mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2025-01-04 07:47:48 +08:00
6b5e0c4046
git-svn-id: https://tesseract-ocr.googlecode.com/svn/trunk@130 d0cd1f9f-072b-0410-8dd7-cf729c803f20
1337 lines
38 KiB
C++
1337 lines
38 KiB
C++
/******************************************************************************
|
|
** Filename: mfTraining.c
|
|
** Purpose: Separates training pages into files for each character.
|
|
** Strips from files only the features and there parameters of
|
|
the feature type mf.
|
|
** Author: Dan Johnson
|
|
** Revisment: Christy Russon
|
|
** Environment: HPUX 6.5
|
|
** Library: HPUX 6.5
|
|
** History: Fri Aug 18 08:53:50 1989, DSJ, Created.
|
|
** 5/25/90, DSJ, Adapted to multiple feature types.
|
|
** Tuesday, May 17, 1998 Changes made to make feature specific and
|
|
** simplify structures. First step in simplifying training process.
|
|
**
|
|
** (c) Copyright Hewlett-Packard Company, 1988.
|
|
** Licensed under the Apache License, Version 2.0 (the "License");
|
|
** you may not use this file except in compliance with the License.
|
|
** You may obtain a copy of the License at
|
|
** http://www.apache.org/licenses/LICENSE-2.0
|
|
** Unless required by applicable law or agreed to in writing, software
|
|
** distributed under the License is distributed on an "AS IS" BASIS,
|
|
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
** See the License for the specific language governing permissions and
|
|
** limitations under the License.
|
|
******************************************************************************/
|
|
/**----------------------------------------------------------------------------
|
|
Include Files and Type Defines
|
|
----------------------------------------------------------------------------**/
|
|
#include "oldlist.h"
|
|
#include "efio.h"
|
|
#include "emalloc.h"
|
|
#include "featdefs.h"
|
|
#include "tessopt.h"
|
|
#include "ocrfeatures.h"
|
|
#include "mf.h"
|
|
#include "general.h"
|
|
#include "clusttool.h"
|
|
#include "cluster.h"
|
|
#include "protos.h"
|
|
#include "minmax.h"
|
|
#include "debug.h"
|
|
#include "tprintf.h"
|
|
#include "const.h"
|
|
#include "mergenf.h"
|
|
#include "name2char.h"
|
|
#include "intproto.h"
|
|
#include "variables.h"
|
|
#include "freelist.h"
|
|
#include "efio.h"
|
|
#include "danerror.h"
|
|
#include "globals.h"
|
|
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#define _USE_MATH_DEFINES
|
|
#include <math.h>
|
|
|
|
#define MAXNAMESIZE 80
|
|
#define MAX_NUM_SAMPLES 10000
|
|
#define PROGRAM_FEATURE_TYPE "mf"
|
|
#define MINSD (1.0f / 128.0f)
|
|
#define MINSD_ANGLE (1.0f / 64.0f)
|
|
|
|
int row_number; /* cjn: fixes link problem */
|
|
|
|
typedef struct
|
|
{
|
|
char *Label;
|
|
int SampleCount;
|
|
LIST List;
|
|
}
|
|
LABELEDLISTNODE, *LABELEDLIST;
|
|
|
|
typedef struct
|
|
{
|
|
char* Label;
|
|
int NumMerged[MAX_NUM_PROTOS];
|
|
CLASS_TYPE Class;
|
|
}MERGE_CLASS_NODE;
|
|
typedef MERGE_CLASS_NODE* MERGE_CLASS;
|
|
|
|
#define round(x,frag)(floor(x/frag+.5)*frag)
|
|
|
|
/**----------------------------------------------------------------------------
|
|
Public Function Prototypes
|
|
----------------------------------------------------------------------------**/
|
|
int main (
|
|
int argc,
|
|
char **argv);
|
|
|
|
/**----------------------------------------------------------------------------
|
|
Private Function Prototypes
|
|
----------------------------------------------------------------------------**/
|
|
void ParseArguments(
|
|
int argc,
|
|
char **argv);
|
|
|
|
char *GetNextFilename ();
|
|
|
|
LIST ReadTrainingSamples (
|
|
FILE *File);
|
|
|
|
LABELEDLIST FindList (
|
|
LIST List,
|
|
char *Label);
|
|
|
|
MERGE_CLASS FindClass (
|
|
LIST List,
|
|
char *Label);
|
|
|
|
LABELEDLIST NewLabeledList (
|
|
char *Label);
|
|
|
|
MERGE_CLASS NewLabeledClass (
|
|
char *Label);
|
|
|
|
void WriteTrainingSamples (
|
|
char *Directory,
|
|
LIST CharList);
|
|
|
|
void WriteClusteredTrainingSamples (
|
|
char *Directory,
|
|
LIST ProtoList,
|
|
CLUSTERER *Clusterer,
|
|
LABELEDLIST CharSample);
|
|
/**/
|
|
void WriteMergedTrainingSamples(
|
|
char *Directory,
|
|
LIST ClassList);
|
|
|
|
void WriteMicrofeat(
|
|
char *Directory,
|
|
LIST ClassList);
|
|
|
|
void WriteProtos(
|
|
FILE* File,
|
|
MERGE_CLASS MergeClass);
|
|
|
|
void WriteConfigs(
|
|
FILE* File,
|
|
CLASS_TYPE Class);
|
|
|
|
void FreeTrainingSamples (
|
|
LIST CharList);
|
|
|
|
void FreeLabeledClassList (
|
|
LIST ClassList);
|
|
|
|
void FreeLabeledList (
|
|
LABELEDLIST LabeledList);
|
|
|
|
CLUSTERER *SetUpForClustering(
|
|
LABELEDLIST CharSample);
|
|
/*
|
|
PARAMDESC *ConvertToPARAMDESC(
|
|
PARAM_DESC* Param_Desc,
|
|
int N);
|
|
*/
|
|
void MergeInsignificantProtos(LIST ProtoList, const char* label,
|
|
CLUSTERER *Clusterer, CLUSTERCONFIG *Config);
|
|
|
|
LIST RemoveInsignificantProtos(
|
|
LIST ProtoList,
|
|
BOOL8 KeepSigProtos,
|
|
BOOL8 KeepInsigProtos,
|
|
int N);
|
|
|
|
void CleanUpUnusedData(
|
|
LIST ProtoList);
|
|
|
|
void Normalize (
|
|
float *Values);
|
|
|
|
void SetUpForFloat2Int(
|
|
LIST LabeledClassList);
|
|
|
|
void WritePFFMTable(INT_TEMPLATES Templates, const char* filename);
|
|
|
|
//--------------Global Data Definitions and Declarations--------------
|
|
static char FontName[MAXNAMESIZE];
|
|
// globals used for parsing command line arguments
|
|
static char *Directory = NULL;
|
|
static int MaxNumSamples = MAX_NUM_SAMPLES;
|
|
static int Argc;
|
|
static char **Argv;
|
|
|
|
// globals used to control what information is saved in the output file
|
|
static BOOL8 ShowAllSamples = FALSE;
|
|
static BOOL8 ShowSignificantProtos = TRUE;
|
|
static BOOL8 ShowInsignificantProtos = FALSE;
|
|
|
|
// global variable to hold configuration parameters to control clustering
|
|
// -M 0.40 -B 0.05 -I 1.0 -C 1e-6.
