mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2025-01-19 06:53:36 +08:00
4523ce9f7d
git-svn-id: https://tesseract-ocr.googlecode.com/svn/trunk@526 d0cd1f9f-072b-0410-8dd7-cf729c803f20
988 lines
34 KiB
C++
988 lines
34 KiB
C++
/******************************************************************************
|
|
** Filename: stopper.c
|
|
** Purpose: Stopping criteria for word classifier.
|
|
** Author: Dan Johnson
|
|
** History: Mon Apr 29 14:56:49 1991, DSJ, Created.
|
|
**
|
|
** (c) Copyright Hewlett-Packard Company, 1988.
|
|
** Licensed under the Apache License, Version 2.0 (the "License");
|
|
** you may not use this file except in compliance with the License.
|
|
** You may obtain a copy of the License at
|
|
** http://www.apache.org/licenses/LICENSE-2.0
|
|
** Unless required by applicable law or agreed to in writing, software
|
|
** distributed under the License is distributed on an "AS IS" BASIS,
|
|
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
** See the License for the specific language governing permissions and
|
|
** limitations under the License.
|
|
******************************************************************************/
|
|
|
|
#include "stopper.h"
|
|
#include "emalloc.h"
|
|
#include "matchdefs.h"
|
|
#include "callcpp.h"
|
|
#include "permute.h"
|
|
#include "danerror.h"
|
|
#include "const.h"
|
|
#include "freelist.h"
|
|
#include "efio.h"
|
|
#include "scanutils.h"
|
|
#include "unichar.h"
|
|
#include "params.h"
|
|
#include "dict.h"
|
|
#include "image.h"
|
|
#include "ccutil.h"
|
|
#include "ratngs.h"
|
|
#include "ambigs.h"
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <ctype.h>
|
|
#include <math.h>
|
|
#ifdef __UNIX__
|
|
#include <assert.h>
|
|
#endif
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning(disable:4244) // Conversion warnings
|
|
#pragma warning(disable:4800) // int/bool warnings
|
|
#endif
|
|
|
|
/* these are kludges - add appropriate .h file later */
|
|
/* from adaptmatch.cpp */
|
|
#define MAX_WERD_SIZE 100
|
|
|
|
typedef struct
|
|
{
|
|
VIABLE_CHOICE Choice;
|
|
float ChunkCertainty[MAX_NUM_CHUNKS];
|
|
UNICHAR_ID ChunkClass[MAX_NUM_CHUNKS];
|
|
} EXPANDED_CHOICE;
|
|
|
|
#define BestCertainty(Choices) \
|
|
(((VIABLE_CHOICE) first_node (Choices))->Certainty)
|
|
|
|
#define BestRating(Choices) (((VIABLE_CHOICE) first_node (Choices))->Rating)
|
|
|
|
#define BestFactor(Choices) \
|
|
(((VIABLE_CHOICE) first_node (Choices))->AdjustFactor)
|
|
|
|
#define AmbigThreshold(F1,F2) \
|
|
(((F2) - (F1)) * tesseract::Dict::kStopperAmbiguityThresholdGain - \
|
|
tesseract::Dict::kStopperAmbiguityThresholdOffset)
|
|
|
|
/**----------------------------------------------------------------------------
|
|
Private Code
|
|
----------------------------------------------------------------------------**/
|
|
// Returns -1 if the rating for Choice1 is less than the rating for Choice2,
|
|
// otherwise returns 1.
|
|
static int CmpChoiceRatings(void *arg1, // VIABLE_CHOICE Choice1
|
|
void *arg2) { // VIABLE_CHOICE Choice2
|
|
float R1, R2;
|
|
VIABLE_CHOICE Choice1 = (VIABLE_CHOICE) arg1;
|
|
VIABLE_CHOICE Choice2 = (VIABLE_CHOICE) arg2;
|
|
R1 = Choice1->Rating;
|
|
R2 = Choice2->Rating;
|
|
return (R1 < R2) ? -1 : 1;
|
|
}
|
|
|
|
// Expands Choice and places the results in ExpandedChoice. The primary
|
|
// function of expansion is to create an two arrays, one which holds the
|
|
// corresponding certainty for each chunk in Choice, and one which holds
|
|
// the class for each chunk.
|
|
static void ExpandChoice(VIABLE_CHOICE Choice,
|
|
EXPANDED_CHOICE *ExpandedChoice) {
|
|
int i, j, Chunk;
|
|
ExpandedChoice->Choice = Choice;
|
|
for (i = 0, Chunk = 0; i < Choice->Length; i++)
|
|
for (j = 0; j < Choice->Blob[i].NumChunks; j++, Chunk++) {
|
|
ExpandedChoice->ChunkCertainty[Chunk] = Choice->Blob[i].Certainty;
|
|
ExpandedChoice->ChunkClass[Chunk] = Choice->Blob[i].Class;
|
|
}
|
|
}
|
|
|
|
// If the certainty of any chunk in Choice (item1) is not ambiguous with the
|
|
// corresponding chunk in the best choice (item2), frees Choice and
|
|
// returns true.
