tesseract/textord/makerow.cpp

2800 lines
103 KiB
C++

/**********************************************************************
* File: makerow.cpp (Formerly makerows.c)
* Description: Code to arrange blobs into rows of text.
* Author: Ray Smith
* Created: Mon Sep 21 14:34:48 BST 1992
*
* (C) Copyright 1992, Hewlett-Packard Ltd.
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
** http://www.apache.org/licenses/LICENSE-2.0
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*
**********************************************************************/
#include "mfcpch.h"
#ifdef __UNIX__
#include <assert.h>
#endif
#include "stderr.h"
#include "blobbox.h"
#include "ccstruct.h"
#include "detlinefit.h"
#include "statistc.h"
#include "drawtord.h"
#include "blkocc.h"
#include "sortflts.h"
#include "oldbasel.h"
#include "textord.h"
#include "tordmain.h"
#include "underlin.h"
#include "makerow.h"
#include "tprintf.h"
#include "tovars.h"
// Include automatically generated configuration file if running autoconf.
#ifdef HAVE_CONFIG_H
#include "config_auto.h"
#endif
BOOL_VAR(textord_heavy_nr, FALSE, "Vigorously remove noise");
BOOL_VAR(textord_show_initial_rows, FALSE, "Display row accumulation");
BOOL_VAR(textord_show_parallel_rows, FALSE, "Display page correlated rows");
BOOL_VAR(textord_show_expanded_rows, FALSE, "Display rows after expanding");
BOOL_VAR(textord_show_final_rows, FALSE, "Display rows after final fitting");
BOOL_VAR(textord_show_final_blobs, FALSE, "Display blob bounds after pre-ass");
BOOL_VAR(textord_test_landscape, FALSE, "Tests refer to land/port");
BOOL_VAR(textord_parallel_baselines, TRUE, "Force parallel baselines");
BOOL_VAR(textord_straight_baselines, FALSE, "Force straight baselines");
BOOL_VAR(textord_old_baselines, TRUE, "Use old baseline algorithm");
BOOL_VAR(textord_old_xheight, FALSE, "Use old xheight algorithm");
BOOL_VAR(textord_fix_xheight_bug, TRUE, "Use spline baseline");
BOOL_VAR(textord_fix_makerow_bug, TRUE, "Prevent multiple baselines");
BOOL_VAR(textord_debug_xheights, FALSE, "Test xheight algorithms");
BOOL_VAR(textord_biased_skewcalc, TRUE, "Bias skew estimates with line length");
BOOL_VAR(textord_interpolating_skew, TRUE, "Interpolate across gaps");
INT_VAR(textord_skewsmooth_offset, 2, "For smooth factor");
INT_VAR(textord_skewsmooth_offset2, 1, "For smooth factor");
INT_VAR(textord_test_x, -1, "coord of test pt");
INT_VAR(textord_test_y, -1, "coord of test pt");
INT_VAR(textord_min_blobs_in_row, 4, "Min blobs before gradient counted");
INT_VAR(textord_spline_minblobs, 8, "Min blobs in each spline segment");
INT_VAR(textord_spline_medianwin, 6, "Size of window for spline segmentation");
INT_VAR(textord_max_blob_overlaps, 4,
"Max number of blobs a big blob can overlap");
INT_VAR(textord_min_xheight, 10, "Min credible pixel xheight");
double_VAR(textord_spline_shift_fraction, 0.02,
"Fraction of line spacing for quad");
double_VAR(textord_spline_outlier_fraction, 0.1,
"Fraction of line spacing for outlier");
double_VAR(textord_skew_ile, 0.5, "Ile of gradients for page skew");
double_VAR(textord_skew_lag, 0.01, "Lag for skew on row accumulation");
double_VAR(textord_linespace_iqrlimit, 0.2, "Max iqr/median for linespace");
double_VAR(textord_width_limit, 8, "Max width of blobs to make rows");
double_VAR(textord_chop_width, 1.5, "Max width before chopping");
double_VAR(textord_expansion_factor, 1.0,
"Factor to expand rows by in expand_rows");
double_VAR(textord_overlap_x, 0.5, "Fraction of linespace for good overlap");
double_VAR(textord_minxh, 0.25, "fraction of linesize for min xheight");
double_VAR(textord_min_linesize, 1.25, "* blob height for initial linesize");
double_VAR(textord_excess_blobsize, 1.3,
"New row made if blob makes row this big");
double_VAR(textord_occupancy_threshold, 0.4, "Fraction of neighbourhood");
double_VAR(textord_underline_width, 2.0, "Multiple of line_size for underline");
double_VAR(textord_min_blob_height_fraction, 0.75,
"Min blob height/top to include blob top into xheight stats");
double_VAR(textord_xheight_mode_fraction, 0.4,
"Min pile height to make xheight");
double_VAR(textord_ascheight_mode_fraction, 0.08,
"Min pile height to make ascheight");
double_VAR(textord_descheight_mode_fraction, 0.08,
"Min pile height to make descheight");
double_VAR(textord_ascx_ratio_min, 1.25, "Min cap/xheight");
double_VAR(textord_ascx_ratio_max, 1.8, "Max cap/xheight");
double_VAR(textord_descx_ratio_min, 0.25, "Min desc/xheight");
double_VAR(textord_descx_ratio_max, 0.6, "Max desc/xheight");
double_VAR(textord_xheight_error_margin, 0.1, "Accepted variation");
INT_VAR(textord_lms_line_trials, 12, "Number of linew fits to do");
BOOL_VAR(textord_new_initial_xheight, TRUE, "Use test xheight mechanism");
#define MAX_HEIGHT_MODES 12
const int kMinLeaderCount = 5;
// Factored-out helper to build a single row from a list of blobs.
// Returns the mean blob size.
static float MakeRowFromBlobs(float line_size,
BLOBNBOX_IT* blob_it, TO_ROW_IT* row_it) {
blob_it->sort(blob_x_order);
blob_it->move_to_first();
TO_ROW* row = NULL;
float total_size = 0.0f;
int blob_count = 0;
// Add all the blobs to a single TO_ROW.
for (; !blob_it->empty(); blob_it->forward()) {
BLOBNBOX* blob = blob_it->extract();
int top = blob->bounding_box().top();
int bottom = blob->bounding_box().bottom();
if (row == NULL) {
row = new TO_ROW(blob, top, bottom, line_size);
row_it->add_before_then_move(row);
} else {
row->add_blob(blob, top, bottom, line_size);
}
total_size += top - bottom;
++blob_count;
}
return blob_count > 0 ? total_size / blob_count : total_size;
}
// Helper to make a row using the children of a single blob.
// Returns the mean size of the blobs created.
float MakeRowFromSubBlobs(TO_BLOCK* block, C_BLOB* blob, TO_ROW_IT* row_it) {
// The blobs made from the children will go in the small_blobs list.
BLOBNBOX_IT bb_it(&block->small_blobs);
C_OUTLINE_IT ol_it(blob->out_list());
// Get the children.
ol_it.set_to_list(ol_it.data()->child());
if (ol_it.empty())
return 0.0f;
for (ol_it.mark_cycle_pt(); !ol_it.cycled_list(); ol_it.forward()) {
// Deep copy the child outline and use that to make a blob.
C_OUTLINE* outline = C_OUTLINE::deep_copy(ol_it.data());
// The constructor from a list of outlines corrects the direction.
C_OUTLINE_LIST outlines;
C_OUTLINE_IT ol_it(&outlines);
ol_it.add_after_then_move(outline);
C_BLOB* blob = new C_BLOB(&outlines);
BLOBNBOX* bbox = new BLOBNBOX(blob);
bb_it.add_after_then_move(bbox);
}
// Now we can make a row from the blobs.
return MakeRowFromBlobs(block->line_size, &bb_it, row_it);
}
/**
* @name make_single_row
*
* Arrange the blobs into a single row... well actually, if there is
* only a single blob, it makes 2 rows, in case the top-level blob
* is a container of the real blobs to recognize.