|
|
static CLUSTERCONFIG Config =
|
|
{ elliptical, 0.625, 0.05, 1.0, 1e-6, 0 };
|
|
|
|
static FLOAT32 RoundingAccuracy = 0.0f;
|
|
|
|
// The unicharset used during mftraining
|
|
static UNICHARSET unicharset_mftraining;
|
|
|
|
const char* test_ch = "";
|
|
|
|
/*----------------------------------------------------------------------------
|
|
Public Code
|
|
-----------------------------------------------------------------------------*/
|
|
void DisplayProtoList(const char* ch, LIST protolist) {
|
|
void* window = c_create_window("Char samples", 50, 200,
|
|
520, 520, -130.0, 130.0, -130.0, 130.0);
|
|
LIST proto = protolist;
|
|
iterate(proto) {
|
|
PROTOTYPE* prototype = reinterpret_cast<PROTOTYPE *>(first_node(proto));
|
|
if (prototype->Significant)
|
|
c_line_color_index(window, Green);
|
|
else if (prototype->NumSamples == 0)
|
|
c_line_color_index(window, Blue);
|
|
else if (prototype->Merged)
|
|
c_line_color_index(window, Magenta);
|
|
else
|
|
c_line_color_index(window, Red);
|
|
float x = CenterX(prototype->Mean);
|
|
float y = CenterY(prototype->Mean);
|
|
double angle = OrientationOf(prototype->Mean) * 2 * M_PI;
|
|
float dx = static_cast<float>(LengthOf(prototype->Mean) * cos(angle) / 2);
|
|
float dy = static_cast<float>(LengthOf(prototype->Mean) * sin(angle) / 2);
|
|
c_move(window, (x - dx) * 256, (y - dy) * 256);
|
|
c_draw(window, (x + dx) * 256, (y + dy) * 256);
|
|
if (prototype->Significant)
|
|
tprintf("Green proto at (%g,%g)+(%g,%g) %d samples\n",
|
|
x, y, dx, dy, prototype->NumSamples);
|
|
else if (prototype->NumSamples > 0 && !prototype->Merged)
|
|
tprintf("Red proto at (%g,%g)+(%g,%g) %d samples\n",
|
|
x, y, dx, dy, prototype->NumSamples);
|
|
}
|
|
c_make_current(window);
|
|
}
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
int main (int argc, char **argv) {
|
|
/*
|
|
** Parameters:
|
|
** argc number of command line arguments
|
|
** argv array of command line arguments
|
|
** Globals: none
|
|
** Operation:
|
|
** This program reads in a text file consisting of feature
|
|
** samples from a training page in the following format:
|
|
**
|
|
** FontName CharName NumberOfFeatureTypes(N)
|
|
** FeatureTypeName1 NumberOfFeatures(M)
|
|
** Feature1
|
|
** ...
|
|
** FeatureM
|
|
** FeatureTypeName2 NumberOfFeatures(M)
|
|
** Feature1
|
|
** ...
|
|
** FeatureM
|
|
** ...
|
|
** FeatureTypeNameN NumberOfFeatures(M)
|
|
** Feature1
|
|
** ...
|
|
** FeatureM
|
|
** FontName CharName ...
|
|
**
|
|
** The result of this program is a binary inttemp file used by
|
|
** the OCR engine.
|
|
** Return: none
|
|
** Exceptions: none
|
|
** History: Fri Aug 18 08:56:17 1989, DSJ, Created.
|
|
** Mon May 18 1998, Christy Russson, Revistion started.
|
|
*/
|
|
char *PageName;
|
|
FILE *TrainingPage;
|
|
FILE *OutFile;
|
|
LIST CharList;
|
|
CLUSTERER *Clusterer = NULL;
|
|
LIST ProtoList = NIL;
|
|
LABELEDLIST CharSample;
|
|
PROTOTYPE *Prototype;
|
|
LIST ClassList = NIL;
|
|
int Cid, Pid;
|
|
PROTO Proto;
|
|
PROTO_STRUCT DummyProto;
|
|
BIT_VECTOR Config2;
|
|
MERGE_CLASS MergeClass;
|
|
INT_TEMPLATES IntTemplates;
|
|
LIST pCharList, pProtoList;
|
|
char Filename[MAXNAMESIZE];
|
|
|
|
// Clean the unichar set
|
|
unicharset_mftraining.clear();
|
|
// Space character needed to represent NIL classification
|
|
unicharset_mftraining.unichar_insert(" ");
|
|
|
|
ParseArguments (argc, argv);
|
|
InitFastTrainerVars ();
|
|
InitSubfeatureVars ();
|
|
while ((PageName = GetNextFilename()) != NULL) {
|
|
printf ("Reading %s ...\n", PageName);
|
|
TrainingPage = Efopen (PageName, "r");
|
|
CharList = ReadTrainingSamples (TrainingPage);
|
|
fclose (TrainingPage);
|
|
//WriteTrainingSamples (Directory, CharList);
|
|
pCharList = CharList;
|
|
iterate(pCharList) {
|
|
//Cluster
|
|
CharSample = (LABELEDLIST) first_node (pCharList);
|
|
// printf ("\nClustering %s ...", CharSample->Label);
|
|
Clusterer = SetUpForClustering(CharSample);
|
|
Config.MagicSamples = CharSample->SampleCount;
|
|
ProtoList = ClusterSamples(Clusterer, &Config);
|
|
CleanUpUnusedData(ProtoList);
|
|
|
|
//Merge
|
|
MergeInsignificantProtos(ProtoList, CharSample->Label,
|
|
Clusterer, &Config);
|
|
if (strcmp(test_ch, CharSample->Label) == 0)
|
|
DisplayProtoList(test_ch, ProtoList);
|
|
ProtoList = RemoveInsignificantProtos(ProtoList, ShowSignificantProtos,
|
|
ShowInsignificantProtos,
|
|
Clusterer->SampleSize);
|
|
FreeClusterer(Clusterer);
|
|
MergeClass = FindClass (ClassList, CharSample->Label);
|
|
if (MergeClass == NULL) {
|
|
MergeClass = NewLabeledClass (CharSample->Label);
|
|
ClassList = push (ClassList, MergeClass);
|
|
}
|
|
Cid = AddConfigToClass(MergeClass->Class);
|
|
pProtoList = ProtoList;
|
|
iterate (pProtoList) {
|
|
Prototype = (PROTOTYPE *) first_node (pProtoList);
|
|
|
|
// see if proto can be approximated by existing proto
|
|
Pid = FindClosestExistingProto(MergeClass->Class,
|
|
MergeClass->NumMerged, Prototype);
|
|
if (Pid == NO_PROTO) {
|
|
Pid = AddProtoToClass (MergeClass->Class);
|
|
Proto = ProtoIn (MergeClass->Class, Pid);
|
|
MakeNewFromOld (Proto, Prototype);
|
|
MergeClass->NumMerged[Pid] = 1;
|
|
}
|
|
else {
|
|
MakeNewFromOld (&DummyProto, Prototype);
|
|
ComputeMergedProto (ProtoIn (MergeClass->Class, Pid), &DummyProto,
|
|
(FLOAT32) MergeClass->NumMerged[Pid], 1.0,
|
|
ProtoIn (MergeClass->Class, Pid));
|
|
