mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2025-01-18 14:41:36 +08:00
524a61452d
Squashed commit from https://github.com/tesseract-ocr/tesseract/tree/more-doxygen closes #14 Commits:6317305
doxygen9f42f69
doxygen0fc4d52
doxygen37b4b55
fix typobded8f1
some more doxy020eb00
slight tweak524666d
doxygenify2a36a3e
doxygenify229d218
doxygenify7fd28ae
doxygenifya8c64bc
doxygenifyf5d21b6
fix5d8ede8
doxygenifya58a4e0
language_model.cppfa85709
lm_pain_points.cpp lm_state.cpp6418da3
merge06190ba
Merge branch 'old_doxygen_merge' into more-doxygen84acf08
Merge branch 'master' into more-doxygen50fe1ff
pagewalk.cpp cube_reco_context.cpp2982583
change to relative192a24a
applybox.cpp, take one8eeb053
delete docs for obsolete params52e4c77
modernise classify/ocrfeatures.cpp2a1cba6
modernise cutil/emalloc.cpp773e006
silence doxygen warningaeb1731
silence doxygen warningf18387f
silence doxygen; new params are unused?15ad6bd
doxygenify cutil/efio.cppc8b5dad
doxygenify cutil/danerror.cpp784450f
the globals and exceptions parts are obsolete; remove8bca324
doxygen classify/normfeat.cpp9bcbe16
doxygen classify/normmatch.cppaa9a971
doxygen ccmain/cube_control.cppc083ff2
doxygen ccmain/cube_reco_context.cppf842850
params changed5c94f12
doxygen ccmain/cubeclassifier.cpp15ba750
case sensitivef5c71d4
case sensitivef85655b
doxygen classify/intproto.cpp4bbc7aa
partial doxygen classify/mfx.cppdbb6041
partial doxygen classify/intproto.cpp2aa72db
finish doxygen classify/intproto.cpp0b8de99
doxygen training/mftraining.cpp0b5b35c
partial doxygen ccstruct/coutln.cppb81c766
partial doxygen ccstruct/coutln.cpp40fc415
finished? doxygen ccstruct/coutln.cpp6e4165c
doxygen classify/clusttool.cpp0267dec
doxygen classify/cutoffs.cpp7f0c70c
doxygen classify/fpoint.cpp512f3bd
ignore ~ files5668a52
doxygen classify/intmatcher.cpp84788d4
doxygen classify/kdtree.cpp29f36ca
doxygen classify/mfoutline.cpp40b94b1
silence doxygen warnings6c511b9
doxygen classify/mfx.cppf9b4080
doxygen classify/outfeat.cppaa1df05
doxygen classify/picofeat.cppcc5f466
doxygen training/cntraining.cppcce044f
doxygen training/commontraining.cpp167e216
missing param9498383
renamed params37eeac2
renamed paramd87b5dd
casec8ee174
renamed paramsb858db8
typo4c2a838
h2 context?81a2c0c
fix some param names; add some missing params, no docsbcf8a4c
add some missing params, no docsaf77f86
add some missing params, no docs; fix some param names01df24e
fix some params6161056
fix some params68508b6
fix some params285aeb6
doxygen complains here no matter what529bcfa
rm some missing params, typoscd21226
rm some missing params, add some new ones48a4bc2
fix paramsc844628
missing param312ce37
missing param; rename oneec2fdec
missing param05e15e0
missing paramsd515858
change "<" to < to make doxygen happyb476a28
wrong place
1281 lines
46 KiB
C++
1281 lines
46 KiB
C++
/******************************************************************************
|
|
** Filename: intmatcher.c
|
|
** Purpose: Generic high level classification routines.
|
|
** Author: Robert Moss
|
|
** History: Wed Feb 13 17:35:28 MST 1991, RWM, Created.
|
|
** Mon Mar 11 16:33:02 MST 1991, RWM, Modified to add
|
|
** support for adaptive matching.
|
|
** (c) Copyright Hewlett-Packard Company, 1988.
|
|
** Licensed under the Apache License, Version 2.0 (the "License");
|
|
** you may not use this file except in compliance with the License.
|
|
** You may obtain a copy of the License at
|
|
** http://www.apache.org/licenses/LICENSE-2.0
|
|
** Unless required by applicable law or agreed to in writing, software
|
|
** distributed under the License is distributed on an "AS IS" BASIS,
|
|
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
** See the License for the specific language governing permissions and
|
|
** limitations under the License.
|
|
******************************************************************************/
|
|
|
|
// Include automatically generated configuration file if running autoconf.
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config_auto.h"
|
|
#endif
|
|
|
|
/*----------------------------------------------------------------------------
|
|
Include Files and Type Defines
|
|
----------------------------------------------------------------------------*/
|
|
#include "intmatcher.h"
|
|
|
|
#include "fontinfo.h"
|
|
#include "intproto.h"
|
|
#include "callcpp.h"
|
|
#include "scrollview.h"
|
|
#include "float2int.h"
|
|
#include "globals.h"
|
|
#include "helpers.h"
|
|
#include "classify.h"
|
|
#include "shapetable.h"
|
|
#include <math.h>
|
|
|
|
using tesseract::ScoredFont;
|
|
using tesseract::UnicharRating;
|
|
|
|
/*----------------------------------------------------------------------------
|
|
Global Data Definitions and Declarations
|
|
----------------------------------------------------------------------------*/
|
|
// Parameters of the sigmoid used to convert similarity to evidence in the
|
|
// similarity_evidence_table_ that is used to convert distance metric to an
|
|
// 8 bit evidence value in the secondary matcher. (See IntMatcher::Init).
|
|
const float IntegerMatcher::kSEExponentialMultiplier = 0.0;
|
|
const float IntegerMatcher::kSimilarityCenter = 0.0075;
|
|
|
|
#define offset_table_entries \
|
|
255, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, \
|
|
0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, \
|
|
0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 6, 0, 1, 0, 2, 0, 1, 0, 3, \
|
|
0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, \
|
|
0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, \
|
|
0, 1, 0, 2, 0, 1, 0, 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, \
|
|
0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, \
|
|
0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 6, \
|
|
0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, \
|
|
0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, \
|
|
0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
|
|
|
|
#define INTMATCHER_OFFSET_TABLE_SIZE 256
|
|
|
|
#define next_table_entries \
|
|
0, 0, 0, 0x2, 0, 0x4, 0x4, 0x6, 0, 0x8, 0x8, 0x0a, 0x08, 0x0c, 0x0c, 0x0e, \
|
|
0, 0x10, 0x10, 0x12, 0x10, 0x14, 0x14, 0x16, 0x10, 0x18, 0x18, 0x1a, \
|
|
0x18, 0x1c, 0x1c, 0x1e, 0, 0x20, 0x20, 0x22, 0x20, 0x24, 0x24, 0x26, \
|
|
0x20, 0x28, 0x28, 0x2a, 0x28, 0x2c, 0x2c, 0x2e, 0x20, 0x30, 0x30, 0x32, \
|
|
0x30, 0x34, 0x34, 0x36, 0x30, 0x38, 0x38, 0x3a, 0x38, 0x3c, 0x3c, 0x3e, \
|
|
0, 0x40, 0x40, 0x42, 0x40, 0x44, 0x44, 0x46, 0x40, 0x48, 0x48, 0x4a, \
|
|
0x48, 0x4c, 0x4c, 0x4e, 0x40, 0x50, 0x50, 0x52, 0x50, 0x54, 0x54, 0x56, \
|
|
0x50, 0x58, 0x58, 0x5a, 0x58, 0x5c, 0x5c, 0x5e, 0x40, 0x60, 0x60, 0x62, \
|
|
0x60, 0x64, 0x64, 0x66, 0x60, 0x68, 0x68, 0x6a, 0x68, 0x6c, 0x6c, 0x6e, \
|
|
0x60, 0x70, 0x70, 0x72, 0x70, 0x74, 0x74, 0x76, 0x70, 0x78, 0x78, 0x7a, \
|
|
0x78, 0x7c, 0x7c, 0x7e, 0, 0x80, 0x80, 0x82, 0x80, 0x84, 0x84, 0x86, \
|
|
0x80, 0x88, 0x88, 0x8a, 0x88, 0x8c, 0x8c, 0x8e, 0x80, 0x90, 0x90, 0x92, \
|
|
0x90, 0x94, 0x94, 0x96, 0x90, 0x98, 0x98, 0x9a, 0x98, 0x9c, 0x9c, 0x9e, \
|
|
0x80, 0xa0, 0xa0, 0xa2, 0xa0, 0xa4, 0xa4, 0xa6, 0xa0, 0xa8, 0xa8, 0xaa, \
|
|
0xa8, 0xac, 0xac, 0xae, 0xa0, 0xb0, 0xb0, 0xb2, 0xb0, 0xb4, 0xb4, 0xb6, \
|
|
0xb0, 0xb8, 0xb8, 0xba, 0xb8, 0xbc, 0xbc, 0xbe, 0x80, 0xc0, 0xc0, 0xc2, \
|
|
0xc0, 0xc4, 0xc4, 0xc6, 0xc0, 0xc8, 0xc8, 0xca, 0xc8, 0xcc, 0xcc, 0xce, \
|
|
0xc0, 0xd0, 0xd0, 0xd2, 0xd0, 0xd4, 0xd4, 0xd6, 0xd0, 0xd8, 0xd8, 0xda, \
|
|
0xd8, 0xdc, 0xdc, 0xde, 0xc0, 0xe0, 0xe0, 0xe2, 0xe0, 0xe4, 0xe4, 0xe6, \
|
|
0xe0, 0xe8, 0xe8, 0xea, 0xe8, 0xec, 0xec, 0xee, 0xe0, 0xf0, 0xf0, 0xf2, \
|
|
0xf0, 0xf4, 0xf4, 0xf6, 0xf0, 0xf8, 0xf8, 0xfa, 0xf8, 0xfc, 0xfc, 0xfe
|
|
|
|
// See http://b/19318793 (#6) for a complete discussion. Merging arrays
|
|
// offset_table and next_table helps improve performance of PIE code.