*/
float make_single_row(ICOORD page_tr, TO_BLOCK* block, TO_BLOCK_LIST* blocks) {
BLOBNBOX_IT blob_it = &block->blobs;
TO_ROW_IT row_it = block->get_rows();
// Include all the small blobs and large blobs.
blob_it.add_list_after(&block->small_blobs);
blob_it.add_list_after(&block->noise_blobs);
blob_it.add_list_after(&block->large_blobs);
if (block->blobs.singleton()) {
blob_it.move_to_first();
float size = MakeRowFromSubBlobs(block, blob_it.data()->cblob(), &row_it);
if (size > block->line_size)
block->line_size = size;
}
MakeRowFromBlobs(block->line_size, &blob_it, &row_it);
// Fit an LMS line to the rows.
for (row_it.mark_cycle_pt(); !row_it.cycled_list(); row_it.forward())
fit_lms_line(row_it.data());
float gradient;
float fit_error;
// Compute the skew based on the fitted line.
compute_page_skew(blocks, gradient, fit_error);
return gradient;
}
/**
* @name make_rows
*
* Arrange the blobs into rows.
*/
float make_rows(ICOORD page_tr, TO_BLOCK_LIST *port_blocks) {
float port_m; // global skew
float port_err; // global noise
TO_BLOCK_IT block_it; // iterator
block_it.set_to_list(port_blocks);
for (block_it.mark_cycle_pt(); !block_it.cycled_list();
block_it.forward())
make_initial_textrows(page_tr, block_it.data(), FCOORD(1.0f, 0.0f),
!(BOOL8) textord_test_landscape);
// compute globally
compute_page_skew(port_blocks, port_m, port_err);
block_it.set_to_list(port_blocks);
for (block_it.mark_cycle_pt(); !block_it.cycled_list(); block_it.forward()) {
cleanup_rows_making(page_tr, block_it.data(), port_m, FCOORD(1.0f, 0.0f),
block_it.data()->block->bounding_box().left(),
!(BOOL8)textord_test_landscape);
}
return port_m; // global skew
}
namespace tesseract {
void Textord::fit_rows(float gradient, ICOORD page_tr, TO_BLOCK_LIST *blocks) {
TO_BLOCK_IT block_it(blocks); // iterator
for (block_it.mark_cycle_pt(); !block_it.cycled_list(); block_it.forward()) {
cleanup_rows_fitting(page_tr, block_it.data(), gradient, FCOORD(1.0f, 0.0f),
block_it.data()->block->bounding_box().left(),
!(BOOL8)textord_test_landscape);
}
}
} // namespace tesseract.
/**
* @name make_initial_textrows
*
* Arrange the good blobs into rows of text.
*/
void make_initial_textrows( //find lines
ICOORD page_tr,
TO_BLOCK *block, //block to do
FCOORD rotation, //for drawing
BOOL8 testing_on //correct orientation
) {
TO_ROW_IT row_it = block->get_rows ();
#ifndef GRAPHICS_DISABLED
ScrollView::Color colour; //of row
if (textord_show_initial_rows && testing_on) {
if (to_win == NULL)
create_to_win(page_tr);
}
#endif
//guess skew
assign_blobs_to_rows (block, NULL, 0, TRUE, TRUE, textord_show_initial_rows && testing_on);
row_it.move_to_first ();
for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ())
fit_lms_line (row_it.data ());
#ifndef GRAPHICS_DISABLED
if (textord_show_initial_rows && testing_on) {
colour = ScrollView::RED;
for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ()) {
plot_to_row (row_it.data (), colour, rotation);
colour = (ScrollView::Color) (colour + 1);
if (colour > ScrollView::MAGENTA)
colour = ScrollView::RED;
}
}
#endif
}
/**
* @name fit_lms_line
*
* Fit an LMS line to a row.
*/
void fit_lms_line(TO_ROW *row) {
float m, c; // fitted line
tesseract::DetLineFit lms;
BLOBNBOX_IT blob_it = row->blob_list();
for (blob_it.mark_cycle_pt(); !blob_it.cycled_list(); blob_it.forward()) {
const TBOX& box = blob_it.data()->bounding_box();
lms.Add(ICOORD((box.left() + box.right()) / 2, box.bottom()));
}
double error = lms.Fit(&m, &c);
row->set_line(m, c, error);
}
/**
* @name compute_page_skew
*
* Compute the skew over a full page by averaging the gradients over
* all the lines. Get the error of the same row.
*/
void compute_page_skew( //get average gradient
TO_BLOCK_LIST *blocks, //list of blocks
float &page_m, //average gradient
float &page_err //average error
) {
inT32 row_count; //total rows
inT32 blob_count; //total_blobs
inT32 row_err; //integer error
float *gradients; //of rows
float *errors; //of rows
inT32 row_index; //of total
TO_ROW *row; //current row
TO_BLOCK_IT block_it = blocks; //iterator
TO_ROW_IT row_it;
row_count = 0;
blob_count = 0;
for (block_it.mark_cycle_pt (); !block_it.cycled_list ();
block_it.forward ()) {
POLY_BLOCK* pb = block_it.data()->block->poly_block();
if (pb != NULL && !pb->IsText())
continue; // Pretend non-text blocks don't exist.
row_count += block_it.data ()->get_rows ()->length ();
//count up rows
row_it.set_to_list (block_it.data ()->get_rows ());
for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ())
blob_count += row_it.data ()->blob_list ()->length ();
}
if (row_count == 0) {
page_m = 0.0f;
page_err = 0.0f;
return;
}
gradients = (float *) alloc_mem (blob_count * sizeof (float));
//get mem
errors = (float *) alloc_mem (blob_count * sizeof (float));
if (gradients == NULL || errors == NULL)
MEMORY_OUT.error ("compute_page_skew", ABORT, NULL);
row_index = 0;
for (block_it.mark_cycle_pt (); !block_it.cycled_list ();
block_it.forward ()) {
POLY_BLOCK* pb = block_it.data()->block->poly_block();
if (pb != NULL && !pb->IsText())
continue; // Pretend non-text blocks don't exist.
row_it.set_to_list (block_it.data ()->get_rows ());
for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ()) {
row = row_it.data ();
blob_count = row->blob_list ()->length ();
row_err = (inT32) ceil (row->line_error ());
if (row_err <= 0)
row_err = 1;
if (textord_biased_skewcalc) {
blob_count /= row_err;
for (blob_count /= row_err; blob_count > 0; blob_count--) {
gradients[row_index] = row->line_m ();
errors[row_index] = row->line_error ();
row_index++;
}
}
else if (blob_count >= textord_min_blobs_in_row) {
//get gradient
gradients[row_index] = row->line_m ();
errors[row_index] = row->line_error ();
row_index++;
}
}
}
if (row_index == 0) {
//desperate
for (block_it.mark_cycle_pt (); !block_it.cycled_list ();
block_it.forward ()) {
POLY_BLOCK* pb = block_it.data()->block->poly_block();
if (pb != NULL && !pb->IsText())
continue; // Pretend non-text blocks don't exist.
row_it.set_to_list (block_it.data ()->get_rows ());
for (row_it.mark_cycle_pt (); !row_it.cycled_list ();
row_it.forward ()) {
row = row_it.data ();
gradients[row_index] = row->line_m ();
errors[row_index] = row->line_error ();
row_index++;
}
}
}
row_count = row_index;
row_index = choose_nth_item ((inT32) (row_count * textord_skew_ile),
gradients, row_count);
page_m = gradients[row_index];
row_index = choose_nth_item ((inT32) (row_count * textord_skew_ile),
errors, row_count);
page_err = errors[row_index];
free_mem(gradients);
free_mem(errors);
}
const double kNoiseSize = 0.5; // Fraction of xheight.
const int kMinSize = 8; // Min pixels to be xheight.