|
|
static int FreeBadChoice(void *item1, // VIABLE_CHOICE Choice,
|
|
void *item2) { // EXPANDED_CHOICE *BestChoice
|
|
int i, j, Chunk;
|
|
FLOAT32 Threshold;
|
|
VIABLE_CHOICE Choice = reinterpret_cast<VIABLE_CHOICE>(item1);
|
|
EXPANDED_CHOICE *BestChoice = reinterpret_cast<EXPANDED_CHOICE *>(item2);
|
|
Threshold = AmbigThreshold(BestChoice->Choice->AdjustFactor,
|
|
Choice->AdjustFactor);
|
|
for (i = 0, Chunk = 0; i < Choice->Length; i++) {
|
|
for (j = 0; j < Choice->Blob[i].NumChunks; j++, Chunk++){
|
|
if (Choice->Blob[i].Class != BestChoice->ChunkClass[Chunk] &&
|
|
Choice->Blob[i].Certainty - BestChoice->ChunkCertainty[Chunk] <
|
|
Threshold) {
|
|
memfree(Choice);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
namespace tesseract {
|
|
|
|
const float Dict::kStopperAmbiguityThresholdGain = 8.0;
|
|
const float Dict::kStopperAmbiguityThresholdOffset = 1.5;
|
|
|
|
bool Dict::AcceptableChoice(BLOB_CHOICE_LIST_VECTOR *Choices,
|
|
WERD_CHOICE *BestChoice,
|
|
DANGERR *fixpt,
|
|
ACCEPTABLE_CHOICE_CALLER caller,
|
|
bool *modified_blobs) {
|
|
float CertaintyThreshold = stopper_nondict_certainty_base;
|
|
int WordSize;
|
|
if (modified_blobs != NULL) *modified_blobs = false;
|
|
|
|
if (stopper_no_acceptable_choices) return false;
|
|
|
|
if (fixpt != NULL) fixpt->clear();
|
|
if (BestChoice->length() == 0)
|
|
return false;
|
|
if (caller == CHOPPER_CALLER && BestChoice->fragment_mark()) {
|
|
if (stopper_debug_level >= 1) {
|
|
cprintf("AcceptableChoice(): a choice with fragments beats BestChoice");
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool no_dang_ambigs = (GetMaxFixedLengthDawgIndex() >= 0 ||
|
|
NoDangerousAmbig(BestChoice, fixpt, true,
|
|
Choices, modified_blobs));
|
|
bool is_valid_word = valid_word_permuter(BestChoice->permuter(), false);
|
|
bool is_case_ok = case_ok(*BestChoice, getUnicharset());
|
|
|
|
if (stopper_debug_level >= 1)
|
|
tprintf("\nStopper: %s (word=%c, case=%c)\n",
|
|
BestChoice->debug_string(getUnicharset()).string(),
|
|
(is_valid_word ? 'y' : 'n'),
|
|
(is_case_ok ? 'y' : 'n'));
|
|
|
|
// Do not accept invalid words in PASS1.
|
|
if (reject_offset_ <= 0.0f && !is_valid_word) return false;
|
|
if (is_valid_word && is_case_ok) {
|
|
WordSize = LengthOfShortestAlphaRun(*BestChoice);
|
|
WordSize -= stopper_smallword_size;
|
|
if (WordSize < 0)
|
|
WordSize = 0;
|
|
CertaintyThreshold += WordSize * stopper_certainty_per_char;
|
|
}
|
|
|
|
if (stopper_debug_level >= 1)
|
|
tprintf("Stopper: Certainty = %4.1f, Threshold = %4.1f\n",
|
|
BestChoice->certainty(), CertaintyThreshold);
|
|
|
|
if (no_dang_ambigs &&
|
|
BestChoice->certainty() > CertaintyThreshold &&
|
|
UniformCertainties(*Choices, *BestChoice)) {
|
|
return true;
|
|
} else {
|
|
if (stopper_debug_level >= 2) {
|
|
tprintf("AcceptableChoice() returned false"
|
|
" (no_dang_ambig:%d cert:%g thresh:%g uniform:%d)\n",
|
|
no_dang_ambigs, BestChoice->certainty(),
|
|
CertaintyThreshold,
|
|
UniformCertainties(*Choices, *BestChoice));
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool Dict::AcceptableResult(const WERD_CHOICE &BestChoice) {
|
|
float CertaintyThreshold = stopper_nondict_certainty_base - reject_offset_;
|
|
int WordSize;
|
|
|
|
if (stopper_debug_level >= 1) {
|
|
tprintf("\nRejecter: %s (word=%c, case=%c, unambig=%c)\n",
|
|
BestChoice.debug_string(getUnicharset()).string(),
|
|
(valid_word(BestChoice) ? 'y' : 'n'),
|
|
(case_ok(BestChoice, getUnicharset()) ? 'y' : 'n'),
|
|
((list_rest (best_choices_) != NIL_LIST) ? 'n' : 'y'));
|
|
}
|
|
|
|
if (BestChoice.length() == 0 || CurrentWordAmbig())
|
|
return false;
|
|
if (BestChoice.fragment_mark()) {
|
|
if (stopper_debug_level >= 1) {
|
|
cprintf("AcceptableResult(): a choice with fragments beats BestChoice\n");
|
|
}
|
|
return false;
|
|
}
|
|
if (valid_word(BestChoice) && case_ok(BestChoice, getUnicharset())) {
|
|
WordSize = LengthOfShortestAlphaRun(BestChoice);
|
|
WordSize -= stopper_smallword_size;
|
|
if (WordSize < 0)
|
|
WordSize = 0;
|
|
CertaintyThreshold += WordSize * stopper_certainty_per_char;
|
|
}
|
|
|
|
if (stopper_debug_level >= 1)
|
|
cprintf ("Rejecter: Certainty = %4.1f, Threshold = %4.1f ",
|
|
BestChoice.certainty(), CertaintyThreshold);
|
|
|
|
if (BestChoice.certainty() > CertaintyThreshold &&
|
|
!stopper_no_acceptable_choices) {
|
|
if (stopper_debug_level >= 1)