MergeClass->NumMerged[Pid] ++;
|
|
}
|
|
Config2 = ConfigIn (MergeClass->Class, Cid);
|
|
AddProtoToConfig (Pid, Config2);
|
|
}
|
|
FreeProtoList (&ProtoList);
|
|
}
|
|
FreeTrainingSamples (CharList);
|
|
}
|
|
//WriteMergedTrainingSamples(Directory,ClassList);
|
|
WriteMicrofeat(Directory, ClassList);
|
|
InitIntProtoVars ();
|
|
InitPrototypes ();
|
|
SetUpForFloat2Int(ClassList);
|
|
IntTemplates = CreateIntTemplates(TrainingData, unicharset_mftraining);
|
|
strcpy (Filename, "");
|
|
if (Directory != NULL) {
|
|
strcat (Filename, Directory);
|
|
strcat (Filename, "/");
|
|
}
|
|
strcat (Filename, "inttemp");
|
|
#ifdef __UNIX__
|
|
OutFile = Efopen (Filename, "w");
|
|
#else
|
|
OutFile = Efopen (Filename, "wb");
|
|
#endif
|
|
WriteIntTemplates(OutFile, IntTemplates, unicharset_mftraining);
|
|
fclose (OutFile);
|
|
strcpy (Filename, "");
|
|
if (Directory != NULL) {
|
|
strcat (Filename, Directory);
|
|
strcat (Filename, "/");
|
|
}
|
|
strcat (Filename, "pffmtable");
|
|
// Now create pffmtable.
|
|
WritePFFMTable(IntTemplates, Filename);
|
|
printf ("Done!\n"); /**/
|
|
FreeLabeledClassList (ClassList);
|
|
return 0;
|
|
} /* main */
|
|
|
|
|
|
/**----------------------------------------------------------------------------
|
|
Private Code
|
|
----------------------------------------------------------------------------**/
|
|
/*---------------------------------------------------------------------------*/
|
|
void ParseArguments(
|
|
int argc,
|
|
char **argv)
|
|
|
|
/*
|
|
** Parameters:
|
|
** argc number of command line arguments to parse
|
|
** argv command line arguments
|
|
** Globals:
|
|
** ShowAllSamples flag controlling samples display
|
|
** ShowSignificantProtos flag controlling proto display
|
|
** ShowInsignificantProtos flag controlling proto display
|
|
** Config current clustering parameters
|
|
** tessoptarg, tessoptind defined by tessopt sys call
|
|
** Argc, Argv global copies of argc and argv
|
|
** Operation:
|
|
** This routine parses the command line arguments that were
|
|
** passed to the program. The legal arguments are:
|
|
** -d "turn off display of samples"
|
|
** -p "turn off significant protos"
|
|
** -n "turn off insignificant proto"
|
|
** -S [ spherical | elliptical | mixed | automatic ]
|
|
** -M MinSamples "min samples per prototype (%)"
|
|
** -B MaxIllegal "max illegal chars per cluster (%)"
|
|
** -I Independence "0 to 1"
|
|
** -C Confidence "1e-200 to 1.0"
|
|
** -D Directory
|
|
** -N MaxNumSamples
|
|
** -R RoundingAccuracy
|
|
** Return: none
|
|
** Exceptions: Illegal options terminate the program.
|
|
** History: 7/24/89, DSJ, Created.
|
|
*/
|
|
|
|
{
|
|
int Option;
|
|
int ParametersRead;
|
|
BOOL8 Error;
|
|
|
|
Error = FALSE;
|
|
Argc = argc;
|
|
Argv = argv;
|
|
while (( Option = tessopt( argc, argv, "R:N:D:C:I:M:B:S:d:n:p" )) != EOF )
|
|
{
|
|
switch ( Option )
|
|
{
|
|
case 'n':
|
|
ShowInsignificantProtos = FALSE;
|
|
break;
|
|
case 'p':
|
|
ShowSignificantProtos = FALSE;
|
|
break;
|
|
case 'd':
|
|
ShowAllSamples = FALSE;
|
|
break;
|
|
case 'C':
|
|
ParametersRead = sscanf( tessoptarg, "%lf", &(Config.Confidence) );
|
|
if ( ParametersRead != 1 ) Error = TRUE;
|
|
else if ( Config.Confidence > 1 ) Config.Confidence = 1;
|
|
else if ( Config.Confidence < 0 ) Config.Confidence = 0;
|
|
break;
|
|
case 'I':
|
|
ParametersRead = sscanf( tessoptarg, "%f", &(Config.Independence) );
|
|
if ( ParametersRead != 1 ) Error = TRUE;
|
|
else if ( Config.Independence > 1 ) Config.Independence = 1;
|
|
else if ( Config.Independence < 0 ) Config.Independence = 0;
|
|
break;
|
|
case 'M':
|
|
ParametersRead = sscanf( tessoptarg, "%f", &(Config.MinSamples) );
|
|
if ( ParametersRead != 1 ) Error = TRUE;
|
|
else if ( Config.MinSamples > 1 ) Config.MinSamples = 1;
|
|
else if ( Config.MinSamples < 0 ) Config.MinSamples = 0;
|
|
break;
|
|
case 'B':
|
|
ParametersRead = sscanf( tessoptarg, "%f", &(Config.MaxIllegal) );
|
|
if ( ParametersRead != 1 ) Error = TRUE;
|
|
else if ( Config.MaxIllegal > 1 ) Config.MaxIllegal = 1;
|
|
else if ( Config.MaxIllegal < 0 ) Config.MaxIllegal = 0;
|
|
break;
|
|
case 'R':
|
|
ParametersRead = sscanf( tessoptarg, "%f", &RoundingAccuracy );
|
|
if ( ParametersRead != 1 ) Error = TRUE;
|
|
else if ( RoundingAccuracy > 0.01f ) RoundingAccuracy = 0.01f;
|
|
else if ( RoundingAccuracy < 0.0f ) RoundingAccuracy = 0.0f;
|
|
break;
|
|
case 'S':
|
|
switch ( tessoptarg[0] )
|
|
{
|
|
case 's': Config.ProtoStyle = spherical; break;
|
|
case 'e': Config.ProtoStyle = elliptical; break;
|
|
case 'm': Config.ProtoStyle = mixed; break;
|
|
case 'a': Config.ProtoStyle = automatic; break;
|
|
default: Error = TRUE;
|
|
}
|
|
break;
|
|
case 'D':
|
|
Directory = tessoptarg;
|
|
break;
|
|
case 'N':
|
|
if (sscanf (tessoptarg, "%d", &MaxNumSamples) != 1 ||
|
|
MaxNumSamples <= 0)
|
|
Error = TRUE;
|
|
break;
|
|
case '?':
|
|
Error = TRUE;
|
|
break;
|
|
}
|
|
if ( Error )
|
|
{
|
|
fprintf (stderr, "usage: %s [-D] [-P] [-N]\n", argv[0] );
|
|
fprintf (stderr, "\t[-S ProtoStyle]\n");
|
|
fprintf (stderr, "\t[-M MinSamples] [-B MaxBad] [-I Independence] [-C Confidence]\n" );
|
|
fprintf (stderr, "\t[-d directory] [-n MaxNumSamples] [ TrainingPage ... ]\n");
|
|
exit (2);
|
|
}
|
|
}
|
|
} // ParseArguments
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
char *GetNextFilename ()