|
|
static const uinT8 data_table[512] = {offset_table_entries, next_table_entries};
|
|
|
|
static const uinT8* const offset_table = &data_table[0];
|
|
static const uinT8* const next_table =
|
|
&data_table[INTMATCHER_OFFSET_TABLE_SIZE];
|
|
|
|
namespace tesseract {
|
|
|
|
// Encapsulation of the intermediate data and computations made by the class
|
|
// pruner. The class pruner implements a simple linear classifier on binary
|
|
// features by heavily quantizing the feature space, and applying
|
|
// NUM_BITS_PER_CLASS (2)-bit weights to the features. Lack of resolution in
|
|
// weights is compensated by a non-constant bias that is dependent on the
|
|
// number of features present.
|
|
class ClassPruner {
|
|
public:
|
|
ClassPruner(int max_classes) {
|
|
// The unrolled loop in ComputeScores means that the array sizes need to
|
|
// be rounded up so that the array is big enough to accommodate the extra
|
|
// entries accessed by the unrolling. Each pruner word is of sized
|
|
// BITS_PER_WERD and each entry is NUM_BITS_PER_CLASS, so there are
|
|
// BITS_PER_WERD / NUM_BITS_PER_CLASS entries.
|
|
// See ComputeScores.
|
|
max_classes_ = max_classes;
|
|
rounded_classes_ = RoundUp(
|
|
max_classes, WERDS_PER_CP_VECTOR * BITS_PER_WERD / NUM_BITS_PER_CLASS);
|
|
class_count_ = new int[rounded_classes_];
|
|
norm_count_ = new int[rounded_classes_];
|
|
sort_key_ = new int[rounded_classes_ + 1];
|
|
sort_index_ = new int[rounded_classes_ + 1];
|
|
for (int i = 0; i < rounded_classes_; i++) {
|
|
class_count_[i] = 0;
|
|
}
|
|
pruning_threshold_ = 0;
|
|
num_features_ = 0;
|
|
num_classes_ = 0;
|
|
}
|
|
|
|
~ClassPruner() {
|
|
delete []class_count_;
|
|
delete []norm_count_;
|
|
delete []sort_key_;
|
|
delete []sort_index_;
|
|
}
|
|
|
|
/// Computes the scores for every class in the character set, by summing the
|
|
/// weights for each feature and stores the sums internally in class_count_.
|
|
void ComputeScores(const INT_TEMPLATES_STRUCT* int_templates,
|
|
int num_features, const INT_FEATURE_STRUCT* features) {
|
|
num_features_ = num_features;
|
|
int num_pruners = int_templates->NumClassPruners;
|
|
for (int f = 0; f < num_features; ++f) {
|
|
const INT_FEATURE_STRUCT* feature = &features[f];
|
|
// Quantize the feature to NUM_CP_BUCKETS*NUM_CP_BUCKETS*NUM_CP_BUCKETS.
|
|
int x = feature->X * NUM_CP_BUCKETS >> 8;
|
|
int y = feature->Y * NUM_CP_BUCKETS >> 8;
|
|
int theta = feature->Theta * NUM_CP_BUCKETS >> 8;
|
|
int class_id = 0;
|
|
// Each CLASS_PRUNER_STRUCT only covers CLASSES_PER_CP(32) classes, so
|
|
// we need a collection of them, indexed by pruner_set.
|
|
for (int pruner_set = 0; pruner_set < num_pruners; ++pruner_set) {
|
|
// Look up quantized feature in a 3-D array, an array of weights for
|
|
// each class.
|
|
const uinT32* pruner_word_ptr =
|
|
int_templates->ClassPruners[pruner_set]->p[x][y][theta];
|
|
for (int word = 0; word < WERDS_PER_CP_VECTOR; ++word) {
|
|
uinT32 pruner_word = *pruner_word_ptr++;
|
|
// This inner loop is unrolled to speed up the ClassPruner.
|
|
// Currently gcc would not unroll it unless it is set to O3
|
|
// level of optimization or -funroll-loops is specified.
|
|
/*
|
|
uinT32 class_mask = (1 << NUM_BITS_PER_CLASS) - 1;
|
|
for (int bit = 0; bit < BITS_PER_WERD/NUM_BITS_PER_CLASS; bit++) {
|
|
class_count_[class_id++] += pruner_word & class_mask;
|
|
pruner_word >>= NUM_BITS_PER_CLASS;
|
|
}
|
|
*/
|
|
class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
|
|
pruner_word >>= NUM_BITS_PER_CLASS;
|
|
class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
|
|
pruner_word >>= NUM_BITS_PER_CLASS;
|
|
class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
|
|
pruner_word >>= NUM_BITS_PER_CLASS;
|
|
class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
|
|
pruner_word >>= NUM_BITS_PER_CLASS;
|
|
class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
|
|
pruner_word >>= NUM_BITS_PER_CLASS;
|
|
class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
|
|
pruner_word >>= NUM_BITS_PER_CLASS;
|
|
class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
|
|
pruner_word >>= NUM_BITS_PER_CLASS;
|
|
class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
|
|
pruner_word >>= NUM_BITS_PER_CLASS;
|
|
class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
|
|
pruner_word >>= NUM_BITS_PER_CLASS;
|
|
class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
|
|
pruner_word >>= NUM_BITS_PER_CLASS;
|
|
class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
|
|
pruner_word >>= NUM_BITS_PER_CLASS;
|
|
class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
|
|
pruner_word >>= NUM_BITS_PER_CLASS;
|
|
class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
|
|
pruner_word >>= NUM_BITS_PER_CLASS;
|
|
class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
|
|
pruner_word >>= NUM_BITS_PER_CLASS;
|
|
class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
|
|
pruner_word >>= NUM_BITS_PER_CLASS;
|
|
class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Adjusts the scores according to the number of expected features. Used
|
|
/// in lieu of a constant bias, this penalizes classes that expect more
|
|
/// features than there are present. Thus an actual c will score higher for c
|
|
/// than e, even though almost all the features match e as well as c, because
|
|
/// e expects more features to be present.