|
|
cprintf("ACCEPTED\n");
|
|
return true;
|
|
}
|
|
else {
|
|
if (stopper_debug_level >= 1)
|
|
cprintf("REJECTED\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool Dict::AlternativeChoicesWorseThan(FLOAT32 Threshold) {
|
|
LIST Alternatives;
|
|
VIABLE_CHOICE Choice;
|
|
Alternatives = list_rest (best_choices_);
|
|
iterate(Alternatives) {
|
|
Choice = (VIABLE_CHOICE) first_node (Alternatives);
|
|
if (Choice->AdjustFactor <= Threshold)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool Dict::CurrentBestChoiceIs(const WERD_CHOICE &WordChoice) {
|
|
return (best_choices_ != NIL_LIST &&
|
|
StringSameAs(WordChoice, (VIABLE_CHOICE)first_node(best_choices_)));
|
|
}
|
|
|
|
FLOAT32 Dict::CurrentBestChoiceAdjustFactor() {
|
|
VIABLE_CHOICE BestChoice;
|
|
if (best_choices_ == NIL_LIST)
|
|
return (MAX_FLOAT32);
|
|
BestChoice = (VIABLE_CHOICE) first_node (best_choices_);
|
|
return (BestChoice->AdjustFactor);
|
|
}
|
|
|
|
|
|
bool Dict::CurrentWordAmbig() {
|
|
return (list_rest (best_choices_) != NIL_LIST);
|
|
}
|
|
|
|
|
|
void Dict::DebugWordChoices() {
|
|
LIST Choices;
|
|
int i;
|
|
char LabelString[80];
|
|
VIABLE_CHOICE VChoice = (VIABLE_CHOICE)first_node(best_choices_);
|
|
bool force_debug =
|
|
fragments_debug && VChoice != NULL && VChoice->ComposedFromCharFragments;
|
|
|
|
if (stopper_debug_level >= 1 || force_debug ||
|
|
(((STRING)word_to_debug).length() > 0 && best_choices_ &&
|
|
StringSameAs(word_to_debug.string(), word_to_debug_lengths.string(),
|
|
(VIABLE_CHOICE)first_node(best_choices_)))) {
|
|
if (best_raw_choice_)
|
|
PrintViableChoice(stderr, "\nBest Raw Choice: ", best_raw_choice_);
|
|
|
|
i = 1;
|
|
Choices = best_choices_;
|
|
if (Choices)
|
|
cprintf("\nBest Cooked Choices:\n");
|
|
iterate(Choices) {
|
|
sprintf(LabelString, "Cooked Choice #%d: ", i);
|
|
PrintViableChoice(stderr, LabelString,
|
|
(VIABLE_CHOICE)first_node(Choices));
|
|
i++;
|
|
}
|
|
}
|
|
}
|
|
|
|
void Dict::PrintAmbigAlternatives(FILE *file, const char *label,
|
|
int label_num_unichars) {
|
|
iterate(raw_choices_) {
|
|
VIABLE_CHOICE Choice = (VIABLE_CHOICE)first_node(raw_choices_);
|
|
if (Choice->Length > 0 &&
|
|
(label_num_unichars > 1 || Choice->Length > 1)) {
|
|
for (int i = 0; i < Choice->Length; i++) {
|
|
fprintf(file, "%s",
|
|
getUnicharset().id_to_unichar(Choice->Blob[i].Class));
|
|
}
|
|
fflush(file);
|
|
fprintf(file, "\t%s\t%.4f\t%.4f\n", label,
|
|
Choice->Rating, Choice->Certainty);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Dict::FilterWordChoices() {
|
|
EXPANDED_CHOICE BestChoice;
|
|
|
|
if (best_choices_ == NIL_LIST || second_node (best_choices_) == NIL_LIST)
|
|
return;
|
|
|
|
// Compute certainties and class for each chunk in best choice.
|
|
ExpandChoice((VIABLE_CHOICE_STRUCT *)first_node(best_choices_), &BestChoice);
|
|
|
|
set_rest (best_choices_, delete_d(list_rest (best_choices_),
|
|
&BestChoice, FreeBadChoice));
|
|
}
|
|
|
|
void Dict::FindClassifierErrors(FLOAT32 MinRating,
|
|
FLOAT32 MaxRating,
|
|
FLOAT32 RatingMargin,
|
|
FLOAT32 Thresholds[]) {
|
|
EXPANDED_CHOICE BestRaw;
|
|
VIABLE_CHOICE Choice;
|
|
int i, j, Chunk;
|
|
FLOAT32 AvgRating;
|
|
int NumErrorChunks;
|
|
|
|
assert (best_choices_ != NIL_LIST);
|
|
assert (best_raw_choice_ != NULL);
|
|
|
|
ExpandChoice(best_raw_choice_, &BestRaw);
|
|
Choice = (VIABLE_CHOICE) first_node (best_choices_);
|
|
|
|
for (i = 0, Chunk = 0; i < Choice->Length; i++, Thresholds++) {
|
|
AvgRating = 0.0;
|
|
NumErrorChunks = 0;
|
|
|
|
for (j = 0; j < Choice->Blob[i].NumChunks; j++, Chunk++) {
|
|
if (Choice->Blob[i].Class != BestRaw.ChunkClass[Chunk]) {
|
|
AvgRating += BestRaw.ChunkCertainty[Chunk];
|
|
NumErrorChunks++;
|
|
}
|
|
}
|
|
|
|
if (NumErrorChunks > 0) {
|
|
AvgRating /= NumErrorChunks;
|
|
*Thresholds = (AvgRating / -certainty_scale) * (1.0 - RatingMargin);
|
|
}
|
|
else
|
|
*Thresholds = MaxRating;
|
|
|
|
if (*Thresholds > MaxRating)
|
|
*Thresholds = MaxRating;
|
|
if (*Thresholds < MinRating)
|
|
*Thresholds = MinRating;
|
|
}
|
|
}
|
|
|
|
void Dict::InitChoiceAccum() {
|
|
BLOB_WIDTH *BlobWidth, *End;
|
|
|
|
if (best_raw_choice_)
|
|
memfree(best_raw_choice_);
|
|
best_raw_choice_ = NULL;
|
|
|
|
if (best_choices_)
|
|
destroy_nodes(best_choices_, memfree);
|
|
best_choices_ = NIL_LIST;
|
|
|
|
if (raw_choices_)
|
|
destroy_nodes(raw_choices_, memfree);