|
|
/*
|
|
** Parameters: none
|
|
** Globals:
|
|
** tessoptind defined by tessopt sys call
|
|
** Argc, Argv global copies of argc and argv
|
|
** Operation:
|
|
** This routine returns the next command line argument. If
|
|
** there are no remaining command line arguments, it returns
|
|
** NULL. This routine should only be called after all option
|
|
** arguments have been parsed and removed with ParseArguments.
|
|
** Return: Next command line argument or NULL.
|
|
** Exceptions: none
|
|
** History: Fri Aug 18 09:34:12 1989, DSJ, Created.
|
|
*/
|
|
|
|
{
|
|
if (tessoptind < Argc)
|
|
return (Argv [tessoptind++]);
|
|
else
|
|
return (NULL);
|
|
|
|
} /* GetNextFilename */
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
LIST ReadTrainingSamples (
|
|
FILE *File)
|
|
|
|
/*
|
|
** Parameters:
|
|
** File open text file to read samples from
|
|
** Globals: none
|
|
** Operation:
|
|
** This routine reads training samples from a file and
|
|
** places them into a data structure which organizes the
|
|
** samples by FontName and CharName. It then returns this
|
|
** data structure.
|
|
** Return: none
|
|
** Exceptions: none
|
|
** History: Fri Aug 18 13:11:39 1989, DSJ, Created.
|
|
** Tue May 17 1998 simplifications to structure, illiminated
|
|
** font, and feature specification levels of structure.
|
|
*/
|
|
|
|
{
|
|
char unichar[UNICHAR_LEN + 1];
|
|
LABELEDLIST CharSample;
|
|
FEATURE_SET FeatureSamples;
|
|
LIST TrainingSamples = NIL;
|
|
CHAR_DESC CharDesc;
|
|
int Type, i;
|
|
|
|
while (fscanf (File, "%s %s", FontName, unichar) == 2) {
|
|
if (!unicharset_mftraining.contains_unichar(unichar)) {
|
|
unicharset_mftraining.unichar_insert(unichar);
|
|
if (unicharset_mftraining.size() > MAX_NUM_CLASSES) {
|
|
cprintf("Error: Size of unicharset of mftraining is "
|
|
"greater than MAX_NUM_CLASSES\n");
|
|
exit(1);
|
|
}
|
|
}
|
|
CharSample = FindList (TrainingSamples, unichar);
|
|
if (CharSample == NULL) {
|
|
CharSample = NewLabeledList (unichar);
|
|
TrainingSamples = push (TrainingSamples, CharSample);
|
|
}
|
|
CharDesc = ReadCharDescription (File);
|
|
Type = ShortNameToFeatureType(PROGRAM_FEATURE_TYPE);
|
|
FeatureSamples = FeaturesOfType(CharDesc, Type);
|
|
for (int feature = 0; feature < FeatureSamples->NumFeatures; ++feature) {
|
|
FEATURE f = FeatureSamples->Features[feature];
|
|
for (int dim =0; dim < f->Type->NumParams; ++dim)
|
|
f->Params[dim] += dim == MFDirection ?
|
|
UniformRandomNumber(-MINSD_ANGLE, MINSD_ANGLE) :
|
|
UniformRandomNumber(-MINSD, MINSD);
|
|
}
|
|
CharSample->List = push (CharSample->List, FeatureSamples);
|
|
CharSample->SampleCount++;
|
|
for (i = 0; i < NumFeatureSetsIn (CharDesc); i++)
|
|
if (Type != i)
|
|
FreeFeatureSet (FeaturesOfType (CharDesc, i));
|
|
free (CharDesc);
|
|
}
|
|
return (TrainingSamples);
|
|
|
|
} /* ReadTrainingSamples */
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
LABELEDLIST FindList (
|
|
LIST List,
|
|
char *Label)
|
|
|
|
/*
|
|
** Parameters:
|
|
** List list to search
|
|
** Label label to search for
|
|
** Globals: none
|
|
** Operation:
|
|
** This routine searches thru a list of labeled lists to find
|
|
** a list with the specified label. If a matching labeled list
|
|
** cannot be found, NULL is returned.
|
|
** Return: Labeled list with the specified Label or NULL.
|
|
** Exceptions: none
|
|
** History: Fri Aug 18 15:57:41 1989, DSJ, Created.
|
|
*/
|
|
|
|
{
|
|
LABELEDLIST LabeledList;
|
|
|
|
iterate (List)
|
|
{
|
|
LabeledList = (LABELEDLIST) first_node (List);
|
|
if (strcmp (LabeledList->Label, Label) == 0)
|
|
return (LabeledList);
|
|
}
|
|
return (NULL);
|
|
|
|
} /* FindList */
|
|
|
|
/*----------------------------------------------------------------------------*/
|
|
MERGE_CLASS FindClass (
|
|
LIST List,
|
|
char *Label)
|
|
{
|
|
MERGE_CLASS MergeClass;
|
|
|
|
iterate (List)
|
|
{
|
|
MergeClass = (MERGE_CLASS) first_node (List);
|
|
if (strcmp (MergeClass->Label, Label) == 0)
|
|
return (MergeClass);
|
|
}
|
|
return (NULL);
|
|
|
|
} /* FindClass */
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
LABELEDLIST NewLabeledList (
|
|
char *Label)