/**
* Return true if the dot looks like it is part of the i.
* Doesn't work for any other diacritical.
*/
static bool dot_of_i(BLOBNBOX* dot, BLOBNBOX* i, TO_ROW* row) {
const TBOX& ibox = i->bounding_box();
const TBOX& dotbox = dot->bounding_box();
// Must overlap horizontally by enough and be high enough.
int overlap = MIN(dotbox.right(), ibox.right()) -
MAX(dotbox.left(), ibox.left());
if (ibox.height() <= 2 * dotbox.height() ||
(overlap * 2 < ibox.width() && overlap < dotbox.width()))
return false;
// If the i is tall and thin then it is good.
if (ibox.height() > ibox.width() * 2)
return true; // The i or ! must be tall and thin.
// It might still be tall and thin, but it might be joined to something.
// So search the outline for a piece of large height close to the edges
// of the dot.
const double kHeightFraction = 0.6;
double target_height = MIN(dotbox.bottom(), ibox.top());
target_height -= row->line_m()*dotbox.left() + row->line_c();
target_height *= kHeightFraction;
int left_min = dotbox.left() - dotbox.width();
int middle = (dotbox.left() + dotbox.right())/2;
int right_max = dotbox.right() + dotbox.width();
int left_miny = 0;
int left_maxy = 0;
int right_miny = 0;
int right_maxy = 0;
bool found_left = false;
bool found_right = false;
bool in_left = false;
bool in_right = false;
C_BLOB* blob = i->cblob();
C_OUTLINE_IT o_it = blob->out_list();
for (o_it.mark_cycle_pt(); !o_it.cycled_list(); o_it.forward()) {
C_OUTLINE* outline = o_it.data();
int length = outline->pathlength();
ICOORD pos = outline->start_pos();
for (int step = 0; step < length; pos += outline->step(step++)) {
int x = pos.x();
int y = pos.y();
if (x >= left_min && x < middle && !found_left) {
// We are in the left part so find min and max y.
if (in_left) {
if (y > left_maxy) left_maxy = y;
if (y < left_miny) left_miny = y;
} else {
left_maxy = left_miny = y;
in_left = true;
}
} else if (in_left) {
// We just left the left so look for size.
if (left_maxy - left_miny > target_height) {
if (found_right)
return true;
found_left = true;
}
in_left = false;
}
if (x <= right_max && x > middle && !found_right) {
// We are in the right part so find min and max y.
if (in_right) {
if (y > right_maxy) right_maxy = y;
if (y < right_miny) right_miny = y;
} else {
right_maxy = right_miny = y;
in_right = true;
}
} else if (in_right) {
// We just left the right so look for size.
if (right_maxy - right_miny > target_height) {
if (found_left)
return true;
found_right = true;
}
in_right = false;
}
}
}
return false;
}
static void vigorous_noise_removal(TO_BLOCK* block) {
TO_ROW_IT row_it = block->get_rows ();
for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ()) {
TO_ROW* row = row_it.data();
BLOBNBOX_IT b_it = row->blob_list();
// Estimate the xheight on the row.
int max_height = 0;
for (b_it.mark_cycle_pt(); !b_it.cycled_list(); b_it.forward()) {
BLOBNBOX* blob = b_it.data();
if (blob->bounding_box().height() > max_height)
max_height = blob->bounding_box().height();
}
STATS hstats(0, max_height + 1);
for (b_it.mark_cycle_pt(); !b_it.cycled_list(); b_it.forward()) {
BLOBNBOX* blob = b_it.data();
int height = blob->bounding_box().height();
if (height >= kMinSize)
hstats.add(blob->bounding_box().height(), 1);
}
float xheight = hstats.median();
// Delete small objects.
BLOBNBOX* prev = NULL;
for (b_it.mark_cycle_pt(); !b_it.cycled_list(); b_it.forward()) {
BLOBNBOX* blob = b_it.data();
const TBOX& box = blob->bounding_box();
if (box.height() < kNoiseSize * xheight) {
// Small so delete unless it looks like an i dot.
if (prev != NULL) {
if (dot_of_i(blob, prev, row))
continue; // Looks OK.
}
if (!b_it.at_last()) {
BLOBNBOX* next = b_it.data_relative(1);
if (dot_of_i(blob, next, row))
continue; // Looks OK.
}
// It might be noise so get rid of it.
if (blob->cblob() != NULL)
delete blob->cblob();
delete b_it.extract();
} else {
prev = blob;
}
}
}
}
/**
* cleanup_rows_making
*
* Remove overlapping rows and fit all the blobs to what's left.
*/
void cleanup_rows_making( //find lines
ICOORD page_tr, //top right
TO_BLOCK *block, //block to do
float gradient, //gradient to fit
FCOORD rotation, //for drawing
inT32 block_edge, //edge of block
BOOL8 testing_on //correct orientation
) {
//iterators
BLOBNBOX_IT blob_it = &block->blobs;
TO_ROW_IT row_it = block->get_rows ();
#ifndef GRAPHICS_DISABLED
if (textord_show_parallel_rows && testing_on) {
if (to_win == NULL)
create_to_win(page_tr);
}
#endif
//get row coords
fit_parallel_rows(block,
gradient,
rotation,
block_edge,
textord_show_parallel_rows &&testing_on);
delete_non_dropout_rows(block,
gradient,
rotation,
block_edge,
textord_show_parallel_rows &&testing_on);
expand_rows(page_tr, block, gradient, rotation, block_edge, testing_on);
blob_it.set_to_list (&block->blobs);
row_it.set_to_list (block->get_rows ());
for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ())
blob_it.add_list_after (row_it.data ()->blob_list ());
//give blobs back
assign_blobs_to_rows (block, &gradient, 1, FALSE, FALSE, FALSE);
//now new rows must be genuine
blob_it.set_to_list (&block->blobs);
blob_it.add_list_after (&block->large_blobs);
assign_blobs_to_rows (block, &gradient, 2, TRUE, TRUE, FALSE);
//safe to use big ones now
blob_it.set_to_list (&block->blobs);
//throw all blobs in
blob_it.add_list_after (&block->noise_blobs);
blob_it.add_list_after (&block->small_blobs);
assign_blobs_to_rows (block, &gradient, 3, FALSE, FALSE, FALSE);
}
namespace tesseract {
void Textord::cleanup_rows_fitting(ICOORD page_tr, // top right
TO_BLOCK *block, // block to do
float gradient, // gradient to fit
FCOORD rotation, // for drawing
inT32 block_edge, // edge of block
BOOL8 testing_on) { // correct orientation
BLOBNBOX_IT blob_it = &block->blobs;
TO_ROW_IT row_it = block->get_rows();
#ifndef GRAPHICS_DISABLED
if (textord_show_parallel_rows && testing_on) {
if (to_win == NULL)
create_to_win(page_tr);
}
#endif
for (row_it.mark_cycle_pt(); !row_it.cycled_list(); row_it.forward())
row_it.data()->blob_list()->sort(blob_x_order);
fit_parallel_rows(block, gradient, rotation, block_edge, FALSE);
if (textord_heavy_nr) {
vigorous_noise_removal(block);
}
POLY_BLOCK* pb = block->block->poly_block();
if (pb == NULL || pb->IsText()) {
separate_underlines(block, gradient, rotation, testing_on);
pre_associate_blobs(page_tr, block, rotation, testing_on);
}
#ifndef GRAPHICS_DISABLED
if (textord_show_final_rows && testing_on) {
if (to_win == NULL)
create_to_win(page_tr);
}
#endif
fit_parallel_rows(block, gradient, rotation, block_edge, FALSE);
// textord_show_final_rows && testing_on);
make_spline_rows(block,
gradient,
rotation,
block_edge,
textord_show_final_rows && testing_on);
// We only want to call compute_block_xheight() if
// both textord_old_xheight and textord_old_baselines are false.