|
|
raw_choices_ = NIL_LIST;
|
|
|
|
EnableChoiceAccum();
|
|
|
|
for (BlobWidth = current_segmentation_,
|
|
End = current_segmentation_ + MAX_NUM_CHUNKS;
|
|
BlobWidth < End; *BlobWidth++ = 1);
|
|
|
|
}
|
|
|
|
void Dict::ClearBestChoiceAccum() {
|
|
if (best_choices_) destroy_nodes(best_choices_, memfree);
|
|
best_choices_ = NIL_LIST;
|
|
}
|
|
|
|
void Dict::LogNewSegmentation(PIECES_STATE BlobWidth) {
|
|
BLOB_WIDTH *Segmentation;
|
|
for (Segmentation = current_segmentation_; *BlobWidth != 0;
|
|
BlobWidth++, Segmentation++)
|
|
*Segmentation = *BlobWidth;
|
|
*Segmentation = 0;
|
|
}
|
|
|
|
void Dict::LogNewSplit(int Blob) {
|
|
LIST Choices;
|
|
if (best_raw_choice_) AddNewChunk(best_raw_choice_, Blob);
|
|
Choices = best_choices_;
|
|
iterate(Choices) {
|
|
AddNewChunk ((VIABLE_CHOICE) first_node (Choices), Blob);
|
|
}
|
|
Choices = raw_choices_;
|
|
iterate(Choices) {
|
|
AddNewChunk ((VIABLE_CHOICE) first_node (Choices), Blob);
|
|
}
|
|
}
|
|
|
|
void Dict::LogNewChoice(FLOAT32 AdjustFactor,
|
|
const float Certainties[],
|
|
bool raw_choice,
|
|
WERD_CHOICE *WordChoice) {
|
|
VIABLE_CHOICE NewChoice;
|
|
LIST ChoicesList;
|
|
LIST Choices;
|
|
FLOAT32 Threshold;
|
|
|
|
if (!keep_word_choices_)
|
|
return;
|
|
|
|
if (raw_choice) {
|
|
if (!best_raw_choice_)
|
|
best_raw_choice_ = NewViableChoice(*WordChoice, AdjustFactor, Certainties);
|
|
else if (WordChoice->rating() < best_raw_choice_->Rating) {
|
|
if (ChoiceSameAs(*WordChoice, best_raw_choice_))
|
|
FillViableChoice(*WordChoice, AdjustFactor, Certainties, true,
|
|
best_raw_choice_);
|
|
else {
|
|
memfree(best_raw_choice_);
|
|
best_raw_choice_ =
|
|
NewViableChoice(*WordChoice, AdjustFactor, Certainties);
|
|
}
|
|
}
|
|
if (!save_raw_choices) return;
|
|
ChoicesList = raw_choices_;
|
|
} else {
|
|
ChoicesList = best_choices_;
|
|
}
|
|
|
|
// Throw out obviously bad choices to save some work.
|
|
if (ChoicesList != NIL_LIST) {
|
|
Threshold = AmbigThreshold (BestFactor (ChoicesList), AdjustFactor);
|
|
if (Threshold > -kStopperAmbiguityThresholdOffset)
|
|
Threshold = -kStopperAmbiguityThresholdOffset;
|
|
if (WordChoice->certainty() - BestCertainty (ChoicesList) < Threshold) {
|
|
// Set the rating of the word to be terrible, so that it does not
|
|
// get chosen as the best choice.
|
|
if (stopper_debug_level >= 2) {
|
|
tprintf("Discarding a choice with an overly low certainty"
|
|
" %.4f vs best choice certainty %.4f\n",
|
|
WordChoice->certainty(), BestCertainty(ChoicesList));
|
|
}
|
|
WordChoice->set_rating(WERD_CHOICE::kBadRating);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// See if a choice with the same text string has already been found.
|
|
NewChoice = NULL;
|
|
Choices = ChoicesList;
|
|
|
|
iterate(Choices) {
|
|
if (ChoiceSameAs (*WordChoice, (VIABLE_CHOICE) first_node (Choices))) {
|
|
if (WordChoice->rating() < BestRating (Choices)) {
|
|
NewChoice = (VIABLE_CHOICE) first_node (Choices);
|
|
} else {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (NewChoice) {
|
|
FillViableChoice(*WordChoice, AdjustFactor, Certainties, true, NewChoice);
|
|
ChoicesList = delete_d(ChoicesList, NewChoice, is_same_node);
|
|
}
|
|
else {
|
|
NewChoice = NewViableChoice (*WordChoice, AdjustFactor, Certainties);
|
|
}
|
|
|
|
ChoicesList = s_adjoin (ChoicesList, NewChoice, CmpChoiceRatings);
|
|
if (stopper_debug_level >= 2)
|
|
raw_choice ? PrintViableChoice (stderr, "New Raw Choice: ", NewChoice) :
|
|
PrintViableChoice (stderr, "New Word Choice: ", NewChoice);
|
|
if (count (ChoicesList) > tessedit_truncate_wordchoice_log) {
|
|
Choices =
|
|
(LIST) nth_cell (ChoicesList, tessedit_truncate_wordchoice_log);
|
|
destroy_nodes (list_rest (Choices), Efree);
|
|
set_rest(Choices, NIL_LIST);
|
|
}
|
|
|
|
// Update raw_choices_/best_choices_ pointer.
|
|
if (raw_choice) {
|
|
raw_choices_ = ChoicesList;
|
|
} else {
|
|
best_choices_ = ChoicesList;
|
|
}
|
|
}
|
|
|
|
bool Dict::NoDangerousAmbig(WERD_CHOICE *best_choice,
|
|
DANGERR *fixpt,
|
|
bool fix_replaceable,
|
|
BLOB_CHOICE_LIST_VECTOR *blob_choices,
|
|
bool *modified_blobs) {
|
|
if (stopper_debug_level > 2) {
|
|
tprintf("\nRunning NoDangerousAmbig() for %s\n",
|
|
best_choice->debug_string(getUnicharset()).string());
|
|
}
|
|
|
|
// Construct BLOB_CHOICE_LIST_VECTOR with ambiguities
|
|
// for each unichar id in BestChoice.