|
|
|
|
/*
|
|
** Parameters:
|
|
** Label label for new list
|
|
** Globals: none
|
|
** Operation:
|
|
** This routine allocates a new, empty labeled list and gives
|
|
** it the specified label.
|
|
** Return: New, empty labeled list.
|
|
** Exceptions: none
|
|
** History: Fri Aug 18 16:08:46 1989, DSJ, Created.
|
|
*/
|
|
|
|
{
|
|
LABELEDLIST LabeledList;
|
|
|
|
LabeledList = (LABELEDLIST) Emalloc (sizeof (LABELEDLISTNODE));
|
|
LabeledList->Label = (char*)Emalloc (strlen (Label)+1);
|
|
strcpy (LabeledList->Label, Label);
|
|
LabeledList->List = NIL;
|
|
LabeledList->SampleCount = 0;
|
|
return (LabeledList);
|
|
|
|
} /* NewLabeledList */
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
MERGE_CLASS NewLabeledClass (
|
|
char *Label)
|
|
{
|
|
MERGE_CLASS MergeClass;
|
|
|
|
MergeClass = (MERGE_CLASS) Emalloc (sizeof (MERGE_CLASS_NODE));
|
|
MergeClass->Label = (char*)Emalloc (strlen (Label)+1);
|
|
strcpy (MergeClass->Label, Label);
|
|
MergeClass->Class = NewClass (MAX_NUM_PROTOS, MAX_NUM_CONFIGS);
|
|
return (MergeClass);
|
|
|
|
} /* NewLabeledClass */
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
void WriteTrainingSamples (
|
|
char *Directory,
|
|
LIST CharList)
|
|
|
|
/*
|
|
** Parameters:
|
|
** Directory directory to place sample files into
|
|
** FontList list of fonts used in the training samples
|
|
** Globals:
|
|
** MaxNumSamples max number of samples per class to write
|
|
** Operation:
|
|
** This routine writes the specified samples into files which
|
|
** are organized according to the font name and character name
|
|
** of the samples.
|
|
** Return: none
|
|
** Exceptions: none
|
|
** History: Fri Aug 18 16:17:06 1989, DSJ, Created.
|
|
*/
|
|
|
|
{
|
|
LABELEDLIST CharSample;
|
|
FEATURE_SET FeatureSet;
|
|
LIST FeatureList;
|
|
FILE *File;
|
|
char Filename[MAXNAMESIZE];
|
|
int NumSamples;
|
|
|
|
iterate (CharList) // iterate thru all of the fonts
|
|
{
|
|
CharSample = (LABELEDLIST) first_node (CharList);
|
|
|
|
// construct the full pathname for the current samples file
|
|
strcpy (Filename, "");
|
|
if (Directory != NULL)
|
|
{
|
|
strcat (Filename, Directory);
|
|
strcat (Filename, "/");
|
|
}
|
|
strcat (Filename, FontName);
|
|
strcat (Filename, "/");
|
|
strcat (Filename, CharSample->Label);
|
|
strcat (Filename, ".");
|
|
strcat (Filename, PROGRAM_FEATURE_TYPE);
|
|
printf ("\nWriting %s ...", Filename);
|
|
|
|
/* if file does not exist, create a new one with an appropriate
|
|
header; otherwise append samples to the existing file */
|
|
File = fopen (Filename, "r");
|
|
if (File == NULL)
|
|
{
|
|
File = Efopen (Filename, "w");
|
|
WriteOldParamDesc
|
|
(File, DefinitionOf (ShortNameToFeatureType (PROGRAM_FEATURE_TYPE)));
|
|
}
|
|
else
|
|
{
|
|
fclose (File);
|
|
File = Efopen (Filename, "a");
|
|
}
|
|
|
|
// append samples onto the file
|
|
FeatureList = CharSample->List;
|
|
NumSamples = 0;
|
|
iterate (FeatureList)
|
|
{
|
|
if (NumSamples >= MaxNumSamples) break;
|
|
|
|
FeatureSet = (FEATURE_SET) first_node (FeatureList);
|
|
WriteFeatureSet (File, FeatureSet);
|
|
NumSamples++;
|
|
}
|
|
fclose (File);
|
|
}
|
|
} /* WriteTrainingSamples */
|
|
|
|
|
|
/*----------------------------------------------------------------------------*/
|
|
void WriteClusteredTrainingSamples (
|
|
char *Directory,
|
|
LIST ProtoList,
|
|
CLUSTERER *Clusterer,
|
|
LABELEDLIST CharSample)
|
|
|
|
/*
|
|
** Parameters:
|
|
** Directory directory to place sample files into
|
|
** Globals:
|
|
** MaxNumSamples max number of samples per class to write
|
|
** Operation:
|
|
** This routine writes the specified samples into files which
|
|
** are organized according to the font name and character name
|
|
** of the samples.
|
|
** Return: none
|
|
** Exceptions: none
|
|
** History: Fri Aug 18 16:17:06 1989, DSJ, Created.
|
|
*/
|
|
|
|
{
|
|
FILE *File;
|
|
char Filename[MAXNAMESIZE];
|
|
|
|
strcpy (Filename, "");
|
|
if (Directory != NULL)
|
|
{
|
|
strcat (Filename, Directory);
|
|
strcat (Filename, "/");
|
|
}
|
|
strcat (Filename, FontName);
|
|
strcat (Filename, "/");
|
|
strcat (Filename, CharSample->Label);
|
|
strcat (Filename, ".");
|
|
strcat (Filename, PROGRAM_FEATURE_TYPE);
|
|
strcat (Filename, ".p");
|
|
printf ("\nWriting %s ...", Filename);
|
|
File = Efopen (Filename, "w");
|
|
WriteProtoList(File, Clusterer->SampleSize, Clusterer->ParamDesc,
|
|
ProtoList, ShowSignificantProtos, ShowInsignificantProtos);
|
|
fclose (File);
|
|
|
|
} /* WriteClusteredTrainingSamples */
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
void WriteMergedTrainingSamples(
|
|
char *Directory,
|
|
LIST ClassList)
|
|
|
|
{
|
|
FILE *File;
|
|
char Filename[MAXNAMESIZE];
|
|
MERGE_CLASS MergeClass;
|
|
|
|
iterate (ClassList)
|
|
{
|
|
MergeClass = (MERGE_CLASS) first_node (ClassList);
|
|
strcpy (Filename, "");
|
|
if (Directory != NULL)
|
|
{
|
|
strcat (Filename, Directory);
|
|
strcat (Filename, "/");
|
|
}
|
|
strcat (Filename, "Merged/");
|
|
strcat (Filename, MergeClass->Label);
|
|
strcat (Filename, PROTO_SUFFIX);
|
|
printf ("\nWriting Merged %s ...", Filename);