|
|
void AdjustForExpectedNumFeatures(const uinT16* expected_num_features,
|
|
int cutoff_strength) {
|
|
for (int class_id = 0; class_id < max_classes_; ++class_id) {
|
|
if (num_features_ < expected_num_features[class_id]) {
|
|
int deficit = expected_num_features[class_id] - num_features_;
|
|
class_count_[class_id] -= class_count_[class_id] * deficit /
|
|
(num_features_ * cutoff_strength + deficit);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Zeros the scores for classes disabled in the unicharset.
|
|
/// Implements the black-list to recognize a subset of the character set.
|
|
void DisableDisabledClasses(const UNICHARSET& unicharset) {
|
|
for (int class_id = 0; class_id < max_classes_; ++class_id) {
|
|
if (!unicharset.get_enabled(class_id))
|
|
class_count_[class_id] = 0; // This char is disabled!
|
|
}
|
|
}
|
|
|
|
/** Zeros the scores of fragments. */
|
|
void DisableFragments(const UNICHARSET& unicharset) {
|
|
for (int class_id = 0; class_id < max_classes_; ++class_id) {
|
|
// Do not include character fragments in the class pruner
|
|
// results if disable_character_fragments is true.
|
|
if (unicharset.get_fragment(class_id)) {
|
|
class_count_[class_id] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Normalizes the counts for xheight, putting the normalized result in
|
|
/// norm_count_. Applies a simple subtractive penalty for incorrect vertical
|
|
/// position provided by the normalization_factors array, indexed by
|
|
/// character class, and scaled by the norm_multiplier.
|
|
void NormalizeForXheight(int norm_multiplier,
|
|
const uinT8* normalization_factors) {
|
|
for (int class_id = 0; class_id < max_classes_; class_id++) {
|
|
norm_count_[class_id] = class_count_[class_id] -
|
|
((norm_multiplier * normalization_factors[class_id]) >> 8);
|
|
}
|
|
}
|
|
|
|
/** The nop normalization copies the class_count_ array to norm_count_. */
|
|
void NoNormalization() {
|
|
for (int class_id = 0; class_id < max_classes_; class_id++) {
|
|
norm_count_[class_id] = class_count_[class_id];
|
|
}
|
|
}
|
|
|
|
/// Prunes the classes using <the maximum count> * pruning_factor/256 as a
|
|
/// threshold for keeping classes. If max_of_non_fragments, then ignore
|
|
/// fragments in computing the maximum count.
|
|
void PruneAndSort(int pruning_factor, int keep_this,
|
|
bool max_of_non_fragments, const UNICHARSET& unicharset) {
|
|
int max_count = 0;
|
|
for (int c = 0; c < max_classes_; ++c) {
|
|
if (norm_count_[c] > max_count &&
|
|
// This additional check is added in order to ensure that
|
|
// the classifier will return at least one non-fragmented
|
|
// character match.
|
|
// TODO(daria): verify that this helps accuracy and does not
|
|
// hurt performance.
|
|
(!max_of_non_fragments || !unicharset.get_fragment(c))) {
|
|
max_count = norm_count_[c];
|
|
}
|
|
}
|
|
// Prune Classes.
|
|
pruning_threshold_ = (max_count * pruning_factor) >> 8;
|
|
// Select Classes.
|
|
if (pruning_threshold_ < 1)
|
|
pruning_threshold_ = 1;
|
|
num_classes_ = 0;
|
|
for (int class_id = 0; class_id < max_classes_; class_id++) {
|
|
if (norm_count_[class_id] >= pruning_threshold_ ||
|
|
class_id == keep_this) {
|
|
++num_classes_;
|
|
sort_index_[num_classes_] = class_id;
|
|
sort_key_[num_classes_] = norm_count_[class_id];
|
|
}
|
|
}
|
|
|
|
// Sort Classes using Heapsort Algorithm.
|
|
if (num_classes_ > 1)
|
|
HeapSort(num_classes_, sort_key_, sort_index_);
|
|
}
|
|
|
|
/** Prints debug info on the class pruner matches for the pruned classes only. */
|
|
void DebugMatch(const Classify& classify,
|
|
const INT_TEMPLATES_STRUCT* int_templates,
|
|
const INT_FEATURE_STRUCT* features) const {
|
|
int num_pruners = int_templates->NumClassPruners;
|
|
int max_num_classes = int_templates->NumClasses;
|
|
for (int f = 0; f < num_features_; ++f) {
|
|
const INT_FEATURE_STRUCT* feature = &features[f];
|
|
tprintf("F=%3d(%d,%d,%d),", f, feature->X, feature->Y, feature->Theta);
|
|
// Quantize the feature to NUM_CP_BUCKETS*NUM_CP_BUCKETS*NUM_CP_BUCKETS.
|
|
int x = feature->X * NUM_CP_BUCKETS >> 8;
|
|
int y = feature->Y * NUM_CP_BUCKETS >> 8;
|
|
int theta = feature->Theta * NUM_CP_BUCKETS >> 8;
|
|
int class_id = 0;
|
|
for (int pruner_set = 0; pruner_set < num_pruners; ++pruner_set) {
|
|
// Look up quantized feature in a 3-D array, an array of weights for
|
|
// each class.
|
|
const uinT32* pruner_word_ptr =
|
|
int_templates->ClassPruners[pruner_set]->p[x][y][theta];
|
|
for (int word = 0; word < WERDS_PER_CP_VECTOR; ++word) {
|
|
uinT32 pruner_word = *pruner_word_ptr++;
|
|
for (int word_class = 0; word_class < 16 &&
|
|
class_id < max_num_classes; ++word_class, ++class_id) {
|
|
if (norm_count_[class_id] >= pruning_threshold_) {
|
|
tprintf(" %s=%d,",
|
|
classify.ClassIDToDebugStr(int_templates,
|
|
class_id, 0).string(),
|
|
pruner_word & CLASS_PRUNER_CLASS_MASK);
|
|
}
|
|
pruner_word >>= NUM_BITS_PER_CLASS;
|
|
}
|
|
}
|
|
tprintf("\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
/** Prints a summary of the pruner result. */
|
|
void SummarizeResult(const Classify& classify,
|
|
const INT_TEMPLATES_STRUCT* int_templates,
|
|
const uinT16* expected_num_features,
|
|
int norm_multiplier,
|
|
const uinT8* normalization_factors) const {
|
|
tprintf("CP:%d classes, %d features:\n", num_classes_, num_features_);
|
|
for (int i = 0; i < num_classes_; ++i) {
|
|
int class_id = sort_index_[num_classes_ - i];
|
|
STRING class_string = classify.ClassIDToDebugStr(int_templates,
|
|
class_id, 0);
|
|
tprintf("%s:Initial=%d, E=%d, Xht-adj=%d, N=%d, Rat=%.2f\n",
|
|
class_string.string(),
|
|
class_count_[class_id],
|
|
expected_num_features[class_id],
|
|
(norm_multiplier * normalization_factors[class_id]) >> 8,
|
|
sort_key_[num_classes_ - i],
|
|
100.0 - 100.0 * sort_key_[num_classes_ - i] /
|
|
(CLASS_PRUNER_CLASS_MASK * num_features_));
|
|
}
|
|
}
|
|
|
|
/// Copies the pruned, sorted classes into the output results and returns
|
|
/// the number of classes.
|
|
int SetupResults(GenericVector<CP_RESULT_STRUCT>* results) const {
|
|
CP_RESULT_STRUCT empty;
|
|
results->init_to_size(num_classes_, empty);
|
|
for (int c = 0; c < num_classes_; ++c) {
|
|
(*results)[c].Class = sort_index_[num_classes_ - c];
|
|
(*results)[c].Rating = 1.0 - sort_key_[num_classes_ - c] /
|
|
(static_cast<float>(CLASS_PRUNER_CLASS_MASK) * num_features_);
|
|
}
|
|
return num_classes_;
|
|
}
|
|
|
|
private:
|
|
/** Array[rounded_classes_] of initial counts for each class. */
|
|
int *class_count_;
|
|
/// Array[rounded_classes_] of modified counts for each class after normalizing
|
|
/// for expected number of features, disabled classes, fragments, and xheights.