|
|
BLOB_CHOICE_LIST_VECTOR ambig_blob_choices;
|
|
int i;
|
|
bool modified_best_choice = false;
|
|
bool ambigs_found = false;
|
|
// For each position in best_choice:
|
|
// -- choose AMBIG_SPEC_LIST that corresponds to unichar_id at best_choice[i]
|
|
// -- initialize wrong_ngram with a single unichar_id at best_choice[i]
|
|
// -- look for ambiguities corresponding to wrong_ngram in the list while
|
|
// adding the following unichar_ids from best_choice to wrong_ngram
|
|
//
|
|
// Repeat the above procedure twice: first time look through
|
|
// ambigs to be replaced and replace all the ambiguities found;
|
|
// second time look through dangerous ambiguities and construct
|
|
// ambig_blob_choices with fake a blob choice for each ambiguity
|
|
// and pass them to dawg_permute_and_select() to search for
|
|
// ambiguous words in the dictionaries.
|
|
//
|
|
// Note that during the execution of the for loop (on the first pass)
|
|
// if replacements are made the length of best_choice might change.
|
|
for (int pass = 0; pass < (fix_replaceable ? 2 : 1); ++pass) {
|
|
bool replace = (fix_replaceable && pass == 0);
|
|
const UnicharAmbigsVector &table = replace ?
|
|
getUnicharAmbigs().replace_ambigs() : getUnicharAmbigs().dang_ambigs();
|
|
if (!replace) {
|
|
// Initialize ambig_blob_choices with lists containing a single
|
|
// unichar id for the correspoding position in best_choice.
|
|
// best_choice consisting from only the original letters will
|
|
// have a rating of 0.0.
|
|
for (i = 0; i < best_choice->length(); ++i) {
|
|
BLOB_CHOICE_LIST *lst = new BLOB_CHOICE_LIST();
|
|
BLOB_CHOICE_IT lst_it(lst);
|
|
lst_it.add_to_end(new BLOB_CHOICE(best_choice->unichar_id(i),
|
|
0.0, 0.0, -1, -1, -1));
|
|
ambig_blob_choices.push_back(lst);
|
|
}
|
|
}
|
|
UNICHAR_ID wrong_ngram[MAX_AMBIG_SIZE + 1];
|
|
int wrong_ngram_index;
|
|
int next_index;
|
|
int blob_index = 0;
|
|
for (i = 0; i < best_choice->length(); ++i) {
|
|
if (i > 0) blob_index += best_choice->fragment_length(i-1);
|
|
UNICHAR_ID curr_unichar_id = best_choice->unichar_id(i);
|
|
if (stopper_debug_level > 2) {
|
|
tprintf("Looking for %s ngrams starting with %s:\n",
|
|
replace ? "replaceable" : "ambiguous",
|
|
getUnicharset().debug_str(curr_unichar_id).string());
|
|
}
|
|
wrong_ngram_index = 0;
|
|
wrong_ngram[wrong_ngram_index] = curr_unichar_id;
|
|
if (curr_unichar_id == INVALID_UNICHAR_ID ||
|
|
curr_unichar_id >= table.size() ||
|
|
table[curr_unichar_id] == NULL) {
|
|
continue; // there is no ambig spec for this unichar id
|
|
}
|
|
AmbigSpec_IT spec_it(table[curr_unichar_id]);
|
|
for (spec_it.mark_cycle_pt(); !spec_it.cycled_list();) {
|
|
const AmbigSpec *ambig_spec = spec_it.data();
|
|
wrong_ngram[wrong_ngram_index+1] = INVALID_UNICHAR_ID;
|
|
int compare = UnicharIdArrayUtils::compare(wrong_ngram,
|
|
ambig_spec->wrong_ngram);
|
|
if (stopper_debug_level > 2) {
|
|
tprintf("candidate ngram: ");
|
|
UnicharIdArrayUtils::print(wrong_ngram, getUnicharset());
|
|
tprintf("current ngram from spec: ");
|
|
UnicharIdArrayUtils::print(ambig_spec->wrong_ngram, getUnicharset());
|
|
tprintf("comparison result: %d\n", compare);
|
|
}
|
|
if (compare == 0) {
|
|
// Record the place where we found an ambiguity.
|
|
if (fixpt != NULL) {
|
|
fixpt->push_back(DANGERR_INFO(
|
|
blob_index, blob_index+wrong_ngram_index, replace,
|
|
getUnicharset().get_isngram(ambig_spec->correct_ngram_id)));
|
|
if (stopper_debug_level > 1) {
|
|
tprintf("fixpt+=(%d %d %d %d)\n", blob_index,
|
|
blob_index+wrong_ngram_index, false,
|
|
getUnicharset().get_isngram(
|
|
ambig_spec->correct_ngram_id));
|
|
}
|
|
}
|
|
|
|
if (replace) {
|
|
if (stopper_debug_level > 2) {
|
|
tprintf("replace ambiguity with: ");
|
|
UnicharIdArrayUtils::print(
|
|
ambig_spec->correct_fragments, getUnicharset());
|
|
}
|
|
ReplaceAmbig(i, ambig_spec->wrong_ngram_size,
|
|
ambig_spec->correct_ngram_id,
|
|
best_choice, blob_choices, modified_blobs);
|
|
modified_best_choice = true;
|
|
} else if (i > 0 || ambig_spec->type != CASE_AMBIG) {
|
|
// We found dang ambig - update ambig_blob_choices.
|
|
if (stopper_debug_level > 2) {
|
|
tprintf("found ambiguity: ");
|
|
UnicharIdArrayUtils::print(
|
|
ambig_spec->correct_fragments, getUnicharset());
|
|
}
|
|
ambigs_found = true;
|
|
for (int tmp_index = 0; tmp_index <= wrong_ngram_index;
|
|
++tmp_index) {
|
|
// Add a blob choice for the corresponding fragment of the
|
|
// ambiguity. These fake blob choices are initialized with
|
|
// negative ratings (which are not possible for real blob
|
|
// choices), so that dawg_permute_and_select() considers any
|
|
// word not consisting of only the original letters a better
|
|
// choice and stops searching for alternatives once such a
|
|
// choice is found.