|
|
File = Efopen (Filename, "w");
|
|
WriteOldProtoFile (File, MergeClass->Class);
|
|
fclose (File);
|
|
|
|
strcpy (Filename, "");
|
|
if (Directory != NULL)
|
|
{
|
|
strcat (Filename, Directory);
|
|
strcat (Filename, "/");
|
|
}
|
|
strcat (Filename, "Merged/");
|
|
strcat (Filename, MergeClass->Label);
|
|
strcat (Filename, CONFIG_SUFFIX);
|
|
printf ("\nWriting Merged %s ...", Filename);
|
|
File = Efopen (Filename, "w");
|
|
WriteOldConfigFile (File, MergeClass->Class);
|
|
fclose (File);
|
|
}
|
|
|
|
} // WriteMergedTrainingSamples
|
|
|
|
/*--------------------------------------------------------------------------*/
|
|
void WriteMicrofeat(
|
|
char *Directory,
|
|
LIST ClassList)
|
|
|
|
{
|
|
FILE *File;
|
|
char Filename[MAXNAMESIZE];
|
|
MERGE_CLASS MergeClass;
|
|
|
|
strcpy (Filename, "");
|
|
if (Directory != NULL)
|
|
{
|
|
strcat (Filename, Directory);
|
|
strcat (Filename, "/");
|
|
}
|
|
strcat (Filename, "Microfeat");
|
|
File = Efopen (Filename, "w");
|
|
printf ("\nWriting Merged %s ...", Filename);
|
|
iterate(ClassList)
|
|
{
|
|
MergeClass = (MERGE_CLASS) first_node (ClassList);
|
|
WriteProtos(File, MergeClass);
|
|
WriteConfigs(File, MergeClass->Class);
|
|
}
|
|
fclose (File);
|
|
} // WriteMicrofeat
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
void WriteProtos(
|
|
FILE* File,
|
|
MERGE_CLASS MergeClass)
|
|
{
|
|
float Values[3];
|
|
int i;
|
|
PROTO Proto;
|
|
|
|
fprintf(File, "%s\n", MergeClass->Label);
|
|
fprintf(File, "%d\n", NumProtosIn(MergeClass->Class));
|
|
for(i=0; i < NumProtosIn(MergeClass->Class); i++)
|
|
{
|
|
Proto = ProtoIn(MergeClass->Class,i);
|
|
fprintf(File, "\t%8.4f %8.4f %8.4f %8.4f ", ProtoX(Proto), ProtoY(Proto),
|
|
ProtoLength(Proto), ProtoAngle(Proto));
|
|
Values[0] = ProtoX(Proto);
|
|
Values[1] = ProtoY(Proto);
|
|
Values[2] = ProtoAngle(Proto);
|
|
Normalize(Values);
|
|
fprintf(File, "%8.4f %8.4f %8.4f\n", Values[0], Values[1], Values[2]);
|
|
}
|
|
} // WriteProtos
|
|
|
|
/*----------------------------------------------------------------------------*/
|
|
void WriteConfigs(
|
|
FILE* File,
|
|
CLASS_TYPE Class)
|
|
{
|
|
BIT_VECTOR Config;
|
|
int i, j, WordsPerConfig;
|
|
|
|
WordsPerConfig = WordsInVectorOfSize(NumProtosIn(Class));
|
|
fprintf(File, "%d %d\n", NumConfigsIn(Class),WordsPerConfig);
|
|
for(i=0; i < NumConfigsIn(Class); i++)
|
|
{
|
|
Config = ConfigIn(Class,i);
|
|
for(j=0; j < WordsPerConfig; j++)
|
|
fprintf(File, "%08x ", Config[j]);
|
|
fprintf(File, "\n");
|
|
}
|
|
fprintf(File, "\n");
|
|
} // WriteConfigs
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
void FreeTrainingSamples (
|
|
LIST CharList)
|
|
|
|
/*
|
|
** Parameters:
|
|
** FontList list of all fonts in document
|
|
** Globals: none
|
|
** Operation:
|
|
** This routine deallocates all of the space allocated to
|
|
** the specified list of training samples.
|
|
** Return: none
|
|
** Exceptions: none
|
|
** History: Fri Aug 18 17:44:27 1989, DSJ, Created.
|
|
*/
|
|
|
|
{
|
|
LABELEDLIST CharSample;
|
|
FEATURE_SET FeatureSet;
|
|
LIST FeatureList;
|
|
|
|
|
|
// printf ("FreeTrainingSamples...\n");
|
|
iterate (CharList) /* iterate thru all of the fonts */
|
|
{
|
|
CharSample = (LABELEDLIST) first_node (CharList);
|
|
FeatureList = CharSample->List;
|
|
iterate (FeatureList) /* iterate thru all of the classes */
|
|
{
|
|
FeatureSet = (FEATURE_SET) first_node (FeatureList);
|
|
FreeFeatureSet (FeatureSet);
|
|
}
|
|
FreeLabeledList (CharSample);
|
|
}
|
|
destroy (CharList);
|
|
|
|
} /* FreeTrainingSamples */
|
|
|
|
/*-----------------------------------------------------------------------------*/
|
|
void FreeLabeledClassList (
|
|
LIST ClassList)
|
|
|
|
/*
|
|
** Parameters:
|
|
** FontList list of all fonts in document
|
|
** Globals: none
|
|
** Operation:
|
|
** This routine deallocates all of the space allocated to
|
|
** the specified list of training samples.
|
|
** Return: none
|
|
** Exceptions: none
|
|
** History: Fri Aug 18 17:44:27 1989, DSJ, Created.
|
|
*/
|
|
|
|
{
|
|
MERGE_CLASS MergeClass;
|
|
|
|
iterate (ClassList) /* iterate thru all of the fonts */
|
|
{
|
|
MergeClass = (MERGE_CLASS) first_node (ClassList);
|
|
free (MergeClass->Label);
|
|
FreeClass(MergeClass->Class);
|
|
free (MergeClass);
|
|
}
|
|
destroy (ClassList);
|
|
|
|
} /* FreeLabeledClassList */
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
void FreeLabeledList (
|
|
LABELEDLIST LabeledList)
|
|
|
|
/*
|
|
** Parameters:
|
|
** LabeledList labeled list to be freed
|
|
** Globals: none
|
|
** Operation:
|
|
** This routine deallocates all of the memory consumed by
|
|
** a labeled list. It does not free any memory which may be
|
|
** consumed by the items in the list.
|
|
** Return: none
|
|
** Exceptions: none
|
|
** History: Fri Aug 18 17:52:45 1989, DSJ, Created.
|
|
*/
|
|
|
|
{
|
|
destroy (LabeledList->List);
|
|
free (LabeledList->Label);
|
|
free (LabeledList);
|
|
|
|
} /* FreeLabeledList */
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
CLUSTERER *SetUpForClustering(
|
|
LABELEDLIST CharSample)