|
|
int *norm_count_;
|
|
/** Array[rounded_classes_ +1] of pruned counts that gets sorted */
|
|
int *sort_key_;
|
|
/** Array[rounded_classes_ +1] of classes corresponding to sort_key_. */
|
|
int *sort_index_;
|
|
/** Number of classes in this class pruner. */
|
|
int max_classes_;
|
|
/** Rounded up number of classes used for array sizes. */
|
|
int rounded_classes_;
|
|
/** Threshold count applied to prune classes. */
|
|
int pruning_threshold_;
|
|
/** The number of features used to compute the scores. */
|
|
int num_features_;
|
|
/** Final number of pruned classes. */
|
|
int num_classes_;
|
|
};
|
|
|
|
/*----------------------------------------------------------------------------
|
|
Public Code
|
|
----------------------------------------------------------------------------*/
|
|
/**
|
|
* Runs the class pruner from int_templates on the given features, returning
|
|
* the number of classes output in results.
|
|
* @param int_templates Class pruner tables
|
|
* @param num_features Number of features in blob
|
|
* @param features Array of features
|
|
* @param normalization_factors Array of fudge factors from blob
|
|
* normalization process (by CLASS_INDEX)
|
|
* @param expected_num_features Array of expected number of features
|
|
* for each class (by CLASS_INDEX)
|
|
* @param results Sorted Array of pruned classes. Must be an array
|
|
* of size at least int_templates->NumClasses.
|
|
* @param keep_this
|
|
*/
|
|
int Classify::PruneClasses(const INT_TEMPLATES_STRUCT* int_templates,
|
|
int num_features, int keep_this,
|
|
const INT_FEATURE_STRUCT* features,
|
|
const uinT8* normalization_factors,
|
|
const uinT16* expected_num_features,
|
|
GenericVector<CP_RESULT_STRUCT>* results) {
|
|
ClassPruner pruner(int_templates->NumClasses);
|
|
// Compute initial match scores for all classes.
|
|
pruner.ComputeScores(int_templates, num_features, features);
|
|
// Adjust match scores for number of expected features.
|
|
pruner.AdjustForExpectedNumFeatures(expected_num_features,
|
|
classify_cp_cutoff_strength);
|
|
// Apply disabled classes in unicharset - only works without a shape_table.
|
|
if (shape_table_ == NULL)
|
|
pruner.DisableDisabledClasses(unicharset);
|
|
// If fragments are disabled, remove them, also only without a shape table.
|
|
if (disable_character_fragments && shape_table_ == NULL)
|
|
pruner.DisableFragments(unicharset);
|
|
|
|
// If we have good x-heights, apply the given normalization factors.
|
|
if (normalization_factors != NULL) {
|
|
pruner.NormalizeForXheight(classify_class_pruner_multiplier,
|
|
normalization_factors);
|
|
} else {
|
|
pruner.NoNormalization();
|
|
}
|
|
// Do the actual pruning and sort the short-list.
|
|
pruner.PruneAndSort(classify_class_pruner_threshold, keep_this,
|
|
shape_table_ == NULL, unicharset);
|
|
|
|
if (classify_debug_level > 2) {
|
|
pruner.DebugMatch(*this, int_templates, features);
|
|
}
|
|
if (classify_debug_level > 1) {
|
|
pruner.SummarizeResult(*this, int_templates, expected_num_features,
|
|
classify_class_pruner_multiplier,
|
|
normalization_factors);
|
|
}
|
|
// Convert to the expected output format.
|
|
return pruner.SetupResults(results);
|
|
}
|
|
|
|
} // namespace tesseract
|
|
|
|
/**
|
|
* IntegerMatcher returns the best configuration and rating
|
|
* for a single class. The class matched against is determined
|
|
* by the uniqueness of the ClassTemplate parameter. The
|
|
* best rating and its associated configuration are returned.
|
|
*
|
|
* Globals:
|
|
* - local_matcher_multiplier_ Normalization factor multiplier
|
|
* param ClassTemplate Prototypes & tables for a class
|
|
* param BlobLength Length of unormalized blob
|
|
* param NumFeatures Number of features in blob
|
|
* param Features Array of features
|
|
* param NormalizationFactor Fudge factor from blob normalization process
|
|
* param Result Class rating & configuration: (0.0 -> 1.0), 0=bad, 1=good
|
|
* param Debug Debugger flag: 1=debugger on
|
|
* @return none
|
|
* @note Exceptions: none
|
|
* @note History: Tue Feb 19 16:36:23 MST 1991, RWM, Created.
|
|
*/
|
|
void IntegerMatcher::Match(INT_CLASS ClassTemplate,
|
|
BIT_VECTOR ProtoMask,
|
|
BIT_VECTOR ConfigMask,
|
|
inT16 NumFeatures,
|
|
const INT_FEATURE_STRUCT* Features,
|
|
UnicharRating* Result,
|
|
int AdaptFeatureThreshold,
|
|
int Debug,
|
|
bool SeparateDebugWindows) {
|
|
ScratchEvidence *tables = new ScratchEvidence();
|
|
int Feature;
|
|
int BestMatch;
|
|
|
|
if (MatchDebuggingOn (Debug))
|
|
cprintf ("Integer Matcher -------------------------------------------\n");
|
|
|
|
tables->Clear(ClassTemplate);
|
|
Result->feature_misses = 0;
|
|
|
|
for (Feature = 0; Feature < NumFeatures; Feature++) {
|
|
int csum = UpdateTablesForFeature(ClassTemplate, ProtoMask, ConfigMask,
|
|
Feature, &Features[Feature],
|
|
tables, Debug);
|
|
// Count features that were missed over all configs.
|
|
if (csum == 0)
|
|
++Result->feature_misses;
|
|
}
|
|
|
|
#ifndef GRAPHICS_DISABLED
|
|
if (PrintProtoMatchesOn(Debug) || PrintMatchSummaryOn(Debug)) {
|
|
DebugFeatureProtoError(ClassTemplate, ProtoMask, ConfigMask, *tables,
|
|
NumFeatures, Debug);
|
|
}
|
|
|
|
if (DisplayProtoMatchesOn(Debug)) {
|
|
DisplayProtoDebugInfo(ClassTemplate, ProtoMask, ConfigMask,
|
|
*tables, SeparateDebugWindows);
|
|
}
|
|
|
|
if (DisplayFeatureMatchesOn(Debug)) {
|
|
DisplayFeatureDebugInfo(ClassTemplate, ProtoMask, ConfigMask, NumFeatures,
|
|
Features, AdaptFeatureThreshold, Debug,
|
|
SeparateDebugWindows);
|
|
}
|
|
#endif
|
|
|
|
tables->UpdateSumOfProtoEvidences(ClassTemplate, ConfigMask, NumFeatures);
|
|
tables->NormalizeSums(ClassTemplate, NumFeatures, NumFeatures);
|
|
|
|
BestMatch = FindBestMatch(ClassTemplate, *tables, Result);
|
|
|
|
#ifndef GRAPHICS_DISABLED
|
|
if (PrintMatchSummaryOn(Debug))
|
|
Result->Print();
|
|
|
|
if (MatchDebuggingOn(Debug))
|
|
cprintf("Match Complete --------------------------------------------\n");
|
|
#endif
|
|
|
|
delete tables;
|
|
}
|
|
|
|
/**
|
|
* FindGoodProtos finds all protos whose normalized proto-evidence
|
|
* exceed classify_adapt_proto_thresh. The list is ordered by increasing
|
|
* proto id number.
|
|
*
|
|
* Globals:
|
|
* - local_matcher_multiplier_ Normalization factor multiplier
|
|
* param ClassTemplate Prototypes & tables for a class
|
|
* param ProtoMask AND Mask for proto word
|
|
* param ConfigMask AND Mask for config word
|
|
* param BlobLength Length of unormalized blob
|
|
* param NumFeatures Number of features in blob
|
|
* param Features Array of features
|
|
* param ProtoArray Array of good protos
|
|
* param AdaptProtoThreshold Threshold for good protos
|
|
* param Debug Debugger flag: 1=debugger on
|
|
* @return Number of good protos in ProtoArray.
