tesseract/ccutil/indexmapbidi.cpp
theraysmith@gmail.com e0d735b122 Remaining misc changes for 3.02
git-svn-id: https://tesseract-ocr.googlecode.com/svn/trunk@658 d0cd1f9f-072b-0410-8dd7-cf729c803f20
2012-02-02 03:14:43 +00:00

251 lines
8.9 KiB
C++

///////////////////////////////////////////////////////////////////////
// File: indexmapbidi.cpp
// Description: Bi-directional mapping between a sparse and compact space.
// Author: rays@google.com (Ray Smith)
// Created: Tue Apr 06 11:33:59 PDT 2010
//
// (C) Copyright 2010, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
///////////////////////////////////////////////////////////////////////
#include "indexmapbidi.h"
namespace tesseract {
// SparseToCompact takes a sparse index to an index in the compact space.
// Uses a binary search to find the result. For faster speed use
// IndexMapBiDi, but that takes more memory.
int IndexMap::SparseToCompact(int sparse_index) const {
int result = compact_map_.binary_search(sparse_index);
return compact_map_[result] == sparse_index ? result : -1;
}
// Copy from the input.
void IndexMap::CopyFrom(const IndexMap& src) {
sparse_size_ = src.sparse_size_;
compact_map_ = src.compact_map_;
}
void IndexMap::CopyFrom(const IndexMapBiDi& src) {
sparse_size_ = src.SparseSize();
compact_map_ = src.compact_map_;
}
// Writes to the given file. Returns false in case of error.
bool IndexMap::Serialize(FILE* fp) const {
inT32 sparse_size = sparse_size_;
if (fwrite(&sparse_size, sizeof(sparse_size), 1, fp) != 1) return false;
if (!compact_map_.Serialize(fp)) return false;
return true;
}
// Reads from the given file. Returns false in case of error.
// If swap is true, assumes a big/little-endian swap is needed.
bool IndexMap::DeSerialize(bool swap, FILE* fp) {
inT32 sparse_size;
if (fread(&sparse_size, sizeof(sparse_size), 1, fp) != 1) return false;
if (swap)
ReverseN(&sparse_size, sizeof(sparse_size));
sparse_size_ = sparse_size;
if (!compact_map_.DeSerialize(swap, fp)) return false;
return true;
}
// Top-level init function in a single call to initialize a map to select
// a single contiguous subrange [start, end) of the sparse space to be mapped
// 1 to 1 to the compact space, with all other elements of the sparse space
// left unmapped.
// No need to call Setup after this.
void IndexMapBiDi::InitAndSetupRange(int sparse_size, int start, int end) {
Init(sparse_size, false);
for (int i = start; i < end; ++i)
SetMap(i, true);
Setup();
}
// Initializes just the sparse_map_ to the given size with either all
// forward indices mapped (all_mapped = true) or none (all_mapped = false).
// Call Setup immediately after, or make calls to SetMap first to adjust the
// mapping and then call Setup before using the map.
void IndexMapBiDi::Init(int size, bool all_mapped) {
sparse_map_.init_to_size(size, -1);
if (all_mapped) {
for (int i = 0; i < size; ++i)
sparse_map_[i] = i;
}
}
// Sets a given index in the sparse_map_ to be mapped or not.
void IndexMapBiDi::SetMap(int sparse_index, bool mapped) {
sparse_map_[sparse_index] = mapped ? 0 : -1;
}
// Sets up the sparse_map_ and compact_map_ properly after Init and
// some calls to SetMap. Assumes an ordered 1-1 map from set indices
// in the forward map to the compact space.
void IndexMapBiDi::Setup() {
int compact_size = 0;
for (int i = 0; i < sparse_map_.size(); ++i) {
if (sparse_map_[i] >= 0) {
sparse_map_[i] = compact_size++;
}
}
compact_map_.init_to_size(compact_size, -1);
for (int i = 0; i < sparse_map_.size(); ++i) {
if (sparse_map_[i] >= 0) {
compact_map_[sparse_map_[i]] = i;
}
}
sparse_size_ = sparse_map_.size();
}
// Copy from the input.
void IndexMapBiDi::CopyFrom(const IndexMapBiDi& src) {
sparse_map_ = src.sparse_map_;
compact_map_ = src.compact_map_;
sparse_size_ = sparse_map_.size();
}
// Merges the two compact space indices. May be called many times, but
// the merges must be concluded by a call to CompleteMerges.