// No need to call compute_block_xheight() if textord_old_baselines
// is true, since all appropriate xheight computation functions
// would be called from make_old_baselines().
// Note: it can not be the case that textord_old_baselines is
// false, and textord_old_xheight is true.
if (!textord_old_xheight && !textord_old_baselines)
compute_block_xheight(block, gradient);
if (textord_restore_underlines) // fix underlines
restore_underlined_blobs(block);
#ifndef GRAPHICS_DISABLED
if (textord_show_final_rows && testing_on) {
ScrollView::Color colour = ScrollView::RED;
for (row_it.mark_cycle_pt(); !row_it.cycled_list(); row_it.forward()) {
plot_parallel_row(row_it.data(), gradient,
block_edge, colour, rotation);
colour = (ScrollView::Color) (colour + 1);
if (colour > ScrollView::MAGENTA)
colour = ScrollView::RED;
}
plot_blob_list(to_win, &block->blobs,
ScrollView::MAGENTA, ScrollView::WHITE);
//show discarded blobs
plot_blob_list(to_win, &block->underlines,
ScrollView::YELLOW, ScrollView::CORAL);
}
if (textord_show_final_rows && testing_on && block->blobs.length () > 0)
tprintf ("%d blobs discarded as noise\n", block->blobs.length ());
if (textord_show_final_rows && testing_on) {
draw_meanlines(block, gradient, block_edge, ScrollView::WHITE, rotation);
}
#endif
}
} // namespace tesseract.
/**
* delete_non_dropout_rows
*
* Compute the linespacing and offset.
*/
void delete_non_dropout_rows( //find lines
TO_BLOCK *block, //block to do
float gradient, //global skew
FCOORD rotation, //deskew vector
inT32 block_edge, //left edge
BOOL8 testing_on //correct orientation
) {
TBOX block_box; //deskewed block
inT32 *deltas; //change in occupation
inT32 *occupation; //of pixel coords
inT32 max_y; //in block
inT32 min_y;
inT32 line_index; //of scan line
inT32 line_count; //no of scan lines
inT32 distance; //to drop-out
inT32 xleft; //of block
inT32 ybottom; //of block
TO_ROW *row; //current row
TO_ROW_IT row_it = block->get_rows ();
BLOBNBOX_IT blob_it = &block->blobs;
if (row_it.length () == 0)
return; //empty block
block_box = deskew_block_coords (block, gradient);
xleft = block->block->bounding_box ().left ();
ybottom = block->block->bounding_box ().bottom ();
min_y = block_box.bottom () - 1;
max_y = block_box.top () + 1;
for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ()) {
line_index = (inT32) floor (row_it.data ()->intercept ());
if (line_index <= min_y)
min_y = line_index - 1;
if (line_index >= max_y)
max_y = line_index + 1;
}
line_count = max_y - min_y + 1;
if (line_count <= 0)
return; //empty block
deltas = (inT32 *) alloc_mem (line_count * sizeof (inT32));
occupation = (inT32 *) alloc_mem (line_count * sizeof (inT32));
if (deltas == NULL || occupation == NULL)
MEMORY_OUT.error ("compute_line_spacing", ABORT, NULL);
compute_line_occupation(block, gradient, min_y, max_y, occupation, deltas);
compute_occupation_threshold ((inT32)
ceil (block->line_spacing *
(tesseract::CCStruct::kDescenderFraction +
tesseract::CCStruct::kAscenderFraction)),
(inT32) ceil (block->line_spacing *
(tesseract::CCStruct::kXHeightFraction +
tesseract::CCStruct::kAscenderFraction)),
max_y - min_y + 1, occupation, deltas);
#ifndef GRAPHICS_DISABLED
if (testing_on) {
draw_occupation(xleft, ybottom, min_y, max_y, occupation, deltas);
}
#endif
compute_dropout_distances(occupation, deltas, line_count);
for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ()) {
row = row_it.data ();
line_index = (inT32) floor (row->intercept ());
distance = deltas[line_index - min_y];
if (find_best_dropout_row (row, distance, block->line_spacing / 2,
line_index, &row_it, testing_on)) {
#ifndef GRAPHICS_DISABLED
if (testing_on)
plot_parallel_row(row, gradient, block_edge,
ScrollView::WHITE, rotation);
#endif
blob_it.add_list_after (row_it.data ()->blob_list ());
delete row_it.extract (); //too far away
}
}
for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ()) {
blob_it.add_list_after (row_it.data ()->blob_list ());
}
free_mem(deltas);
free_mem(occupation);
}
/**
* @name find_best_dropout_row
*
* Delete this row if it has a neighbour with better dropout characteristics.
* TRUE is returned if the row should be deleted.
*/
BOOL8 find_best_dropout_row( //find neighbours
TO_ROW *row, //row to test
inT32 distance, //dropout dist
float dist_limit, //threshold distance
inT32 line_index, //index of row
TO_ROW_IT *row_it, //current position
BOOL8 testing_on //correct orientation
) {
inT32 next_index; //of neigbouring row
inT32 row_offset; //from current row
inT32 abs_dist; //absolute distance
inT8 row_inc; //increment to row_index
TO_ROW *next_row; //nextious row
if (testing_on)
tprintf ("Row at %g(%g), dropout dist=%d,",
row->intercept (), row->parallel_c (), distance);
if (distance < 0) {
row_inc = 1;
abs_dist = -distance;
}
else {
row_inc = -1;
abs_dist = distance;
}
if (abs_dist > dist_limit) {
if (testing_on) {
tprintf (" too far - deleting\n");
}
return TRUE;
}
if ((distance < 0 && !row_it->at_last ())
|| (distance >= 0 && !row_it->at_first ())) {
row_offset = row_inc;
do {
next_row = row_it->data_relative (row_offset);
next_index = (inT32) floor (next_row->intercept ());
if ((distance < 0
&& next_index < line_index
&& next_index > line_index + distance + distance)
|| (distance >= 0
&& next_index > line_index
&& next_index < line_index + distance + distance)) {
if (testing_on) {
tprintf (" nearer neighbour (%d) at %g\n",
line_index + distance - next_index,
next_row->intercept ());
}
return TRUE; //other is nearer
}
else if (next_index == line_index
|| next_index == line_index + distance + distance) {
if (row->believability () <= next_row->believability ()) {
if (testing_on) {
tprintf (" equal but more believable at %g (%g/%g)\n",
next_row->intercept (),
row->believability (),
next_row->believability ());
}
return TRUE; //other is more believable
}
}
row_offset += row_inc;
}
while ((next_index == line_index
|| next_index == line_index + distance + distance)
&& row_offset < row_it->length ());
if (testing_on)
tprintf (" keeping\n");
}
return FALSE;
}
/**
* @name deskew_block_coords
*
* Compute the bounding box of all the blobs in the block
* if they were deskewed without actually doing it.
