tesseract/classify/classify.cpp

243 lines
11 KiB
C++

///////////////////////////////////////////////////////////////////////
// File: classify.cpp
// Description: classify class.
// Author: Samuel Charron
//
// (C) Copyright 2006, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
///////////////////////////////////////////////////////////////////////
// Include automatically generated configuration file if running autoconf.
#ifdef HAVE_CONFIG_H
#include "config_auto.h"
#endif
#include "classify.h"
#include "fontinfo.h"
#include "intproto.h"
#include "mfoutline.h"
#include "scrollview.h"
#include "shapeclassifier.h"
#include "shapetable.h"
#include "unicity_table.h"
#include <string.h>
namespace tesseract {
Classify::Classify()
: BOOL_MEMBER(allow_blob_division, true, "Use divisible blobs chopping",
this->params()),
BOOL_MEMBER(prioritize_division, FALSE,
"Prioritize blob division over chopping", this->params()),
INT_MEMBER(tessedit_single_match, FALSE, "Top choice only from CP",
this->params()),
BOOL_MEMBER(classify_enable_learning, true, "Enable adaptive classifier",
this->params()),
INT_MEMBER(classify_debug_level, 0, "Classify debug level",
this->params()),
INT_MEMBER(classify_norm_method, character, "Normalization Method ...",
this->params()),
double_MEMBER(classify_char_norm_range, 0.2,
"Character Normalization Range ...", this->params()),
double_MEMBER(classify_min_norm_scale_x, 0.0, "Min char x-norm scale ...",
this->params()), /* PREV DEFAULT 0.1 */
double_MEMBER(classify_max_norm_scale_x, 0.325,
"Max char x-norm scale ...",
this->params()), /* PREV DEFAULT 0.3 */
double_MEMBER(classify_min_norm_scale_y, 0.0, "Min char y-norm scale ...",
this->params()), /* PREV DEFAULT 0.1 */
double_MEMBER(classify_max_norm_scale_y, 0.325,
"Max char y-norm scale ...",
this->params()), /* PREV DEFAULT 0.3 */
double_MEMBER(classify_max_rating_ratio, 1.5,
"Veto ratio between classifier ratings", this->params()),
double_MEMBER(classify_max_certainty_margin, 5.5,
"Veto difference between classifier certainties",
this->params()),
BOOL_MEMBER(tess_cn_matching, 0, "Character Normalized Matching",
this->params()),
BOOL_MEMBER(tess_bn_matching, 0, "Baseline Normalized Matching",
this->params()),
BOOL_MEMBER(classify_enable_adaptive_matcher, 1,
"Enable adaptive classifier", this->params()),
BOOL_MEMBER(classify_use_pre_adapted_templates, 0,
"Use pre-adapted classifier templates", this->params()),
BOOL_MEMBER(classify_save_adapted_templates, 0,
"Save adapted templates to a file", this->params()),
BOOL_MEMBER(classify_enable_adaptive_debugger, 0, "Enable match debugger",
this->params()),
BOOL_MEMBER(classify_nonlinear_norm, 0,
"Non-linear stroke-density normalization", this->params()),
INT_MEMBER(matcher_debug_level, 0, "Matcher Debug Level", this->params()),
INT_MEMBER(matcher_debug_flags, 0, "Matcher Debug Flags", this->params()),
INT_MEMBER(classify_learning_debug_level, 0, "Learning Debug Level: ",
this->params()),
double_MEMBER(matcher_good_threshold, 0.125, "Good Match (0-1)",
this->params()),
double_MEMBER(matcher_reliable_adaptive_result, 0.0, "Great Match (0-1)",
this->params()),
double_MEMBER(matcher_perfect_threshold, 0.02, "Perfect Match (0-1)",
this->params()),
double_MEMBER(matcher_bad_match_pad, 0.15, "Bad Match Pad (0-1)",
this->params()),
double_MEMBER(matcher_rating_margin, 0.1, "New template margin (0-1)",
this->params()),
double_MEMBER(matcher_avg_noise_size, 12.0, "Avg. noise blob length",
this->params()),
INT_MEMBER(matcher_permanent_classes_min, 1, "Min # of permanent classes",
this->params()),
INT_MEMBER(matcher_min_examples_for_prototyping, 3,
"Reliable Config Threshold", this->params()),
INT_MEMBER(matcher_sufficient_examples_for_prototyping, 5,
"Enable adaption even if the ambiguities have not been seen",
this->params()),
double_MEMBER(matcher_clustering_max_angle_delta, 0.015,
"Maximum angle delta for prototype clustering",
this->params()),
double_MEMBER(classify_misfit_junk_penalty, 0.0,
"Penalty to apply when a non-alnum is vertically out of "
"its expected textline position",
this->params()),
double_MEMBER(rating_scale, 1.5, "Rating scaling factor", this->params()),
double_MEMBER(certainty_scale, 20.0, "Certainty scaling factor",
this->params()),
double_MEMBER(tessedit_class_miss_scale, 0.00390625,
"Scale factor for features not used", this->params()),
double_MEMBER(
classify_adapted_pruning_factor, 2.5,
"Prune poor adapted results this much worse than best result",
this->params()),