// Returns true if a merge was actually performed.
bool IndexMapBiDi::Merge(int compact_index1, int compact_index2) {
// Find the current master index for index1 and index2.
compact_index1 = MasterCompactIndex(compact_index1);
compact_index2 = MasterCompactIndex(compact_index2);
// Be sure that index1 < index2.
if (compact_index1 > compact_index2) {
int tmp = compact_index1;
compact_index1 = compact_index2;
compact_index2 = tmp;
} else if (compact_index1 == compact_index2) {
return false;
}
// To save iterating over all sparse_map_ entries, simply make the master
// entry for index2 point to index1.
// This leaves behind a potential chain of parents that needs to be chased,
// as above.
sparse_map_[compact_map_[compact_index2]] = compact_index1;
if (compact_index1 >= 0)
compact_map_[compact_index2] = compact_map_[compact_index1];
return true;
}
// Completes one or more Merge operations by further compacting the
// compact space. Unused compact space indices are removed, and the used
// ones above shuffled down to fill the gaps.
// Example:
// Input sparse_map_: (x indicates -1)
// x x 0 x 2 x x 4 x 0 x 2 x
// Output sparse_map_:
// x x 0 x 1 x x 2 x 0 x 1 x
// Output compact_map_:
// 2 4 7.
void IndexMapBiDi::CompleteMerges() {
// Ensure each sparse_map_entry contains a master compact_map_ index.
int compact_size = 0;
for (int i = 0; i < sparse_map_.size(); ++i) {
int compact_index = MasterCompactIndex(sparse_map_[i]);
sparse_map_[i] = compact_index;
if (compact_index >= compact_size)
compact_size = compact_index + 1;
}
// Re-generate the compact_map leaving holes for unused indices.
compact_map_.init_to_size(compact_size, -1);
for (int i = 0; i < sparse_map_.size(); ++i) {
if (sparse_map_[i] >= 0) {
if (compact_map_[sparse_map_[i]] == -1)
compact_map_[sparse_map_[i]] = i;
}
}
// Compact the compact_map, leaving tmp_compact_map saying where each
// index went to in the compacted map.
GenericVector<inT32> tmp_compact_map;
tmp_compact_map.init_to_size(compact_size, -1);
compact_size = 0;
for (int i = 0; i < compact_map_.size(); ++i) {
if (compact_map_[i] >= 0) {
tmp_compact_map[i] = compact_size;
compact_map_[compact_size++] = compact_map_[i];
}
}
compact_map_.truncate(compact_size);
// Now modify the entries in the sparse map to point to the new locations.
for (int i = 0; i < sparse_map_.size(); ++i) {
if (sparse_map_[i] >= 0) {
sparse_map_[i] = tmp_compact_map[sparse_map_[i]];
}
}
}
// Writes to the given file. Returns false in case of error.
bool IndexMapBiDi::Serialize(FILE* fp) const {
if (!IndexMap::Serialize(fp)) return false;
// Make a vector containing the rest of the map. If the map is many-to-one
// then each additional sparse entry needs to be stored.
// Normally we store only the compact map to save space.
GenericVector<inT32> remaining_pairs;
for (int i = 0; i < sparse_map_.size(); ++i) {
if (sparse_map_[i] >= 0 && compact_map_[sparse_map_[i]] != i) {
remaining_pairs.push_back(i);
remaining_pairs.push_back(sparse_map_[i]);
}
}
if (!remaining_pairs.Serialize(fp)) return false;
return true;
}
// Reads from the given file. Returns false in case of error.
// If swap is true, assumes a big/little-endian swap is needed.
bool IndexMapBiDi::DeSerialize(bool swap, FILE* fp) {
if (!IndexMap::DeSerialize(swap, fp)) return false;
GenericVector<inT32> remaining_pairs;
if (!remaining_pairs.DeSerialize(swap, fp)) return false;
sparse_map_.init_to_size(sparse_size_, -1);
for (int i = 0; i < compact_map_.size(); ++i) {
sparse_map_[compact_map_[i]] = i;
}
for (int i = 0; i < remaining_pairs.size(); ++i) {
int sparse_index = remaining_pairs[i++];
sparse_map_[sparse_index] = remaining_pairs[i];
}
return true;
}
// Bulk calls to SparseToCompact.
// Maps the given array of sparse indices to an array of compact indices.
// Assumes the input is sorted. The output indices are sorted and uniqued.
// Return value is the number of "missed" features, being features that
// don't map to the compact feature space.
int IndexMapBiDi::MapFeatures(const GenericVector<int>& sparse,
GenericVector<int>* compact) const {
compact->truncate(0);
int num_features = sparse.size();
int missed_features = 0;
int prev_good_feature = -1;
for (int f = 0; f < num_features; ++f) {
int feature = sparse_map_[sparse[f]];
if (feature >= 0) {
if (feature != prev_good_feature) {
compact->push_back(feature);
prev_good_feature = feature;
}
} else {
++missed_features;
}
}
return missed_features;
}
} // namespace tesseract.