|
|
* @note Exceptions: none
|
|
* @note History: Tue Mar 12 17:09:26 MST 1991, RWM, Created
|
|
*/
|
|
int IntegerMatcher::FindGoodProtos(
|
|
INT_CLASS ClassTemplate,
|
|
BIT_VECTOR ProtoMask,
|
|
BIT_VECTOR ConfigMask,
|
|
uinT16 BlobLength,
|
|
inT16 NumFeatures,
|
|
INT_FEATURE_ARRAY Features,
|
|
PROTO_ID *ProtoArray,
|
|
int AdaptProtoThreshold,
|
|
int Debug) {
|
|
ScratchEvidence *tables = new ScratchEvidence();
|
|
int NumGoodProtos = 0;
|
|
|
|
/* DEBUG opening heading */
|
|
if (MatchDebuggingOn (Debug))
|
|
cprintf
|
|
("Find Good Protos -------------------------------------------\n");
|
|
|
|
tables->Clear(ClassTemplate);
|
|
|
|
for (int Feature = 0; Feature < NumFeatures; Feature++)
|
|
UpdateTablesForFeature(
|
|
ClassTemplate, ProtoMask, ConfigMask, Feature, &(Features[Feature]),
|
|
tables, Debug);
|
|
|
|
#ifndef GRAPHICS_DISABLED
|
|
if (PrintProtoMatchesOn (Debug) || PrintMatchSummaryOn (Debug))
|
|
DebugFeatureProtoError(ClassTemplate, ProtoMask, ConfigMask, *tables,
|
|
NumFeatures, Debug);
|
|
#endif
|
|
|
|
/* Average Proto Evidences & Find Good Protos */
|
|
for (int proto = 0; proto < ClassTemplate->NumProtos; proto++) {
|
|
/* Compute Average for Actual Proto */
|
|
int Temp = 0;
|
|
for (int i = 0; i < ClassTemplate->ProtoLengths[proto]; i++)
|
|
Temp += tables->proto_evidence_[proto][i];
|
|
|
|
Temp /= ClassTemplate->ProtoLengths[proto];
|
|
|
|
/* Find Good Protos */
|
|
if (Temp >= AdaptProtoThreshold) {
|
|
*ProtoArray = proto;
|
|
ProtoArray++;
|
|
NumGoodProtos++;
|
|
}
|
|
}
|
|
|
|
if (MatchDebuggingOn (Debug))
|
|
cprintf ("Match Complete --------------------------------------------\n");
|
|
delete tables;
|
|
|
|
return NumGoodProtos;
|
|
}
|
|
|
|
|
|
/**
|
|
* FindBadFeatures finds all features with maximum feature-evidence <
|
|
* AdaptFeatureThresh. The list is ordered by increasing feature number.
|
|
* @param ClassTemplate Prototypes & tables for a class
|
|
* @param ProtoMask AND Mask for proto word
|
|
* @param ConfigMask AND Mask for config word
|
|
* @param BlobLength Length of unormalized blob
|
|
* @param NumFeatures Number of features in blob
|
|
* @param Features Array of features
|
|
* @param FeatureArray Array of bad features
|
|
* @param AdaptFeatureThreshold Threshold for bad features
|
|
* @param Debug Debugger flag: 1=debugger on
|
|
* @return Number of bad features in FeatureArray.
|
|
* @note History: Tue Mar 12 17:09:26 MST 1991, RWM, Created
|
|
*/
|
|
int IntegerMatcher::FindBadFeatures(
|
|
INT_CLASS ClassTemplate,
|
|
BIT_VECTOR ProtoMask,
|
|
BIT_VECTOR ConfigMask,
|
|
uinT16 BlobLength,
|
|
inT16 NumFeatures,
|
|
INT_FEATURE_ARRAY Features,
|
|
FEATURE_ID *FeatureArray,
|
|
int AdaptFeatureThreshold,
|
|
int Debug) {
|
|
ScratchEvidence *tables = new ScratchEvidence();
|
|
int NumBadFeatures = 0;
|
|
|
|
/* DEBUG opening heading */
|
|
if (MatchDebuggingOn(Debug))
|
|
cprintf("Find Bad Features -------------------------------------------\n");
|
|
|
|
tables->Clear(ClassTemplate);
|
|
|
|
for (int Feature = 0; Feature < NumFeatures; Feature++) {
|
|
UpdateTablesForFeature(
|
|
ClassTemplate, ProtoMask, ConfigMask, Feature, &Features[Feature],
|
|
tables, Debug);
|
|
|
|
/* Find Best Evidence for Current Feature */
|
|
int best = 0;
|
|
for (int i = 0; i < ClassTemplate->NumConfigs; i++)
|
|
if (tables->feature_evidence_[i] > best)
|
|
best = tables->feature_evidence_[i];
|
|
|
|
/* Find Bad Features */
|
|
if (best < AdaptFeatureThreshold) {
|
|
*FeatureArray = Feature;
|
|
FeatureArray++;
|
|
NumBadFeatures++;
|
|
}
|
|
}
|
|
|
|
#ifndef GRAPHICS_DISABLED
|
|
if (PrintProtoMatchesOn(Debug) || PrintMatchSummaryOn(Debug))
|
|
DebugFeatureProtoError(ClassTemplate, ProtoMask, ConfigMask, *tables,
|
|
NumFeatures, Debug);
|
|
#endif
|
|
|
|
if (MatchDebuggingOn(Debug))
|
|
cprintf("Match Complete --------------------------------------------\n");
|
|
|
|
delete tables;
|
|
return NumBadFeatures;
|
|
}
|
|
|
|
|
|
void IntegerMatcher::Init(tesseract::IntParam *classify_debug_level) {
|
|
classify_debug_level_ = classify_debug_level;
|
|
|
|
/* Initialize table for evidence to similarity lookup */
|
|
for (int i = 0; i < SE_TABLE_SIZE; i++) {
|
|
uinT32 IntSimilarity = i << (27 - SE_TABLE_BITS);
|
|
double Similarity = ((double) IntSimilarity) / 65536.0 / 65536.0;
|
|
double evidence = Similarity / kSimilarityCenter;
|
|
evidence = 255.0 / (evidence * evidence + 1.0);
|
|
|
|
if (kSEExponentialMultiplier > 0.0) {
|
|
double scale = 1.0 - exp(-kSEExponentialMultiplier) *
|
|
exp(kSEExponentialMultiplier * ((double) i / SE_TABLE_SIZE));
|
|
evidence *= ClipToRange(scale, 0.0, 1.0);
|
|
}
|
|
|
|
similarity_evidence_table_[i] = (uinT8) (evidence + 0.5);
|
|
}
|
|
|
|
/* Initialize evidence computation variables */
|
|
evidence_table_mask_ =
|
|
((1 << kEvidenceTableBits) - 1) << (9 - kEvidenceTableBits);
|
|
mult_trunc_shift_bits_ = (14 - kIntEvidenceTruncBits);
|
|
table_trunc_shift_bits_ = (27 - SE_TABLE_BITS - (mult_trunc_shift_bits_ << 1));
|
|
evidence_mult_mask_ = ((1 << kIntEvidenceTruncBits) - 1);
|
|
}
|
|
|
|
|
|
/*----------------------------------------------------------------------------
|
|
Private Code
|
|
----------------------------------------------------------------------------*/
|
|
void ScratchEvidence::Clear(const INT_CLASS class_template) {
|
|
memset(sum_feature_evidence_, 0,
|
|
class_template->NumConfigs * sizeof(sum_feature_evidence_[0]));
|
|
memset(proto_evidence_, 0,
|
|
class_template->NumProtos * sizeof(proto_evidence_[0]));
|
|
}
|
|
|
|
void ScratchEvidence::ClearFeatureEvidence(const INT_CLASS class_template) {
|
|
memset(feature_evidence_, 0,
|
|
class_template->NumConfigs * sizeof(feature_evidence_[0]));
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* Print debugging information for Configuations
|
|
* @return none
|
|
* @note Exceptions: none
|
|
* @note History: Wed Feb 27 14:12:28 MST 1991, RWM, Created.