|
|
|
|
/*
|
|
** Parameters:
|
|
** CharSample: LABELEDLIST that holds all the feature information for a
|
|
** given character.
|
|
** Globals:
|
|
** None
|
|
** Operation:
|
|
** This routine reads samples from a LABELEDLIST and enters
|
|
** those samples into a clusterer data structure. This
|
|
** data structure is then returned to the caller.
|
|
** Return:
|
|
** Pointer to new clusterer data structure.
|
|
** Exceptions:
|
|
** None
|
|
** History:
|
|
** 8/16/89, DSJ, Created.
|
|
*/
|
|
|
|
{
|
|
UINT16 N;
|
|
int i, j;
|
|
FLOAT32 *Sample = NULL;
|
|
CLUSTERER *Clusterer;
|
|
INT32 CharID;
|
|
LIST FeatureList = NULL;
|
|
FEATURE_SET FeatureSet = NULL;
|
|
FEATURE_DESC FeatureDesc = NULL;
|
|
// PARAM_DESC* ParamDesc;
|
|
|
|
FeatureDesc = DefinitionOf(ShortNameToFeatureType(PROGRAM_FEATURE_TYPE));
|
|
N = FeatureDesc->NumParams;
|
|
// ParamDesc = ConvertToPARAMDESC(FeatureDesc->ParamDesc, N);
|
|
Clusterer = MakeClusterer(N,FeatureDesc->ParamDesc);
|
|
// free(ParamDesc);
|
|
|
|
FeatureList = CharSample->List;
|
|
CharID = 0;
|
|
iterate(FeatureList)
|
|
{
|
|
if (CharID >= MaxNumSamples) break;
|
|
|
|
FeatureSet = (FEATURE_SET) first_node (FeatureList);
|
|
for (i=0; i < FeatureSet->MaxNumFeatures; i++)
|
|
{
|
|
if (Sample == NULL)
|
|
Sample = (FLOAT32 *)Emalloc(N * sizeof(FLOAT32));
|
|
for (j=0; j < N; j++)
|
|
if (RoundingAccuracy != 0.0f)
|
|
Sample[j] = round(FeatureSet->Features[i]->Params[j], RoundingAccuracy);
|
|
else
|
|
Sample[j] = FeatureSet->Features[i]->Params[j];
|
|
MakeSample (Clusterer, Sample, CharID);
|
|
}
|
|
CharID++;
|
|
}
|
|
if ( Sample != NULL ) free( Sample );
|
|
return( Clusterer );
|
|
|
|
} /* SetUpForClustering */
|
|
|
|
/*------------------------------------------------------------------------*/
|
|
void MergeInsignificantProtos(LIST ProtoList, const char* label,
|
|
CLUSTERER *Clusterer, CLUSTERCONFIG *Config) {
|
|
PROTOTYPE *Prototype;
|
|
bool debug = strcmp(test_ch, label) == 0;
|
|
|
|
LIST pProtoList = ProtoList;
|
|
iterate(pProtoList) {
|
|
Prototype = (PROTOTYPE *) first_node (pProtoList);
|
|
if (Prototype->Significant || Prototype->Merged)
|
|
continue;
|
|
FLOAT32 best_dist = 0.125;
|
|
PROTOTYPE* best_match = NULL;
|
|
// Find the nearest alive prototype.
|
|
LIST list_it = ProtoList;
|
|
iterate(list_it) {
|
|
PROTOTYPE* test_p = (PROTOTYPE *) first_node (list_it);
|
|
if (test_p != Prototype && !test_p->Merged) {
|
|
FLOAT32 dist = ComputeDistance(Clusterer->SampleSize,
|
|
Clusterer->ParamDesc,
|
|
Prototype->Mean, test_p->Mean);
|
|
if (dist < best_dist) {
|
|
best_match = test_p;
|
|
best_dist = dist;
|
|
}
|
|
}
|
|
}
|
|
if (best_match != NULL && !best_match->Significant) {
|
|
if (debug)
|
|
tprintf("Merging red clusters (%d+%d) at %g,%g and %g,%g\n",
|
|
best_match->NumSamples, Prototype->NumSamples,
|
|
best_match->Mean[0], best_match->Mean[1],
|
|
Prototype->Mean[0], Prototype->Mean[1]);
|
|
best_match->NumSamples = MergeClusters(Clusterer->SampleSize,
|
|
Clusterer->ParamDesc,
|
|
best_match->NumSamples,
|
|
Prototype->NumSamples,
|
|
best_match->Mean,
|
|
best_match->Mean, Prototype->Mean);
|
|
Prototype->NumSamples = 0;
|
|
Prototype->Merged = 1;
|
|
} else if (best_match != NULL) {
|
|
if (debug)
|
|
tprintf("Red proto at %g,%g matched a green one at %g,%g\n",
|
|
Prototype->Mean[0], Prototype->Mean[1],
|
|
best_match->Mean[0], best_match->Mean[1]);
|
|
Prototype->Merged = 1;
|
|
}
|
|
}
|
|
// Mark significant those that now have enough samples.
|
|
int min_samples = (INT32) (Config->MinSamples * Clusterer->NumChar);
|
|
pProtoList = ProtoList;
|
|
iterate(pProtoList) {
|
|
Prototype = (PROTOTYPE *) first_node (pProtoList);
|
|
// Process insignificant protos that do not match a green one
|
|
if (!Prototype->Significant && Prototype->NumSamples >= min_samples &&
|
|
!Prototype->Merged) {
|
|
if (debug)
|
|
tprintf("Red proto at %g,%g becoming green\n",
|
|
Prototype->Mean[0], Prototype->Mean[1]);
|
|
Prototype->Significant = true;
|
|
}
|
|
}
|
|
} /* MergeInsignificantProtos */
|
|
|
|
/*------------------------------------------------------------------------*/
|
|
LIST RemoveInsignificantProtos(
|
|
LIST ProtoList,
|
|
BOOL8 KeepSigProtos,
|
|
BOOL8 KeepInsigProtos,
|
|
int N)
|
|
|
|
{
|
|
LIST NewProtoList = NIL;
|
|
LIST pProtoList;
|
|
PROTOTYPE* Proto;
|
|
PROTOTYPE* NewProto;
|
|
int i;
|
|
|
|
pProtoList = ProtoList;
|
|
iterate(pProtoList)
|
|
{
|
|
Proto = (PROTOTYPE *) first_node (pProtoList);
|
|
if ((Proto->Significant && KeepSigProtos) ||
|
|
(!Proto->Significant && KeepInsigProtos))
|
|
{
|
|
NewProto = (PROTOTYPE *)Emalloc(sizeof(PROTOTYPE));
|
|
|
|
NewProto->Mean = (FLOAT32 *)Emalloc(N * sizeof(FLOAT32));
|
|
NewProto->Significant = Proto->Significant;
|
|
NewProto->Style = Proto->Style;
|
|
NewProto->NumSamples = Proto->NumSamples;
|
|
NewProto->Cluster = NULL;
|
|
NewProto->Distrib = NULL;
|
|
|
|
for (i=0; i < N; i++)
|
|
NewProto->Mean[i] = Proto->Mean[i];
|
|
if (Proto->Variance.Elliptical != NULL)