|
|
BLOB_CHOICE_IT bc_it(ambig_blob_choices[i+tmp_index]);
|
|
bc_it.add_to_end(new BLOB_CHOICE(
|
|
ambig_spec->correct_fragments[tmp_index], -1.0, 0.0,
|
|
-1, -1, -1));
|
|
}
|
|
}
|
|
spec_it.forward();
|
|
} else if (compare == -1) {
|
|
if (wrong_ngram_index+1 < ambig_spec->wrong_ngram_size &&
|
|
((next_index = wrong_ngram_index+1+i) < best_choice->length())) {
|
|
// Add the next unichar id to wrong_ngram and keep looking for
|
|
// more ambigs starting with curr_unichar_id in AMBIG_SPEC_LIST.
|
|
wrong_ngram[++wrong_ngram_index] =
|
|
best_choice->unichar_id(next_index);
|
|
} else {
|
|
break; // no more matching ambigs in this AMBIG_SPEC_LIST
|
|
}
|
|
} else {
|
|
spec_it.forward();
|
|
}
|
|
} // end searching AmbigSpec_LIST
|
|
} // end searching best_choice
|
|
} // end searching replace and dangerous ambigs
|
|
if (modified_best_choice) best_choice->populate_unichars(getUnicharset());
|
|
// If any ambiguities were found permute the constructed ambig_blob_choices
|
|
// to see if an alternative dictionary word can be found.
|
|
if (ambigs_found) {
|
|
if (stopper_debug_level > 2) {
|
|
tprintf("\nResulting ambig_blob_choices:\n");
|
|
for (i = 0; i < ambig_blob_choices.length(); ++i) {
|
|
print_ratings_list("", ambig_blob_choices.get(i), getUnicharset());
|
|
tprintf("\n");
|
|
}
|
|
}
|
|
WERD_CHOICE *alt_word = dawg_permute_and_select(ambig_blob_choices, 0.0);
|
|
ambigs_found = (alt_word->rating() < 0.0);
|
|
if (ambigs_found) {
|
|
if (stopper_debug_level >= 1) {
|
|
tprintf ("Stopper: Possible ambiguous word = %s\n",
|
|
alt_word->debug_string(getUnicharset()).string());
|
|
}
|
|
if (fixpt != NULL) {
|
|
// Note: Currently character choices combined from fragments can only
|
|
// be generated by NoDangrousAmbigs(). This code should be updated if
|
|
// the capability to produce classifications combined from character
|
|
// fragments is added to other functions.
|
|
int orig_i = 0;
|
|
for (i = 0; i < alt_word->length(); ++i) {
|
|
if (alt_word->fragment_length(i) > 1) {
|
|
fixpt->push_back(DANGERR_INFO(
|
|
orig_i, orig_i+alt_word->fragment_length(i)-1, true,
|
|
getUnicharset().get_isngram(alt_word->unichar_id(i))));
|
|
if (stopper_debug_level > 1) {
|
|
tprintf("fixpt->dangerous+=(%d %d %d %d)\n", orig_i,
|
|
(orig_i+alt_word->fragment_length(i)-1), true,
|
|
getUnicharset().get_isngram(alt_word->unichar_id(i)));
|
|
}
|
|
}
|
|
orig_i += alt_word->fragment_length(i);
|
|
}
|
|
}
|
|
}
|
|
delete alt_word;
|
|
}
|
|
ambig_blob_choices.delete_data_pointers();
|
|
return !ambigs_found;
|
|
}
|
|
|
|
void Dict::EndDangerousAmbigs() {}
|
|
|
|
void Dict::SettupStopperPass1() {
|
|
reject_offset_ = 0.0;
|
|
}
|
|
|
|
void Dict::SettupStopperPass2() {
|
|
reject_offset_ = stopper_phase2_certainty_rejection_offset;
|
|
}
|
|
|
|
void Dict::AddNewChunk(VIABLE_CHOICE Choice, int Blob) {
|
|
int i, LastChunk;
|
|
for (i = 0, LastChunk = 0; i < Choice->Length; i++) {
|
|
LastChunk += Choice->Blob[i].NumChunks;
|
|
if (Blob < LastChunk) {
|
|
(Choice->Blob[i].NumChunks)++;
|
|
return;
|
|
}
|
|
}
|
|
mem_tidy (1);
|
|
cprintf ("AddNewChunk failed:Choice->Length=%d, LastChunk=%d, Blob=%d\n",
|
|
Choice->Length, LastChunk, Blob);
|
|
assert(false); // this should never get executed
|
|
}
|
|
|
|
void Dict::ReplaceAmbig(int wrong_ngram_begin_index, int wrong_ngram_size,
|
|
UNICHAR_ID correct_ngram_id, WERD_CHOICE *werd_choice,
|
|
BLOB_CHOICE_LIST_VECTOR *blob_choices,
|
|
bool *modified_blobs) {
|
|
int num_blobs_to_replace = 0;
|
|
int begin_blob_index = 0;
|
|
int i;
|
|
for (i = 0; i < wrong_ngram_begin_index + wrong_ngram_size; ++i) {
|
|
if (i >= wrong_ngram_begin_index) {
|
|
num_blobs_to_replace += werd_choice->fragment_length(i);
|
|
} else {
|
|
begin_blob_index += werd_choice->fragment_length(i);
|
|
}
|
|
}
|
|
BLOB_CHOICE_IT bit;
|
|
int temp_blob_index = begin_blob_index;
|
|
const char *temp_uch = NULL;
|
|
const char *correct_ngram_str =
|
|
getUnicharset().id_to_unichar(correct_ngram_id);
|
|
for (int replaced_count = 0; replaced_count < wrong_ngram_size;
|
|
++replaced_count) {
|
|
if (blob_choices != NULL) {
|
|
UNICHAR_ID uch_id = werd_choice->unichar_id(wrong_ngram_begin_index);
|
|
int fraglen = werd_choice->fragment_length(wrong_ngram_begin_index);
|
|
if (fraglen > 1) temp_uch = getUnicharset().id_to_unichar(uch_id);
|
|
for (i = 0; i < fraglen; ++i) {
|
|
if (fraglen > 1) {
|
|
STRING frag_str =
|
|
CHAR_FRAGMENT::to_string(temp_uch, i, fraglen);
|
|
getUnicharset().unichar_insert(frag_str.string());
|
|
uch_id = getUnicharset().unichar_to_id(frag_str.string());
|
|
}
|
|
bit.set_to_list(blob_choices->get(temp_blob_index));
|
|
STRING correct_frag_uch =
|
|
CHAR_FRAGMENT::to_string(correct_ngram_str,
|
|
temp_blob_index - begin_blob_index,
|
|
num_blobs_to_replace);
|
|
getUnicharset().unichar_insert(correct_frag_uch.string());
|
|
UNICHAR_ID correct_frag_uch_id =
|
|
getUnicharset().unichar_to_id(correct_frag_uch.string());
|
|
// Find the WERD_CHOICE corresponding to the original unichar in
|
|
// the list of blob choices, add the derived character fragment
|
|
// before it with the same rating and certainty.