*/
TBOX deskew_block_coords( //block box
TO_BLOCK *block, //block to do
float gradient //global skew
) {
TBOX result; //block bounds
TBOX blob_box; //of block
FCOORD rotation; //deskew vector
float length; //of gradient vector
TO_ROW_IT row_it = block->get_rows ();
TO_ROW *row; //current row
BLOBNBOX *blob; //current blob
BLOBNBOX_IT blob_it; //iterator
length = sqrt (gradient * gradient + 1);
rotation = FCOORD (1 / length, -gradient / length);
for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ()) {
row = row_it.data ();
blob_it.set_to_list (row->blob_list ());
for (blob_it.mark_cycle_pt (); !blob_it.cycled_list ();
blob_it.forward ()) {
blob = blob_it.data ();
blob_box = blob->bounding_box ();
blob_box.rotate (rotation);//de-skew it
result += blob_box;
}
}
return result;
}
/**
* @name compute_line_occupation
*
* Compute the pixel projection back on the y axis given the global
* skew. Also compute the 1st derivative.
*/
void compute_line_occupation( //project blobs
TO_BLOCK *block, //block to do
float gradient, //global skew
inT32 min_y, //min coord in block
inT32 max_y, //in block
inT32 *occupation, //output projection
inT32 *deltas //derivative
) {
inT32 line_count; //maxy-miny+1
inT32 line_index; //of scan line
int index; //array index for daft compilers
float top, bottom; //coords of blob
inT32 width; //of blob
TO_ROW *row; //current row
TO_ROW_IT row_it = block->get_rows ();
BLOBNBOX *blob; //current blob
BLOBNBOX_IT blob_it; //iterator
float length; //of skew vector
TBOX blob_box; //bounding box
FCOORD rotation; //inverse of skew
line_count = max_y - min_y + 1;
length = sqrt (gradient * gradient + 1);
rotation = FCOORD (1 / length, -gradient / length);
for (line_index = 0; line_index < line_count; line_index++)
deltas[line_index] = 0;
for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ()) {
row = row_it.data ();
blob_it.set_to_list (row->blob_list ());
for (blob_it.mark_cycle_pt (); !blob_it.cycled_list ();
blob_it.forward ()) {
blob = blob_it.data ();
blob_box = blob->bounding_box ();
blob_box.rotate (rotation);//de-skew it
top = blob_box.top ();
bottom = blob_box.bottom ();
width =
(inT32) floor ((FLOAT32) (blob_box.right () - blob_box.left ()));
if ((inT32) floor (bottom) < min_y
|| (inT32) floor (bottom) - min_y >= line_count)
fprintf (stderr,
"Bad y coord of bottom, " INT32FORMAT "(" INT32FORMAT ","
INT32FORMAT ")\n", (inT32) floor (bottom), min_y, max_y);
//count transitions
index = (inT32) floor (bottom) - min_y;
deltas[index] += width;
if ((inT32) floor (top) < min_y
|| (inT32) floor (top) - min_y >= line_count)
fprintf (stderr,
"Bad y coord of top, " INT32FORMAT "(" INT32FORMAT ","
INT32FORMAT ")\n", (inT32) floor (top), min_y, max_y);
index = (inT32) floor (top) - min_y;
deltas[index] -= width;
}
}
occupation[0] = deltas[0];
for (line_index = 1; line_index < line_count; line_index++)
occupation[line_index] = occupation[line_index - 1] + deltas[line_index];
}
/**
* compute_occupation_threshold
*
* Compute thresholds for textline or not for the occupation array.
*/
void compute_occupation_threshold( //project blobs
inT32 low_window, //below result point
inT32 high_window, //above result point
inT32 line_count, //array sizes
inT32 *occupation, //input projection
inT32 *thresholds //output thresholds
) {
inT32 line_index; //of thresholds line
inT32 low_index; //in occupation
inT32 high_index; //in occupation
inT32 sum; //current average
inT32 divisor; //to get thresholds
inT32 min_index; //of min occ
inT32 min_occ; //min in locality
inT32 test_index; //for finding min
divisor =
(inT32) ceil ((low_window + high_window) / textord_occupancy_threshold);
if (low_window + high_window < line_count) {
for (sum = 0, high_index = 0; high_index < low_window; high_index++)
sum += occupation[high_index];
for (low_index = 0; low_index < high_window; low_index++, high_index++)
sum += occupation[high_index];
min_occ = occupation[0];
min_index = 0;
for (test_index = 1; test_index < high_index; test_index++) {
if (occupation[test_index] <= min_occ) {
min_occ = occupation[test_index];
min_index = test_index; //find min in region
}
}
for (line_index = 0; line_index < low_window; line_index++)
thresholds[line_index] = (sum - min_occ) / divisor + min_occ;
//same out to end
for (low_index = 0; high_index < line_count; low_index++, high_index++) {
sum -= occupation[low_index];
sum += occupation[high_index];
if (occupation[high_index] <= min_occ) {
//find min in region
min_occ = occupation[high_index];
min_index = high_index;
}
//lost min from region
if (min_index <= low_index) {
min_occ = occupation[low_index + 1];
min_index = low_index + 1;
for (test_index = low_index + 2; test_index <= high_index;
test_index++) {
if (occupation[test_index] <= min_occ) {
min_occ = occupation[test_index];
//find min in region
min_index = test_index;
}
}
}
thresholds[line_index++] = (sum - min_occ) / divisor + min_occ;
}
}
else {
min_occ = occupation[0];
min_index = 0;
for (sum = 0, low_index = 0; low_index < line_count; low_index++) {
if (occupation[low_index] < min_occ) {
min_occ = occupation[low_index];
min_index = low_index;
}
sum += occupation[low_index];
}
line_index = 0;
}
for (; line_index < line_count; line_index++)
thresholds[line_index] = (sum - min_occ) / divisor + min_occ;
//same out to end
}
/**
* @name compute_dropout_distances
*
* Compute the distance from each coordinate to the nearest dropout.
*/
void compute_dropout_distances( //project blobs
inT32 *occupation, //input projection
inT32 *thresholds, //output thresholds
inT32 line_count //array sizes
) {
inT32 line_index; //of thresholds line
inT32 distance; //from prev dropout
inT32 next_dist; //to next dropout
inT32 back_index; //for back filling
inT32 prev_threshold; //before overwrite
distance = -line_count;
line_index = 0;
do {
do {
distance--;
prev_threshold = thresholds[line_index];
//distance from prev
thresholds[line_index] = distance;
line_index++;
}
while (line_index < line_count
&& (occupation[line_index] < thresholds[line_index]
|| occupation[line_index - 1] >= prev_threshold));
if (line_index < line_count) {
back_index = line_index - 1;
next_dist = 1;
while (next_dist < -distance && back_index >= 0) {
thresholds[back_index] = next_dist;
back_index--;
next_dist++;
distance++;
}
distance = 1;
}
}
while (line_index < line_count);
}
/**
* @name expand_rows
*
* Expand each row to the least of its allowed size and touching its
* neighbours. If the expansion would entirely swallow a neighbouring row
* then do so.