|
|
{
|
|
NewProto->Variance.Elliptical = (FLOAT32 *)Emalloc(N * sizeof(FLOAT32));
|
|
for (i=0; i < N; i++)
|
|
NewProto->Variance.Elliptical[i] = Proto->Variance.Elliptical[i];
|
|
}
|
|
else
|
|
NewProto->Variance.Elliptical = NULL;
|
|
//---------------------------------------------
|
|
if (Proto->Magnitude.Elliptical != NULL)
|
|
{
|
|
NewProto->Magnitude.Elliptical = (FLOAT32 *)Emalloc(N * sizeof(FLOAT32));
|
|
for (i=0; i < N; i++)
|
|
NewProto->Magnitude.Elliptical[i] = Proto->Magnitude.Elliptical[i];
|
|
}
|
|
else
|
|
NewProto->Magnitude.Elliptical = NULL;
|
|
//------------------------------------------------
|
|
if (Proto->Weight.Elliptical != NULL)
|
|
{
|
|
NewProto->Weight.Elliptical = (FLOAT32 *)Emalloc(N * sizeof(FLOAT32));
|
|
for (i=0; i < N; i++)
|
|
NewProto->Weight.Elliptical[i] = Proto->Weight.Elliptical[i];
|
|
}
|
|
else
|
|
NewProto->Weight.Elliptical = NULL;
|
|
|
|
NewProto->TotalMagnitude = Proto->TotalMagnitude;
|
|
NewProto->LogMagnitude = Proto->LogMagnitude;
|
|
NewProtoList = push_last(NewProtoList, NewProto);
|
|
}
|
|
}
|
|
//FreeProtoList (ProtoList);
|
|
return (NewProtoList);
|
|
} /* RemoveInsignificantProtos */
|
|
/*-----------------------------------------------------------------------------*/
|
|
void CleanUpUnusedData(
|
|
LIST ProtoList)
|
|
{
|
|
PROTOTYPE* Prototype;
|
|
|
|
iterate(ProtoList)
|
|
{
|
|
Prototype = (PROTOTYPE *) first_node (ProtoList);
|
|
if(Prototype->Variance.Elliptical != NULL)
|
|
{
|
|
memfree(Prototype->Variance.Elliptical);
|
|
Prototype->Variance.Elliptical = NULL;
|
|
}
|
|
if(Prototype->Magnitude.Elliptical != NULL)
|
|
{
|
|
memfree(Prototype->Magnitude.Elliptical);
|
|
Prototype->Magnitude.Elliptical = NULL;
|
|
}
|
|
if(Prototype->Weight.Elliptical != NULL)
|
|
{
|
|
memfree(Prototype->Weight.Elliptical);
|
|
Prototype->Weight.Elliptical = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*--------------------------------------------------------------------------*/
|
|
void Normalize (
|
|
float *Values)
|
|
{
|
|
register float Slope;
|
|
register float Intercept;
|
|
register float Normalizer;
|
|
|
|
Slope = tan (Values [2] * 2 * PI);
|
|
Intercept = Values [1] - Slope * Values [0];
|
|
Normalizer = 1 / sqrt (Slope * Slope + 1.0);
|
|
|
|
Values [0] = Slope * Normalizer;
|
|
Values [1] = - Normalizer;
|
|
Values [2] = Intercept * Normalizer;
|
|
} // Normalize
|
|
|
|
/** SetUpForFloat2Int **************************************************/
|
|
void SetUpForFloat2Int(
|
|
LIST LabeledClassList)
|
|
{
|
|
MERGE_CLASS MergeClass;
|
|
CLASS_TYPE Class;
|
|
int NumProtos;
|
|
int NumConfigs;
|
|
int NumWords;
|
|
int i, j;
|
|
float Values[3];
|
|
PROTO NewProto;
|
|
PROTO OldProto;
|
|
BIT_VECTOR NewConfig;
|
|
BIT_VECTOR OldConfig;
|
|
|
|
// printf("Float2Int ...\n");
|
|
|
|
iterate(LabeledClassList)
|
|
{
|
|
MergeClass = (MERGE_CLASS) first_node (LabeledClassList);
|
|
Class = &TrainingData[unicharset_mftraining.unichar_to_id(
|
|
MergeClass->Label)];
|
|
NumProtos = NumProtosIn(MergeClass->Class);
|
|
NumConfigs = NumConfigsIn(MergeClass->Class);
|
|
|
|
NumProtosIn(Class) = NumProtos;
|
|
Class->MaxNumProtos = NumProtos;
|
|
Class->Prototypes = (PROTO) Emalloc (sizeof(PROTO_STRUCT) * NumProtos);
|
|
for(i=0; i < NumProtos; i++)
|
|
{
|
|
NewProto = ProtoIn(Class, i);
|
|
OldProto = ProtoIn(MergeClass->Class, i);
|
|
Values[0] = ProtoX(OldProto);
|
|
Values[1] = ProtoY(OldProto);
|
|
Values[2] = ProtoAngle(OldProto);
|
|
Normalize(Values);
|
|
ProtoX(NewProto) = ProtoX(OldProto);
|
|
ProtoY(NewProto) = ProtoY(OldProto);
|
|
ProtoLength(NewProto) = ProtoLength(OldProto);
|
|
ProtoAngle(NewProto) = ProtoAngle(OldProto);
|
|
CoefficientA(NewProto) = Values[0];
|
|
CoefficientB(NewProto) = Values[1];
|
|
CoefficientC(NewProto) = Values[2];
|
|
}
|
|
|
|
NumConfigsIn(Class) = NumConfigs;
|
|
Class->MaxNumConfigs = NumConfigs;
|
|
Class->Configurations = (BIT_VECTOR*) Emalloc (sizeof(BIT_VECTOR) * NumConfigs);
|
|
NumWords = WordsInVectorOfSize(NumProtos);
|
|
for(i=0; i < NumConfigs; i++)
|
|
{
|
|
NewConfig = NewBitVector(NumProtos);
|
|
OldConfig = ConfigIn(MergeClass->Class, i);
|
|
for(j=0; j < NumWords; j++)
|
|
NewConfig[j] = OldConfig[j];
|
|
ConfigIn(Class, i) = NewConfig;
|
|
}
|
|
}
|
|
} // SetUpForFloat2Int
|
|
|
|
/*--------------------------------------------------------------------------*/
|
|
void WritePFFMTable(INT_TEMPLATES Templates, const char* filename) {
|
|
FILE* fp = Efopen(filename, "wb");
|
|
/* then write out each class */
|
|
for (int i = 0; i < NumClassesIn (Templates); i++) {
|
|
int MaxLength = 0;
|
|
INT_CLASS Class = ClassForIndex (Templates, i);
|
|
for (int ConfigId = 0; ConfigId < NumIntConfigsIn (Class); ConfigId++) {
|
|
if (LengthForConfigId (Class, ConfigId) > MaxLength)
|
|
MaxLength = LengthForConfigId (Class, ConfigId);
|
|
}
|
|
fprintf(fp, "%s %d\n", unicharset_mftraining.id_to_unichar(
|
|
ClassIdForIndex(Templates, i)), MaxLength);
|
|
}
|
|
fclose(fp);
|
|
} // WritePFFMTable
|