double_MEMBER(classify_adapted_pruning_threshold, -1.0,
"Threshold at which classify_adapted_pruning_factor starts",
this->params()),
INT_MEMBER(classify_adapt_proto_threshold, 230,
"Threshold for good protos during adaptive 0-255",
this->params()),
INT_MEMBER(classify_adapt_feature_threshold, 230,
"Threshold for good features during adaptive 0-255",
this->params()),
BOOL_MEMBER(disable_character_fragments, TRUE,
"Do not include character fragments in the"
" results of the classifier",
this->params()),
double_MEMBER(classify_character_fragments_garbage_certainty_threshold,
-3.0,
"Exclude fragments that do not look like whole"
" characters from training and adaption",
this->params()),
BOOL_MEMBER(classify_debug_character_fragments, FALSE,
"Bring up graphical debugging windows for fragments training",
this->params()),
BOOL_MEMBER(matcher_debug_separate_windows, FALSE,
"Use two different windows for debugging the matching: "
"One for the protos and one for the features.",
this->params()),
STRING_MEMBER(classify_learn_debug_str, "", "Class str to debug learning",
this->params()),
INT_MEMBER(classify_class_pruner_threshold, 229,
"Class Pruner Threshold 0-255", this->params()),
INT_MEMBER(classify_class_pruner_multiplier, 15,
"Class Pruner Multiplier 0-255: ", this->params()),
INT_MEMBER(classify_cp_cutoff_strength, 7,
"Class Pruner CutoffStrength: ", this->params()),
INT_MEMBER(classify_integer_matcher_multiplier, 10,
"Integer Matcher Multiplier 0-255: ", this->params()),
EnableLearning(true),
INT_MEMBER(il1_adaption_test, 0,
"Don't adapt to i/I at beginning of word", this->params()),
BOOL_MEMBER(classify_bln_numeric_mode, 0,
"Assume the input is numbers [0-9].", this->params()),
double_MEMBER(speckle_large_max_size, 0.30, "Max large speckle size",
this->params()),
double_MEMBER(speckle_rating_penalty, 10.0,
"Penalty to add to worst rating for noise", this->params()),
shape_table_(NULL),
dict_(this),
static_classifier_(NULL) {
fontinfo_table_.set_compare_callback(
NewPermanentTessCallback(CompareFontInfo));
fontinfo_table_.set_clear_callback(
NewPermanentTessCallback(FontInfoDeleteCallback));
fontset_table_.set_compare_callback(
NewPermanentTessCallback(CompareFontSet));
fontset_table_.set_clear_callback(
NewPermanentTessCallback(FontSetDeleteCallback));
AdaptedTemplates = NULL;
BackupAdaptedTemplates = NULL;
PreTrainedTemplates = NULL;
AllProtosOn = NULL;
AllConfigsOn = NULL;
AllConfigsOff = NULL;
TempProtoMask = NULL;
NormProtos = NULL;
NumAdaptationsFailed = 0;
learn_debug_win_ = NULL;
learn_fragmented_word_debug_win_ = NULL;
learn_fragments_debug_win_ = NULL;
CharNormCutoffs = new uinT16[MAX_NUM_CLASSES];
BaselineCutoffs = new uinT16[MAX_NUM_CLASSES];
}
Classify::~Classify() {
EndAdaptiveClassifier();
delete learn_debug_win_;
delete learn_fragmented_word_debug_win_;
delete learn_fragments_debug_win_;
delete[] CharNormCutoffs;
delete[] BaselineCutoffs;
}
// Takes ownership of the given classifier, and uses it for future calls
// to CharNormClassifier.
void Classify::SetStaticClassifier(ShapeClassifier* static_classifier) {
delete static_classifier_;
static_classifier_ = static_classifier;
}
// Moved from speckle.cpp
// Adds a noise classification result that is a bit worse than the worst
// current result, or the worst possible result if no current results.
void Classify::AddLargeSpeckleTo(int blob_length, BLOB_CHOICE_LIST *choices) {
BLOB_CHOICE_IT bc_it(choices);
// If there is no classifier result, we will use the worst possible certainty
// and corresponding rating.
float certainty = -getDict().certainty_scale;
float rating = rating_scale * blob_length;
if (!choices->empty() && blob_length > 0) {
bc_it.move_to_last();
BLOB_CHOICE* worst_choice = bc_it.data();
// Add speckle_rating_penalty to worst rating, matching old value.
rating = worst_choice->rating() + speckle_rating_penalty;
// Compute the rating to correspond to the certainty. (Used to be kept
// the same, but that messes up the language model search.)
certainty = -rating * getDict().certainty_scale /
(rating_scale * blob_length);
}
BLOB_CHOICE* blob_choice = new BLOB_CHOICE(UNICHAR_SPACE, rating, certainty,
-1, 0.0f, MAX_FLOAT32, 0,
BCC_SPECKLE_CLASSIFIER);
bc_it.add_to_end(blob_choice);
}
// Returns true if the blob is small enough to be a large speckle.
bool Classify::LargeSpeckle(const TBLOB &blob) {
double speckle_size = kBlnXHeight * speckle_large_max_size;
TBOX bbox = blob.bounding_box();
return bbox.width() < speckle_size && bbox.height() < speckle_size;
}
} // namespace tesseract