|
|
for (bit.mark_cycle_pt(); !bit.cycled_list(); bit.forward()) {
|
|
if (bit.data()->unichar_id() == correct_frag_uch_id) {
|
|
break; // the unichar we want to insert is already there
|
|
}
|
|
if (bit.data()->unichar_id() == uch_id) {
|
|
bit.add_before_then_move(new BLOB_CHOICE(*(bit.data())));
|
|
bit.data()->set_unichar_id(correct_frag_uch_id);
|
|
if (modified_blobs != NULL) *modified_blobs = true;
|
|
break;
|
|
}
|
|
}
|
|
temp_blob_index++;
|
|
}
|
|
}
|
|
// Remove current unichar from werd_choice. On the last iteration
|
|
// set the correct replacement unichar instead of removing a unichar.
|
|
if (replaced_count + 1 == wrong_ngram_size) {
|
|
werd_choice->set_unichar_id(correct_ngram_id,
|
|
num_blobs_to_replace, 0.0, 0.0, wrong_ngram_begin_index);
|
|
} else {
|
|
werd_choice->remove_unichar_id(wrong_ngram_begin_index);
|
|
}
|
|
}
|
|
if (stopper_debug_level >= 1 && modified_blobs != NULL &&
|
|
*modified_blobs && blob_choices != NULL) {
|
|
werd_choice->print("ReplaceAmbig() ");
|
|
tprintf("Modified blob_choices: ");
|
|
for (int i = 0; i < blob_choices->size(); ++i) {
|
|
print_ratings_list("\n", blob_choices->get(i), getUnicharset());
|
|
}
|
|
}
|
|
}
|
|
|
|
int Dict::ChoiceSameAs(const WERD_CHOICE &WordChoice,
|
|
VIABLE_CHOICE ViableChoice) {
|
|
return (StringSameAs(WordChoice, ViableChoice));
|
|
}
|
|
|
|
int Dict::LengthOfShortestAlphaRun(const WERD_CHOICE &WordChoice) {
|
|
int shortest = MAX_INT32;
|
|
int curr_len = 0;
|
|
for (int w = 0; w < WordChoice.length(); ++w) {
|
|
if (getUnicharset().get_isalpha(WordChoice.unichar_id(w))) {
|
|
curr_len++;
|
|
} else if (curr_len > 0) {
|
|
if (curr_len < shortest) shortest = curr_len;
|
|
curr_len = 0;
|
|
}
|
|
}
|
|
if (curr_len > 0 && curr_len < shortest) {
|
|
shortest = curr_len;
|
|
} else if (shortest == MAX_INT32) {
|
|
shortest = 0;
|
|
}
|
|
return shortest;
|
|
}
|
|
|
|
VIABLE_CHOICE Dict::NewViableChoice(const WERD_CHOICE &WordChoice,
|
|
FLOAT32 AdjustFactor,
|
|
const float Certainties[]) {
|
|
int Length = WordChoice.length();
|
|
assert (Length <= MAX_NUM_CHUNKS && Length > 0);
|
|
VIABLE_CHOICE NewChoice = (VIABLE_CHOICE) Emalloc (
|
|
sizeof (VIABLE_CHOICE_STRUCT) + (Length - 1) * sizeof (CHAR_CHOICE));
|
|
FillViableChoice(WordChoice, AdjustFactor, Certainties, false, NewChoice);
|
|
return (NewChoice);
|
|
}
|
|
|
|
void Dict::PrintViableChoice(FILE *File, const char *Label, VIABLE_CHOICE Choice) {
|
|
int i, j;
|
|
fprintf (File, "%s", Label);
|
|
fprintf(File, "(R=%5.1f, C=%4.1f, F=%4.2f, Frag=%d) ",
|
|
Choice->Rating, Choice->Certainty,
|
|
Choice->AdjustFactor, Choice->ComposedFromCharFragments);
|
|
|
|
for (i = 0; i < Choice->Length; i++)
|
|
fprintf(File, "%s", getUnicharset().id_to_unichar(Choice->Blob[i].Class));
|
|
fprintf(File, "\n");
|
|
|
|
for (i = 0; i < Choice->Length; i++) {
|
|
fprintf(File, " %s", getUnicharset().id_to_unichar(Choice->Blob[i].Class));
|
|
for (j = 0; j < Choice->Blob[i].NumChunks - 1; j++)
|
|
fprintf(File, " ");
|
|
}
|
|
fprintf(File, "\n");
|
|
|
|
for (i = 0; i < Choice->Length; i++) {
|
|
for (j = 0; j < Choice->Blob[i].NumChunks; j++)
|
|
fprintf(File, "%3d ", (int) (Choice->Blob[i].Certainty * -10.0));
|
|
}
|
|
fprintf(File, "\n");
|
|
|
|
for (i = 0; i < Choice->Length; i++) {
|
|
for (j = 0; j < Choice->Blob[i].NumChunks; j++)
|
|
fprintf(File, "%3d ", Choice->Blob[i].NumChunks);
|
|
}
|
|
fprintf(File, "\n");
|
|
}
|
|
|
|
void Dict::FillViableChoice(const WERD_CHOICE &WordChoice,
|
|
FLOAT32 AdjustFactor, const float Certainties[],
|
|
bool SameString, VIABLE_CHOICE ViableChoice) {
|
|
CHAR_CHOICE *NewChar;
|
|
BLOB_WIDTH *BlobWidth;
|
|
int x;
|
|
|
|