|
|
*/
|
|
void IMDebugConfiguration(int FeatureNum,
|
|
uinT16 ActualProtoNum,
|
|
uinT8 Evidence,
|
|
BIT_VECTOR ConfigMask,
|
|
uinT32 ConfigWord) {
|
|
cprintf ("F = %3d, P = %3d, E = %3d, Configs = ",
|
|
FeatureNum, (int) ActualProtoNum, (int) Evidence);
|
|
while (ConfigWord) {
|
|
if (ConfigWord & 1)
|
|
cprintf ("1");
|
|
else
|
|
cprintf ("0");
|
|
ConfigWord >>= 1;
|
|
}
|
|
cprintf ("\n");
|
|
}
|
|
|
|
|
|
/**
|
|
* Print debugging information for Configuations
|
|
* @return none
|
|
* @note Exceptions: none
|
|
* @note History: Wed Feb 27 14:12:28 MST 1991, RWM, Created.
|
|
*/
|
|
void IMDebugConfigurationSum(int FeatureNum,
|
|
uinT8 *FeatureEvidence,
|
|
inT32 ConfigCount) {
|
|
cprintf("F=%3d, C=", FeatureNum);
|
|
for (int ConfigNum = 0; ConfigNum < ConfigCount; ConfigNum++) {
|
|
cprintf("%4d", FeatureEvidence[ConfigNum]);
|
|
}
|
|
cprintf("\n");
|
|
}
|
|
|
|
/**
|
|
* For the given feature: prune protos, compute evidence,
|
|
* update Feature Evidence, Proto Evidence, and Sum of Feature
|
|
* Evidence tables.
|
|
* @param ClassTemplate Prototypes & tables for a class
|
|
* @param FeatureNum Current feature number (for DEBUG only)
|
|
* @param Feature Pointer to a feature struct
|
|
* @param tables Evidence tables
|
|
* @param Debug Debugger flag: 1=debugger on
|
|
* @return none
|
|
*/
|
|
int IntegerMatcher::UpdateTablesForFeature(
|
|
INT_CLASS ClassTemplate,
|
|
BIT_VECTOR ProtoMask,
|
|
BIT_VECTOR ConfigMask,
|
|
int FeatureNum,
|
|
const INT_FEATURE_STRUCT* Feature,
|
|
ScratchEvidence *tables,
|
|
int Debug) {
|
|
register uinT32 ConfigWord;
|
|
register uinT32 ProtoWord;
|
|
register uinT32 ProtoNum;
|
|
register uinT32 ActualProtoNum;
|
|
uinT8 proto_byte;
|
|
inT32 proto_word_offset;
|
|
inT32 proto_offset;
|
|
uinT8 config_byte;
|
|
inT32 config_offset;
|
|
PROTO_SET ProtoSet;
|
|
uinT32 *ProtoPrunerPtr;
|
|
INT_PROTO Proto;
|
|
int ProtoSetIndex;
|
|
uinT8 Evidence;
|
|
uinT32 XFeatureAddress;
|
|
uinT32 YFeatureAddress;
|
|
uinT32 ThetaFeatureAddress;
|
|
register uinT8 *UINT8Pointer;
|
|
register int ProtoIndex;
|
|
uinT8 Temp;
|
|
register int *IntPointer;
|
|
int ConfigNum;
|
|
register inT32 M3;
|
|
register inT32 A3;
|
|
register uinT32 A4;
|
|
|
|
tables->ClearFeatureEvidence(ClassTemplate);
|
|
|
|
/* Precompute Feature Address offset for Proto Pruning */
|
|
XFeatureAddress = ((Feature->X >> 2) << 1);
|
|
YFeatureAddress = (NUM_PP_BUCKETS << 1) + ((Feature->Y >> 2) << 1);
|
|
ThetaFeatureAddress = (NUM_PP_BUCKETS << 2) + ((Feature->Theta >> 2) << 1);
|
|
|
|
for (ProtoSetIndex = 0, ActualProtoNum = 0;
|
|
ProtoSetIndex < ClassTemplate->NumProtoSets; ProtoSetIndex++) {
|
|
ProtoSet = ClassTemplate->ProtoSets[ProtoSetIndex];
|
|
ProtoPrunerPtr = (uinT32 *) ((*ProtoSet).ProtoPruner);
|
|
for (ProtoNum = 0; ProtoNum < PROTOS_PER_PROTO_SET;
|
|
ProtoNum += (PROTOS_PER_PROTO_SET >> 1), ActualProtoNum +=
|
|
(PROTOS_PER_PROTO_SET >> 1), ProtoMask++, ProtoPrunerPtr++) {
|
|
/* Prune Protos of current Proto Set */
|
|
ProtoWord = *(ProtoPrunerPtr + XFeatureAddress);
|
|
ProtoWord &= *(ProtoPrunerPtr + YFeatureAddress);
|
|
ProtoWord &= *(ProtoPrunerPtr + ThetaFeatureAddress);
|
|
ProtoWord &= *ProtoMask;
|
|
|
|
if (ProtoWord != 0) {
|
|
proto_byte = ProtoWord & 0xff;
|
|
ProtoWord >>= 8;
|
|
proto_word_offset = 0;
|
|
while (ProtoWord != 0 || proto_byte != 0) {
|
|
while (proto_byte == 0) {
|
|
proto_byte = ProtoWord & 0xff;
|
|
ProtoWord >>= 8;
|
|
proto_word_offset += 8;
|
|
}
|
|
proto_offset = offset_table[proto_byte] + proto_word_offset;
|
|
proto_byte = next_table[proto_byte];
|
|
Proto = &(ProtoSet->Protos[ProtoNum + proto_offset]);
|
|
ConfigWord = Proto->Configs[0];
|
|
A3 = (((Proto->A * (Feature->X - 128)) << 1)
|
|
- (Proto->B * (Feature->Y - 128)) + (Proto->C << 9));
|
|
M3 =
|
|
(((inT8) (Feature->Theta - Proto->Angle)) * kIntThetaFudge) << 1;
|
|
|
|
if (A3 < 0)
|
|
A3 = ~A3;
|
|
if (M3 < 0)
|
|
M3 = ~M3;
|
|
A3 >>= mult_trunc_shift_bits_;
|
|
M3 >>= mult_trunc_shift_bits_;
|
|
if (A3 > evidence_mult_mask_)
|
|
A3 = evidence_mult_mask_;
|
|
if (M3 > evidence_mult_mask_)
|
|
M3 = evidence_mult_mask_;
|
|
|
|
A4 = (A3 * A3) + (M3 * M3);
|
|
A4 >>= table_trunc_shift_bits_;
|
|
if (A4 > evidence_table_mask_)
|
|
Evidence = 0;
|
|
else
|
|
Evidence = similarity_evidence_table_[A4];
|
|
|
|
if (PrintFeatureMatchesOn (Debug))
|
|
IMDebugConfiguration (FeatureNum,
|
|
ActualProtoNum + proto_offset,
|
|
Evidence, ConfigMask, ConfigWord);
|
|
|
|
ConfigWord &= *ConfigMask;
|
|
|
|
UINT8Pointer = tables->feature_evidence_ - 8;
|
|
config_byte = 0;
|
|
while (ConfigWord != 0 || config_byte != 0) {
|
|
while (config_byte == 0) {
|
|
config_byte = ConfigWord & 0xff;
|
|
ConfigWord >>= 8;
|
|
UINT8Pointer += 8;
|
|
}
|
|
config_offset = offset_table[config_byte];
|
|
config_byte = next_table[config_byte];
|
|
if (Evidence > UINT8Pointer[config_offset])
|
|
UINT8Pointer[config_offset] = Evidence;
|
|
}
|
|
|
|
UINT8Pointer =
|
|
&(tables->proto_evidence_[ActualProtoNum + proto_offset][0]);
|
|
for (ProtoIndex =
|
|
ClassTemplate->ProtoLengths[ActualProtoNum + proto_offset];
|
|
ProtoIndex > 0; ProtoIndex--, UINT8Pointer++) {
|
|
if (Evidence > *UINT8Pointer) {
|
|
Temp = *UINT8Pointer;
|
|
*UINT8Pointer = Evidence;
|
|
Evidence = Temp;
|
|
}
|
|
else if (Evidence == 0)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (PrintFeatureMatchesOn(Debug)) {
|
|
IMDebugConfigurationSum(FeatureNum, tables->feature_evidence_,
|
|
ClassTemplate->NumConfigs);
|
|
}
|
|
|
|
IntPointer = tables->sum_feature_evidence_;
|
|
UINT8Pointer = tables->feature_evidence_;
|
|
int SumOverConfigs = 0;
|
|
for (ConfigNum = ClassTemplate->NumConfigs; ConfigNum > 0; ConfigNum--) {
|
|
int evidence = *UINT8Pointer++;
|
|
SumOverConfigs += evidence;
|
|
*IntPointer++ += evidence;
|
|
}
|
|
return SumOverConfigs;
|
|
}
|
|
|
|
|
|
/**
|
|
* Print debugging information for Configuations
|
|
* @return none
|
|
* @note Exceptions: none
|
|
* @note History: Wed Feb 27 14:12:28 MST 1991, RWM, Created.
