm,
|
|
&bl_denorm, &cn_denorm, results);
|
|
if (outline_cn_counts != NULL)
|
|
outline_cn_counts->truncate(0);
|
|
// Iterate the outlines.
|
|
for (TESSLINE* ol = blob.outlines; ol != NULL; ol = ol->next) {
|
|
// Iterate the polygon.
|
|
EDGEPT* loop_pt = ol->FindBestStartPt();
|
|
EDGEPT* pt = loop_pt;
|
|
if (pt == NULL) continue;
|
|
do {
|
|
if (pt->IsHidden()) continue;
|
|
// Find a run of equal src_outline.
|
|
EDGEPT* last_pt = pt;
|
|
do {
|
|
last_pt = last_pt->next;
|
|
} while (last_pt != loop_pt && !last_pt->IsHidden() &&
|
|
last_pt->src_outline == pt->src_outline);
|
|
last_pt = last_pt->prev;
|
|
// Until the adaptive classifier can be weaned off polygon segments,
|
|
// we have to force extraction from the polygon for the bl_features.
|
|
ExtractFeaturesFromRun(pt, last_pt, bl_denorm, kStandardFeatureLength,
|
|
true, bl_features);
|
|
ExtractFeaturesFromRun(pt, last_pt, cn_denorm, kStandardFeatureLength,
|
|
false, cn_features);
|
|
pt = last_pt;
|
|
} while ((pt = pt->next) != loop_pt);
|
|
if (outline_cn_counts != NULL)
|
|
outline_cn_counts->push_back(cn_features->size());
|
|
}
|
|
results->NumBL = bl_features->size();
|
|
results->NumCN = cn_features->size();
|
|
results->YBottom = blob.bounding_box().bottom();
|
|
results->YTop = blob.bounding_box().top();
|
|
results->Width = blob.bounding_box().width();
|
|
}
|
|
|
|
} // namespace tesseract
|
|
|
|
|
|
/*--------------------------------------------------------------------------*/
|
|
// Extract a set of standard-sized features from Blobs and write them out in
|
|
// two formats: baseline normalized and character normalized.
|
|
//
|
|
// We presume the Blobs are already scaled so that x-height=128 units
|
|
//
|
|
// Standard Features:
|
|
// We take all outline segments longer than 7 units and chop them into
|
|
// standard-sized segments of approximately 13 = (64 / 5) units.
|
|
// When writing these features out, we output their center and angle as
|
|
// measured counterclockwise from the vector <-1, 0>
|
|
//
|
|
// Baseline Normalized Output:
|
|
// We center the grapheme by aligning the x-coordinate of its centroid with
|
|
// x=0 and subtracting 128 from the y-coordinate.
|
|
//
|
|
// Character Normalized Output:
|
|
// We align the grapheme's centroid at the origin and scale it asymmetrically
|
|
// in x and y so that the result is vaguely square.
|
|
//
|
|
// Deprecated! Prefer tesseract::Classify::ExtractFeatures instead.
|
|
bool ExtractIntFeat(const TBLOB& blob,
|
|
bool nonlinear_norm,
|
|
INT_FEATURE_ARRAY baseline_features,
|
|
INT_FEATURE_ARRAY charnorm_features,
|
|
INT_FX_RESULT_STRUCT* results) {
|
|
GenericVector<INT_FEATURE_STRUCT> bl_features;
|
|
GenericVector<INT_FEATURE_STRUCT> cn_features;
|
|
tesseract::Classify::ExtractFeatures(blob, nonlinear_norm,
|
|
&bl_features, &cn_features, results,
|
|
NULL);
|
|
if (bl_features.size() == 0 || cn_features.size() == 0 ||
|
|
bl_features.size() > MAX_NUM_INT_FEATURES ||
|
|
cn_features.size() > MAX_NUM_INT_FEATURES) {
|
|
return false; // Feature extraction failed.
|
|
}
|
|
memcpy(baseline_features, &bl_features[0],
|
|
bl_features.size() * sizeof(bl_features[0]));
|
|
memcpy(charnorm_features, &cn_features[0],
|
|
cn_features.size() * sizeof(cn_features[0]));
|
|
return true;
|
|
}
|