*/
void expand_rows( //find lines
ICOORD page_tr, //top right
TO_BLOCK *block, //block to do
float gradient, //gradient to fit
FCOORD rotation, //for drawing
inT32 block_edge, //edge of block
BOOL8 testing_on //correct orientation
) {
BOOL8 swallowed_row; //eaten a neighbour
float y_max, y_min; //new row limits
float y_bottom, y_top; //allowed limits
TO_ROW *test_row; //next row
TO_ROW *row; //current row
//iterators
BLOBNBOX_IT blob_it = &block->blobs;
TO_ROW_IT row_it = block->get_rows ();
#ifndef GRAPHICS_DISABLED
if (textord_show_expanded_rows && testing_on) {
if (to_win == NULL)
create_to_win(page_tr);
}
#endif
adjust_row_limits(block); //shift min,max.
if (textord_new_initial_xheight) {
if (block->get_rows ()->length () == 0)
return;
compute_row_stats(block, textord_show_expanded_rows &&testing_on);
}
assign_blobs_to_rows (block, &gradient, 4, TRUE, FALSE, FALSE);
//get real membership
if (block->get_rows ()->length () == 0)
return;
fit_parallel_rows(block,
gradient,
rotation,
block_edge,
textord_show_expanded_rows &&testing_on);
if (!textord_new_initial_xheight)
compute_row_stats(block, textord_show_expanded_rows &&testing_on);
row_it.move_to_last ();
do {
row = row_it.data ();
y_max = row->max_y (); //get current limits
y_min = row->min_y ();
y_bottom = row->intercept () - block->line_size * textord_expansion_factor *
tesseract::CCStruct::kDescenderFraction;
y_top = row->intercept () + block->line_size * textord_expansion_factor *
(tesseract::CCStruct::kXHeightFraction +
tesseract::CCStruct::kAscenderFraction);
if (y_min > y_bottom) { //expansion allowed
if (textord_show_expanded_rows && testing_on)
tprintf("Expanding bottom of row at %f from %f to %f\n",
row->intercept(), y_min, y_bottom);
//expandable
swallowed_row = TRUE;
while (swallowed_row && !row_it.at_last ()) {
swallowed_row = FALSE;
//get next one
test_row = row_it.data_relative (1);
//overlaps space
if (test_row->max_y () > y_bottom) {
if (test_row->min_y () > y_bottom) {
if (textord_show_expanded_rows && testing_on)
tprintf("Eating row below at %f\n", test_row->intercept());
row_it.forward ();
#ifndef GRAPHICS_DISABLED
if (textord_show_expanded_rows && testing_on)
plot_parallel_row(test_row,
gradient,
block_edge,
ScrollView::WHITE,
rotation);
#endif
blob_it.set_to_list (row->blob_list ());
blob_it.add_list_after (test_row->blob_list ());
//swallow complete row
delete row_it.extract ();
row_it.backward ();
swallowed_row = TRUE;
}
else if (test_row->max_y () < y_min) {
//shorter limit
y_bottom = test_row->max_y ();
if (textord_show_expanded_rows && testing_on)
tprintf("Truncating limit to %f due to touching row at %f\n",
y_bottom, test_row->intercept());
}
else {
y_bottom = y_min; //can't expand it
if (textord_show_expanded_rows && testing_on)
tprintf("Not expanding limit beyond %f due to touching row at %f\n",
y_bottom, test_row->intercept());
}
}
}
y_min = y_bottom; //expand it
}
if (y_max < y_top) { //expansion allowed
if (textord_show_expanded_rows && testing_on)
tprintf("Expanding top of row at %f from %f to %f\n",
row->intercept(), y_max, y_top);
swallowed_row = TRUE;
while (swallowed_row && !row_it.at_first ()) {
swallowed_row = FALSE;
//get one above
test_row = row_it.data_relative (-1);
if (test_row->min_y () < y_top) {
if (test_row->max_y () < y_top) {
if (textord_show_expanded_rows && testing_on)
tprintf("Eating row above at %f\n", test_row->intercept());
row_it.backward ();
blob_it.set_to_list (row->blob_list ());
#ifndef GRAPHICS_DISABLED
if (textord_show_expanded_rows && testing_on)
plot_parallel_row(test_row,
gradient,
block_edge,
ScrollView::WHITE,
rotation);
#endif
blob_it.add_list_after (test_row->blob_list ());
//swallow complete row
delete row_it.extract ();
row_it.forward ();
swallowed_row = TRUE;
}
else if (test_row->min_y () < y_max) {
//shorter limit
y_top = test_row->min_y ();
if (textord_show_expanded_rows && testing_on)
tprintf("Truncating limit to %f due to touching row at %f\n",
y_top, test_row->intercept());
}
else {
y_top = y_max; //can't expand it
if (textord_show_expanded_rows && testing_on)
tprintf("Not expanding limit beyond %f due to touching row at %f\n",
y_top, test_row->intercept());
}
}
}
y_max = y_top;
}
//new limits
row->set_limits (y_min, y_max);
row_it.backward ();
}
while (!row_it.at_last ());
}
/**
* adjust_row_limits
*
* Change the limits of rows to suit the default fractions.
*/
void adjust_row_limits( //tidy limits
TO_BLOCK *block //block to do
) {
TO_ROW *row; //current row
float size; //size of row
float ymax; //top of row
float ymin; //bottom of row
TO_ROW_IT row_it = block->get_rows ();
if (textord_show_expanded_rows)
tprintf("Adjusting row limits for block(%d,%d)\n",
block->block->bounding_box().left(),
block->block->bounding_box().top());
for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ()) {
row = row_it.data ();
size = row->max_y () - row->min_y ();
if (textord_show_expanded_rows)
tprintf("Row at %f has min %f, max %f, size %f\n",
row->intercept(), row->min_y(), row->max_y(), size);
size /= tesseract::CCStruct::kXHeightFraction +
tesseract::CCStruct::kAscenderFraction +
tesseract::CCStruct::kDescenderFraction;
ymax = size * (tesseract::CCStruct::kXHeightFraction +
tesseract::CCStruct::kAscenderFraction);
ymin = -size * tesseract::CCStruct::kDescenderFraction;
row->set_limits (row->intercept () + ymin, row->intercept () + ymax);
row->merged = FALSE;
}
}
/**
* @name compute_row_stats
*
* Compute the linespacing and offset.
*/
void compute_row_stats( //find lines
TO_BLOCK *block, //block to do
BOOL8 testing_on //correct orientation
) {
inT32 row_index; //of median
TO_ROW *row; //current row
TO_ROW *prev_row; //previous row
float iqr; //inter quartile range
TO_ROW_IT row_it = block->get_rows ();
//number of rows
inT16 rowcount = row_it.length ();
TO_ROW **rows; //for choose nth
rows = (TO_ROW **) alloc_mem (rowcount * sizeof (TO_ROW *));
if (rows == NULL)
MEMORY_OUT.error ("compute_row_stats", ABORT, NULL);
rowcount = 0;
prev_row = NULL;
row_it.move_to_last (); //start at bottom
do {
row = row_it.data ();
if (prev_row != NULL) {
rows[rowcount++] = prev_row;
prev_row->spacing = row->intercept () - prev_row->intercept ();
if (testing_on)
tprintf ("Row at %g yields spacing of %g\n",
row->intercept (), prev_row->spacing);
}
prev_row = row;
row_it.backward ();
}
while (!row_it.at_last ());
block->key_row = prev_row;
block->baseline_offset =
fmod (prev_row->parallel_c (), block->line_spacing);
if (testing_on)
tprintf ("Blob based spacing=(%g,%g), offset=%g",
block->line_size, block->line_spacing, block->baseline_offset);
if (rowcount > 0) {
row_index = choose_nth_item (rowcount * 3 / 4, rows, rowcount,
sizeof (TO_ROW *), row_spacing_order);
iqr = rows[row_index]->spacing;
row_index = choose_nth_item (rowcount / 4, rows, rowcount,
sizeof (TO_ROW *), row_spacing_order);
iqr -= rows[row_index]->spacing;
row_index = choose_nth_item (rowcount / 2, rows, rowcount,
sizeof (TO_ROW *), row_spacing_order);
block->key_row = rows[row_index];
if (testing_on)
tprintf (" row based=%g(%g)", rows[row_index]->spacing, iqr);
if (rowcount > 2
&& iqr < rows[row_index]->spacing * textord_linespace_iqrlimit) {
if (!textord_new_initial_xheight) {
if (rows[row_index]->spacing < block->line_spacing
&& rows[row_index]->spacing > block->line_size)
//within range
block->line_size = rows[row_index]->spacing;
//spacing=size
else if (rows[row_index]->spacing > block->line_spacing)
block->line_size = block->line_spacing;
//too big so use max
}
else {
if (rows[row_index]->spacing < block->line_spacing)
block->line_size = rows[row_index]->spacing;
else
block->line_size = block->line_spacing;
//too big so use max
}
if (block->line_size < textord_min_xheight)
block->line_size = (float) textord_min_xheight;
block->line_spacing = rows[row_index]->spacing;
block->max_blob_size =
block->line_spacing * textord_excess_blobsize;
}
block->baseline_offset = fmod (rows[row_index]->intercept (),
block->line_spacing);
}
if (testing_on)
tprintf ("\nEstimate line size=%g, spacing=%g, offset=%g\n",
block->line_size, block->line_spacing, block->baseline_offset);
free_mem(rows);
}
/**
* @name compute_block_xheight
*
* Compute the xheight of the individual rows, then correlate them
* and interpret ascenderless lines, correcting xheights.