|
|
*/
|
|
#ifndef GRAPHICS_DISABLED
|
|
void IntegerMatcher::DebugFeatureProtoError(
|
|
INT_CLASS ClassTemplate,
|
|
BIT_VECTOR ProtoMask,
|
|
BIT_VECTOR ConfigMask,
|
|
const ScratchEvidence& tables,
|
|
inT16 NumFeatures,
|
|
int Debug) {
|
|
FLOAT32 ProtoConfigs[MAX_NUM_CONFIGS];
|
|
int ConfigNum;
|
|
uinT32 ConfigWord;
|
|
int ProtoSetIndex;
|
|
uinT16 ProtoNum;
|
|
uinT8 ProtoWordNum;
|
|
PROTO_SET ProtoSet;
|
|
uinT16 ActualProtoNum;
|
|
|
|
if (PrintMatchSummaryOn(Debug)) {
|
|
cprintf("Configuration Mask:\n");
|
|
for (ConfigNum = 0; ConfigNum < ClassTemplate->NumConfigs; ConfigNum++)
|
|
cprintf("%1d", (((*ConfigMask) >> ConfigNum) & 1));
|
|
cprintf("\n");
|
|
|
|
cprintf("Feature Error for Configurations:\n");
|
|
for (ConfigNum = 0; ConfigNum < ClassTemplate->NumConfigs; ConfigNum++) {
|
|
cprintf(
|
|
" %5.1f",
|
|
100.0 * (1.0 -
|
|
(FLOAT32) tables.sum_feature_evidence_[ConfigNum]
|
|
/ NumFeatures / 256.0));
|
|
}
|
|
cprintf("\n\n\n");
|
|
}
|
|
|
|
if (PrintMatchSummaryOn (Debug)) {
|
|
cprintf ("Proto Mask:\n");
|
|
for (ProtoSetIndex = 0; ProtoSetIndex < ClassTemplate->NumProtoSets;
|
|
ProtoSetIndex++) {
|
|
ActualProtoNum = (ProtoSetIndex * PROTOS_PER_PROTO_SET);
|
|
for (ProtoWordNum = 0; ProtoWordNum < 2;
|
|
ProtoWordNum++, ProtoMask++) {
|
|
ActualProtoNum = (ProtoSetIndex * PROTOS_PER_PROTO_SET);
|
|
for (ProtoNum = 0;
|
|
((ProtoNum < (PROTOS_PER_PROTO_SET >> 1))
|
|
&& (ActualProtoNum < ClassTemplate->NumProtos));
|
|
ProtoNum++, ActualProtoNum++)
|
|
cprintf ("%1d", (((*ProtoMask) >> ProtoNum) & 1));
|
|
cprintf ("\n");
|
|
}
|
|
}
|
|
cprintf ("\n");
|
|
}
|
|
|
|
for (int i = 0; i < ClassTemplate->NumConfigs; i++)
|
|
ProtoConfigs[i] = 0;
|
|
|
|
if (PrintProtoMatchesOn (Debug)) {
|
|
cprintf ("Proto Evidence:\n");
|
|
for (ProtoSetIndex = 0; ProtoSetIndex < ClassTemplate->NumProtoSets;
|
|
ProtoSetIndex++) {
|
|
ProtoSet = ClassTemplate->ProtoSets[ProtoSetIndex];
|
|
ActualProtoNum = (ProtoSetIndex * PROTOS_PER_PROTO_SET);
|
|
for (ProtoNum = 0;
|
|
((ProtoNum < PROTOS_PER_PROTO_SET) &&
|
|
(ActualProtoNum < ClassTemplate->NumProtos));
|
|
ProtoNum++, ActualProtoNum++) {
|
|
cprintf ("P %3d =", ActualProtoNum);
|
|
int temp = 0;
|
|
for (int j = 0; j < ClassTemplate->ProtoLengths[ActualProtoNum]; j++) {
|
|
uinT8 data = tables.proto_evidence_[ActualProtoNum][j];
|
|
cprintf(" %d", data);
|
|
temp += data;
|
|
}
|
|
|
|
cprintf(" = %6.4f%%\n",
|
|
temp / 256.0 / ClassTemplate->ProtoLengths[ActualProtoNum]);
|
|
|
|
ConfigWord = ProtoSet->Protos[ProtoNum].Configs[0];
|
|
ConfigNum = 0;
|
|
while (ConfigWord) {
|
|
cprintf ("%5d", ConfigWord & 1 ? temp : 0);
|
|
if (ConfigWord & 1)
|
|
ProtoConfigs[ConfigNum] += temp;
|
|
ConfigNum++;
|
|
ConfigWord >>= 1;
|
|
}
|
|
cprintf("\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
if (PrintMatchSummaryOn (Debug)) {
|
|
cprintf ("Proto Error for Configurations:\n");
|
|
for (ConfigNum = 0; ConfigNum < ClassTemplate->NumConfigs; ConfigNum++)
|
|
cprintf (" %5.1f",
|
|
100.0 * (1.0 -
|
|
ProtoConfigs[ConfigNum] /
|
|
ClassTemplate->ConfigLengths[ConfigNum] / 256.0));
|
|
cprintf ("\n\n");
|
|
}
|
|
|
|
if (PrintProtoMatchesOn (Debug)) {
|
|
cprintf ("Proto Sum for Configurations:\n");
|
|
for (ConfigNum = 0; ConfigNum < ClassTemplate->NumConfigs; ConfigNum++)
|
|
cprintf (" %4.1f", ProtoConfigs[ConfigNum] / 256.0);
|
|
cprintf ("\n\n");
|
|
|
|
cprintf ("Proto Length for Configurations:\n");
|
|
for (ConfigNum = 0; ConfigNum < ClassTemplate->NumConfigs; ConfigNum++)
|
|
cprintf (" %4.1f",
|
|
(float) ClassTemplate->ConfigLengths[ConfigNum]);
|
|
cprintf ("\n\n");
|
|
}
|
|
|
|
}
|
|
|
|
void IntegerMatcher::DisplayProtoDebugInfo(
|
|
INT_CLASS ClassTemplate,
|
|
BIT_VECTOR ProtoMask,
|
|
BIT_VECTOR ConfigMask,
|
|
const ScratchEvidence& tables,
|
|
bool SeparateDebugWindows) {
|
|
uinT16 ProtoNum;
|
|
uinT16 ActualProtoNum;
|
|
PROTO_SET ProtoSet;
|
|
int ProtoSetIndex;
|
|
|
|
InitIntMatchWindowIfReqd();
|
|
if (SeparateDebugWindows) {
|
|
InitFeatureDisplayWindowIfReqd();
|
|
InitProtoDisplayWindowIfReqd();
|
|
}
|
|
|
|
|
|
for (ProtoSetIndex = 0; ProtoSetIndex < ClassTemplate->NumProtoSets;
|
|
ProtoSetIndex++) {
|
|
ProtoSet = ClassTemplate->ProtoSets[ProtoSetIndex];
|
|
ActualProtoNum = ProtoSetIndex * PROTOS_PER_PROTO_SET;
|
|
for (ProtoNum = 0;
|
|
((ProtoNum < PROTOS_PER_PROTO_SET) &&
|
|
(ActualProtoNum < ClassTemplate->NumProtos));
|
|
ProtoNum++, ActualProtoNum++) {
|
|
/* Compute Average for Actual Proto */
|
|
int temp = 0;
|
|
for (int i = 0; i < ClassTemplate->ProtoLengths[ActualProtoNum]; i++)
|
|
temp += tables.proto_evidence_[ActualProtoNum][i];
|
|
|
|
temp /= ClassTemplate->ProtoLengths[ActualProtoNum];
|
|
|
|
if ((ProtoSet->Protos[ProtoNum]).Configs[0] & (*ConfigMask)) {
|
|
DisplayIntProto(ClassTemplate, ActualProtoNum, temp / 255.0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void IntegerMatcher::DisplayFeatureDebugInfo(
|
|
INT_CLASS ClassTemplate,
|
|
BIT_VECTOR ProtoMask,
|
|
BIT_VECTOR ConfigMask,
|
|
inT16 NumFeatures,
|
|
const INT_FEATURE_STRUCT* Features,
|
|
int AdaptFeatureThreshold,
|
|
int Debug,
|
|
bool SeparateDebugWindows) {
|
|