ViableChoice->Rating = WordChoice.rating();
|
|
ViableChoice->Certainty = WordChoice.certainty();
|
|
ViableChoice->AdjustFactor = AdjustFactor;
|
|
ViableChoice->ComposedFromCharFragments = false;
|
|
if (!SameString) {
|
|
ViableChoice->Length = WordChoice.length();
|
|
}
|
|
for (x = 0,
|
|
NewChar = &(ViableChoice->Blob[0]),
|
|
BlobWidth = current_segmentation_;
|
|
x < WordChoice.length();
|
|
x++, NewChar++, Certainties++, BlobWidth++) {
|
|
if (!SameString) {
|
|
NewChar->Class = WordChoice.unichar_id(x);
|
|
}
|
|
NewChar->NumChunks = *BlobWidth;
|
|
NewChar->Certainty = *Certainties;
|
|
for (int i = 1; i < WordChoice.fragment_length(x); ++i) {
|
|
BlobWidth++;
|
|
assert(*BlobWidth > 0);
|
|
NewChar->NumChunks += *BlobWidth;
|
|
ViableChoice->ComposedFromCharFragments = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool Dict::StringSameAs(const WERD_CHOICE &WordChoice,
|
|
VIABLE_CHOICE ViableChoice) {
|
|
if (WordChoice.length() != ViableChoice->Length) {
|
|
return false;
|
|
}
|
|
int i;
|
|
CHAR_CHOICE *CharChoice;
|
|
for (i = 0, CharChoice = &(ViableChoice->Blob[0]);
|
|
i < ViableChoice->Length; CharChoice++, i++) {
|
|
if (CharChoice->Class != WordChoice.unichar_id(i)) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool Dict::StringSameAs(const char *String,
|
|
const char *String_lengths,
|
|
VIABLE_CHOICE ViableChoice) {
|
|
CHAR_CHOICE *Char;
|
|
int i;
|
|
int current_unichar_length;
|
|
|
|
for (Char = &(ViableChoice->Blob[0]), i = 0;
|
|
i < ViableChoice->Length;
|
|
String += *(String_lengths++), Char++, i++) {
|
|
current_unichar_length = strlen(getUnicharset().id_to_unichar(Char->Class));
|
|
if (current_unichar_length != *String_lengths ||
|
|
strncmp(String, getUnicharset().id_to_unichar(Char->Class),
|
|
current_unichar_length) != 0)
|
|
return false;
|
|
}
|
|
return (*String == 0) ? true : false;
|
|
}
|
|
|
|
int Dict::UniformCertainties(const BLOB_CHOICE_LIST_VECTOR &Choices,
|
|
const WERD_CHOICE &BestChoice) {
|
|
float Certainty;
|
|
float WorstCertainty = MAX_FLOAT32;
|
|
float CertaintyThreshold;
|
|
FLOAT64 TotalCertainty;
|
|
FLOAT64 TotalCertaintySquared;
|
|
FLOAT64 Variance;
|
|
FLOAT32 Mean, StdDev;
|
|
int WordLength;
|
|
|
|
WordLength = Choices.length();
|
|
if (WordLength < 3)
|
|
return true;
|
|
|
|
TotalCertainty = TotalCertaintySquared = 0.0;
|
|
BLOB_CHOICE_IT BlobChoiceIt;
|
|
for (int i = 0; i < Choices.length(); ++i) {
|
|
BlobChoiceIt.set_to_list(Choices.get(i));
|
|
Certainty = BlobChoiceIt.data()->certainty();
|
|
TotalCertainty += Certainty;
|
|
TotalCertaintySquared += Certainty * Certainty;
|
|
if (Certainty < WorstCertainty)
|
|
WorstCertainty = Certainty;
|
|
}
|
|
|
|
// Subtract off worst certainty from statistics.
|
|
WordLength--;
|
|
TotalCertainty -= WorstCertainty;
|
|
TotalCertaintySquared -= WorstCertainty * WorstCertainty;
|
|
|
|
Mean = TotalCertainty / WordLength;
|
|
Variance = ((WordLength * TotalCertaintySquared -
|
|
TotalCertainty * TotalCertainty) /
|
|
(WordLength * (WordLength - 1)));
|
|
if (Variance < 0.0)
|
|
Variance = 0.0;
|
|
StdDev = sqrt (Variance);
|
|
|
|
CertaintyThreshold = Mean - stopper_allowable_character_badness * StdDev;
|
|
if (CertaintyThreshold > stopper_nondict_certainty_base)
|
|
CertaintyThreshold = stopper_nondict_certainty_base;
|
|
|
|
if (BestChoice.certainty() < CertaintyThreshold) {
|
|
if (stopper_debug_level >= 1)
|
|
cprintf("Stopper: Non-uniform certainty = %4.1f"
|
|
" (m=%4.1f, s=%4.1f, t=%4.1f)\n",
|
|
BestChoice.certainty(), Mean, StdDev, CertaintyThreshold);
|
|
return false;
|
|
} else {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
} // namespace tesseract
|