*
* First we compute our best guess of the x-height of each row independently
* with compute_row_xheight(), which looks for a pair of commonly occurring
* heights that could be x-height and ascender height. This function also
* attempts to find descenders of lowercase letters (i.e. not the small
* descenders that could appear in upper case letters as Q,J).
*
* After this computation each row falls into one of the following categories:
* ROW_ASCENDERS_FOUND: we found xheight and ascender modes, so this must be
* a regular row; we'll use its xheight to compute
* xheight and ascrise estimates for the block
* ROW_DESCENDERS_FOUND: no ascenders, so we do not have a high confidence in
* the xheight of this row (don't use it for estimating
* block xheight), but this row can't contain all caps
* ROW_UNKNOWN: a row with no ascenders/descenders, could be all lowercase
* (or mostly lowercase for fonts with very few ascenders),
* all upper case or small caps
* ROW_INVALID: no meaningful xheight could be found for this row
*
* We then run correct_row_xheight() and use the computed xheight and ascrise
* averages to correct xheight values of the rows in ROW_DESCENDERS_FOUND,
* ROW_UNKNOWN and ROW_INVALID categories.
*
*/
namespace tesseract {
void Textord::compute_block_xheight(TO_BLOCK *block, float gradient) {
TO_ROW *row; // current row
float asc_frac_xheight = CCStruct::kAscenderFraction /
CCStruct::kXHeightFraction;
float desc_frac_xheight = CCStruct::kDescenderFraction /
CCStruct::kXHeightFraction;
inT32 min_height, max_height; // limits on xheight
TO_ROW_IT row_it = block->get_rows();
if (row_it.empty()) return; // no rows
// Compute the best guess of xheight of each row individually.
// Use xheight and ascrise values of the rows where ascenders were found.
get_min_max_xheight(block->line_size, &min_height, &max_height);
STATS row_asc_xheights(min_height, max_height + 1);
STATS row_asc_ascrise(static_cast<int>(min_height * asc_frac_xheight),
static_cast<int>(max_height * asc_frac_xheight) + 1);
int min_desc_height = static_cast<int>(min_height * desc_frac_xheight);
int max_desc_height = static_cast<int>(max_height * desc_frac_xheight);
STATS row_asc_descdrop(min_desc_height, max_desc_height + 1);
STATS row_desc_xheights(min_height, max_height + 1);
STATS row_desc_descdrop(min_desc_height, max_desc_height + 1);
STATS row_cap_xheights(min_height, max_height + 1);
STATS row_cap_floating_xheights(min_height, max_height + 1);
for (row_it.mark_cycle_pt(); !row_it.cycled_list(); row_it.forward()) {
row = row_it.data();
// Compute the xheight of this row if it has not been computed before.
if (row->xheight <= 0.0) {
compute_row_xheight(row, block->block->classify_rotation(),
gradient, block->line_size);
}
ROW_CATEGORY row_category = get_row_category(row);
if (row_category == ROW_ASCENDERS_FOUND) {
row_asc_xheights.add(static_cast<inT32>(row->xheight),
row->xheight_evidence);
row_asc_ascrise.add(static_cast<inT32>(row->ascrise),
row->xheight_evidence);
row_asc_descdrop.add(static_cast<inT32>(-row->descdrop),
row->xheight_evidence);
} else if (row_category == ROW_DESCENDERS_FOUND) {
row_desc_xheights.add(static_cast<inT32>(row->xheight),
row->xheight_evidence);
row_desc_descdrop.add(static_cast<inT32>(-row->descdrop),
row->xheight_evidence);
} else if (row_category == ROW_UNKNOWN) {
fill_heights(row, gradient, min_height, max_height,
&row_cap_xheights, &row_cap_floating_xheights);
}
}
float xheight = 0.0;
float ascrise = 0.0;
float descdrop = 0.0;
// Compute our best guess of xheight of this block.
if (row_asc_xheights.get_total() > 0) {
// Determine xheight from rows where ascenders were found.
xheight = row_asc_xheights.median();
ascrise = row_asc_ascrise.median();
descdrop = -row_asc_descdrop.median();
} else if (row_desc_xheights.get_total() > 0) {
// Determine xheight from rows where descenders were found.
xheight = row_desc_xheights.median();
descdrop = -row_desc_descdrop.median();
} else if (row_cap_xheights.get_total() > 0) {
// All the rows in the block were (a/de)scenderless.
// Try to search for two modes in row_cap_heights that could
// be the xheight and the capheight (e.g. some of the rows
// were lowercase, but did not have enough (a/de)scenders.
// If such two modes can not be found, this block is most
// likely all caps (or all small caps, in which case the code
// still works as intended).
compute_xheight_from_modes(&row_cap_xheights, &row_cap_floating_xheights,
textord_single_height_mode &&
block->block->classify_rotation().y() == 0.0,
min_height, max_height, &(xheight), &(ascrise));
if (ascrise == 0) { // assume only caps in the whole block
xheight = row_cap_xheights.median() * CCStruct::kXHeightCapRatio;
}
} else { // default block sizes
xheight = block->line_size * CCStruct::kXHeightFraction;
}
// Correct xheight, ascrise and descdrop if necessary.
bool corrected_xheight = false;
if (xheight < textord_min_xheight) {
xheight = static_cast<float>(textord_min_xheight);
corrected_xheight = true;
}
if (corrected_xheight || ascrise <= 0.0) {
ascrise = xheight * asc_frac_xheight;
}
if (corrected_xheight || descdrop >= 0.0) {
descdrop = -(xheight * desc_frac_xheight);
}
block->xheight = xheight;
if (textord_debug_xheights) {
tprintf("Block average xheight=%.4f, ascrise=%.4f, descdrop=%.4f\n",
xheight, ascrise, descdrop);
}
// Correct xheight, ascrise, descdrop of rows based on block averages.
for (row_it.mark_cycle_pt(); !row_it.cycled_list(); row_it.forward()) {
correct_row_xheight(row_it.data(), xheight, ascrise, descdrop);
}
}
/**
* @name compute_row_xheight
*
* Estimate the xheight of this row.
* Compute the ascender rise and descender drop at the same time.
* Set xheigh_evidence to the number of blobs with the chosen xheight
* that appear in this row.
*/
void Textord::compute_row_xheight(TO_ROW *row, // row to do
const FCOORD& rotation,
float gradient, // global skew
int block_line_size) {
// Find blobs representing repeated characters in rows and mark them.