ScratchEvidence *tables = new ScratchEvidence();
|
|
|
|
tables->Clear(ClassTemplate);
|
|
|
|
InitIntMatchWindowIfReqd();
|
|
if (SeparateDebugWindows) {
|
|
InitFeatureDisplayWindowIfReqd();
|
|
InitProtoDisplayWindowIfReqd();
|
|
}
|
|
|
|
for (int Feature = 0; Feature < NumFeatures; Feature++) {
|
|
UpdateTablesForFeature(
|
|
ClassTemplate, ProtoMask, ConfigMask, Feature, &Features[Feature],
|
|
tables, 0);
|
|
|
|
/* Find Best Evidence for Current Feature */
|
|
int best = 0;
|
|
for (int i = 0; i < ClassTemplate->NumConfigs; i++)
|
|
if (tables->feature_evidence_[i] > best)
|
|
best = tables->feature_evidence_[i];
|
|
|
|
/* Update display for current feature */
|
|
if (ClipMatchEvidenceOn(Debug)) {
|
|
if (best < AdaptFeatureThreshold)
|
|
DisplayIntFeature(&Features[Feature], 0.0);
|
|
else
|
|
DisplayIntFeature(&Features[Feature], 1.0);
|
|
} else {
|
|
DisplayIntFeature(&Features[Feature], best / 255.0);
|
|
}
|
|
}
|
|
|
|
delete tables;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* Add sum of Proto Evidences into Sum Of Feature Evidence Array
|
|
*/
|
|
void ScratchEvidence::UpdateSumOfProtoEvidences(
|
|
INT_CLASS ClassTemplate, BIT_VECTOR ConfigMask, inT16 NumFeatures) {
|
|
|
|
int *IntPointer;
|
|
uinT32 ConfigWord;
|
|
int ProtoSetIndex;
|
|
uinT16 ProtoNum;
|
|
PROTO_SET ProtoSet;
|
|
int NumProtos;
|
|
uinT16 ActualProtoNum;
|
|
|
|
NumProtos = ClassTemplate->NumProtos;
|
|
|
|
for (ProtoSetIndex = 0; ProtoSetIndex < ClassTemplate->NumProtoSets;
|
|
ProtoSetIndex++) {
|
|
ProtoSet = ClassTemplate->ProtoSets[ProtoSetIndex];
|
|
ActualProtoNum = (ProtoSetIndex * PROTOS_PER_PROTO_SET);
|
|
for (ProtoNum = 0;
|
|
((ProtoNum < PROTOS_PER_PROTO_SET) && (ActualProtoNum < NumProtos));
|
|
ProtoNum++, ActualProtoNum++) {
|
|
int temp = 0;
|
|
for (int i = 0; i < ClassTemplate->ProtoLengths[ActualProtoNum]; i++)
|
|
temp += proto_evidence_[ActualProtoNum] [i];
|
|
|
|
ConfigWord = ProtoSet->Protos[ProtoNum].Configs[0];
|
|
ConfigWord &= *ConfigMask;
|
|
IntPointer = sum_feature_evidence_;
|
|
while (ConfigWord) {
|
|
if (ConfigWord & 1)
|
|
*IntPointer += temp;
|
|
IntPointer++;
|
|
ConfigWord >>= 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* Normalize Sum of Proto and Feature Evidence by dividing by the sum of
|
|
* the Feature Lengths and the Proto Lengths for each configuration.
|
|
*/
|
|
void ScratchEvidence::NormalizeSums(
|
|
INT_CLASS ClassTemplate, inT16 NumFeatures, inT32 used_features) {
|
|
|
|
for (int i = 0; i < ClassTemplate->NumConfigs; i++) {
|
|
sum_feature_evidence_[i] = (sum_feature_evidence_[i] << 8) /
|
|
(NumFeatures + ClassTemplate->ConfigLengths[i]);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Find the best match for the current class and update the Result
|
|
* with the configuration and match rating.
|
|
* @return The best normalized sum of evidences
|
|
* @note Exceptions: none
|
|
* @note History: Wed Feb 27 14:12:28 MST 1991, RWM, Created.
|
|
*/
|
|
int IntegerMatcher::FindBestMatch(
|
|
INT_CLASS class_template,
|
|
const ScratchEvidence &tables,
|
|
UnicharRating* result) {
|
|
int best_match = 0;
|
|
result->config = 0;
|
|
result->fonts.truncate(0);
|
|
result->fonts.reserve(class_template->NumConfigs);
|
|
|
|
/* Find best match */
|
|
for (int c = 0; c < class_template->NumConfigs; ++c) {
|
|
int rating = tables.sum_feature_evidence_[c];
|
|
if (*classify_debug_level_ > 2)
|
|
tprintf("Config %d, rating=%d\n", c, rating);
|
|
if (rating > best_match) {
|
|
result->config = c;
|
|
best_match = rating;
|
|
}
|
|
result->fonts.push_back(ScoredFont(c, rating));
|
|
}
|
|
|
|
// Compute confidence on a Probability scale.
|
|
result->rating = best_match / 65536.0f;
|
|
|
|
return best_match;
|
|
}
|
|
|
|
/**
|
|
* Applies the CN normalization factor to the given rating and returns
|
|
* the modified rating.
|
|
*/
|
|
float IntegerMatcher::ApplyCNCorrection(float rating, int blob_length,
|
|
int normalization_factor,
|
|
int matcher_multiplier) {
|
|
return (rating * blob_length +
|
|
matcher_multiplier * normalization_factor / 256.0) /
|
|
(blob_length + matcher_multiplier);
|
|
}
|
|
|
|
/**
|
|
* Sort Key array in ascending order using heap sort
|
|
* algorithm. Also sort Index array that is tied to
|
|
* the key array.
|
|
* @param n Number of elements to sort
|
|
* @param ra Key array [1..n]
|
|
* @param rb Index array [1..n]
|
|
* @return none
|
|
* @note Exceptions: none
|
|
* @note History: Tue Feb 19 10:24:24 MST 1991, RWM, Created.
|
|
*/
|
|
void
|
|
HeapSort (int n, register int ra[], register int rb[]) {
|
|
register int i, rra, rrb;
|
|
int l, j, ir;
|
|
|
|
l = (n >> 1) + 1;
|
|
ir = n;
|
|
for (;;) {
|
|
if (l > 1) {
|
|
rra = ra[--l];
|
|
rrb = rb[l];
|
|
}
|
|
else {
|
|
rra = ra[ir];
|
|
rrb = rb[ir];
|
|
ra[ir] = ra[1];
|
|
rb[ir] = rb[1];
|
|
if (--ir == 1) {
|
|
ra[1] = rra;
|
|
rb[1] = rrb;
|
|
return;
|
|
}
|
|
}
|
|
i = l;
|
|
j = l << 1;
|
|
while (j <= ir) {
|
|
if (j < ir && ra[j] < ra[j + 1])
|
|
++j;
|
|
if (rra < ra[j]) {
|
|
ra[i] = ra[j];
|
|
rb[i] = rb[j];
|
|
j += (i = j);
|
|
}
|
|
else
|
|
j = ir + 1;
|
|
}
|
|
ra[i] = rra;
|
|
rb[i] = rrb;
|
|
}
|
|
}
|