// This information is used for computing row xheight and at a later
// stage when words are formed by make_words.
if (!row->rep_chars_marked()) {
mark_repeated_chars(row);
}
int min_height, max_height;
get_min_max_xheight(block_line_size, &min_height, &max_height);
STATS heights(min_height, max_height + 1);
STATS floating_heights(min_height, max_height + 1);
fill_heights(row, gradient, min_height, max_height,
&heights, &floating_heights);
row->ascrise = 0.0f;
row->xheight = 0.0f;
row->xheight_evidence =
compute_xheight_from_modes(&heights, &floating_heights,
textord_single_height_mode &&
rotation.y() == 0.0,
min_height, max_height,
&(row->xheight), &(row->ascrise));
row->descdrop = 0.0f;
if (row->xheight > 0.0) {
row->descdrop = static_cast<float>(
compute_row_descdrop(row, gradient, row->xheight_evidence, &heights));
}
}
} // namespace tesseract.
/**
* @name fill_heights
*
* Fill the given heights with heights of the blobs that are legal
* candidates for estimating xheight.
*/
void fill_heights(TO_ROW *row, float gradient, int min_height,
int max_height, STATS *heights, STATS *floating_heights) {
float xcentre; // centre of blob
float top; // top y coord of blob
float height; // height of blob
BLOBNBOX *blob; // current blob
int repeated_set;
BLOBNBOX_IT blob_it = row->blob_list();
if (blob_it.empty()) return; // no blobs in this row
bool has_rep_chars =
row->rep_chars_marked() && row->num_repeated_sets() > 0;
do {
blob = blob_it.data();
if (!blob->joined_to_prev()) {
xcentre = (blob->bounding_box().left() +
blob->bounding_box().right()) / 2.0f;
top = blob->bounding_box().top();
height = blob->bounding_box().height();
if (textord_fix_xheight_bug)
top -= row->baseline.y(xcentre);
else
top -= gradient * xcentre + row->parallel_c();
if (top >= min_height && top <= max_height) {
heights->add(static_cast<inT32>(floor(top + 0.5)), 1);
if (height / top < textord_min_blob_height_fraction) {
floating_heights->add(static_cast<inT32>(floor(top + 0.5)), 1);
}
}
}
// Skip repeated chars, since they are likely to skew the height stats.
if (has_rep_chars && blob->repeated_set() != 0) {
repeated_set = blob->repeated_set();
blob_it.forward();
while (!blob_it.at_first() &&
blob_it.data()->repeated_set() == repeated_set) {
blob_it.forward();
if (textord_debug_xheights)
tprintf("Skipping repeated char when computing xheight\n");
}
} else {
blob_it.forward();
}
} while (!blob_it.at_first());
}
/**
* @name compute_xheight_from_modes
*
* Given a STATS object heights, looks for two most frequently occurring
* heights that look like xheight and xheight + ascrise. If found, sets
* the values of *xheight and *ascrise accordingly, otherwise sets xheight
* to any most frequently occurring height and sets *ascrise to 0.
* Returns the number of times xheight occurred in heights.
* For each mode that is considered for being an xheight the count of
* floating blobs (stored in floating_heights) is subtracted from the
* total count of the blobs of this height. This is done because blobs
* that sit far above the baseline could represent valid ascenders, but
* it is highly unlikely that such a character's height will be an xheight
* (e.g. -, ', =, ^, `, ", ', etc)
* If cap_only, then force finding of only the top mode.
*/
int compute_xheight_from_modes(
STATS *heights, STATS *floating_heights, bool cap_only, int min_height,
int max_height, float *xheight, float *ascrise) {
int blob_index = heights->mode(); // find mode
int blob_count = heights->pile_count(blob_index); // get count of mode
if (textord_debug_xheights) {
tprintf("min_height=%d, max_height=%d, mode=%d, count=%d, total=%d\n",
min_height, max_height, blob_index, blob_count,
heights->get_total());
heights->print();
floating_heights->print();
}
if (blob_count == 0) return 0;
int modes[MAX_HEIGHT_MODES]; // biggest piles
bool in_best_pile = FALSE;
int prev_size = -MAX_INT32;
int best_count = 0;
int mode_count = compute_height_modes(heights, min_height, max_height,
modes, MAX_HEIGHT_MODES);
if (cap_only && mode_count > 1)
mode_count = 1;
int x;
if (textord_debug_xheights) {
tprintf("found %d modes: ", mode_count);
for (x = 0; x < mode_count; x++) tprintf("%d ", modes[x]);
tprintf("\n");
}
for (x = 0; x < mode_count - 1; x++) {
if (modes[x] != prev_size + 1)
in_best_pile = FALSE; // had empty height
int modes_x_count = heights->pile_count(modes[x]) -
floating_heights->pile_count(modes[x]);
if ((modes_x_count >= blob_count * textord_xheight_mode_fraction) &&
(in_best_pile || modes_x_count > best_count)) {
for (int asc = x + 1; asc < mode_count; asc++) {
float ratio =
static_cast<float>(modes[asc]) / static_cast<float>(modes[x]);
if (textord_ascx_ratio_min < ratio &&
ratio < textord_ascx_ratio_max &&
(heights->pile_count(modes[asc]) >=
blob_count * textord_ascheight_mode_fraction)) {
if (modes_x_count > best_count) {
in_best_pile = true;
best_count = modes_x_count;
}
if (textord_debug_xheights) {
tprintf("X=%d, asc=%d, count=%d, ratio=%g\n",
modes[x], modes[asc]-modes[x], modes_x_count, ratio);
}
prev_size = modes[x];
*xheight = static_cast<float>(modes[x]);
*ascrise = static_cast<float>(modes[asc] - modes[x]);
}
}
}
}
if (*xheight == 0) { // single mode
// Remove counts of the "floating" blobs (the one whose height is too
// small in relation to it's top end of the bounding box) from heights
// before computing the single-mode xheight.
// Restore the counts in heights after the mode is found, since
// floating blobs might be useful for determining potential ascenders
// in compute_row_descdrop().
if (floating_heights->get_total() > 0) {
for (x = min_height; x < max_height; ++x) {
heights->add(x, -(floating_heights->pile_count(x)));
}
blob_index = heights->mode(); // find the modified mode
for (x = min_height; x < max_height; ++x) {
heights->add(x, floating_heights->pile_count(x));
}
}
*xheight = static_cast<float>(blob_index);
*ascrise = 0.0f;
best_count = heights->pile_count(blob_index);
if (textord_debug_xheights)
tprintf("Single mode xheight set to %g\n", *xheight);
} else if (textord_debug_xheights) {
tprintf("Multi-mode xheight set to %g, asc=%g\n", *xheight, *ascrise);
}
return best_count;
}
/**
* @name compute_row_descdrop
*
* Estimates the descdrop of this row. This function looks for
* "significant" descenders of lowercase letters (those that could
* not just be the small descenders of upper case letters like Q,J).
* The function also takes into account how many potential ascenders
* this row might contain. If the number of potential ascenders along
* with descenders is close to the expected fraction of the total
* number of blobs in the row, the function returns the descender
* height, returns 0 otherwise.
*/
inT32 compute_row_descdrop(TO_ROW *row, float gradient,
int xheight_blob_count, STATS *asc_heights) {
// Count how many potential ascenders are in this row.
int i_min = asc_heights->min_bucket();
if ((i_min / row->xheight) < textord_ascx_ratio_min) {
i_min = static_cast<int>(
floor(row->xheight * textord_ascx_ratio_min + 0.5));
}
int i_max = asc_heights->max_bucket();
if ((i_max / row->xheight) > textord_ascx_ratio_max) {
i_max = static_cast<int>(floor(row->xheight * textord_ascx_ratio_max));
}
int num_potential_asc = 0;
for (int i = i_min; i <= i_max; ++i) {
num_potential_asc += asc_heights->pile_count(i);
}
inT32 min_height =
static_cast<inT32>(floor(row->xheight * textord_descx_ratio_min + 0.5));
inT32 max_height =
static_cast<inT32>(floor(row->xheight * textord_descx_ratio_max));
float xcentre; // centre of blob
float height; // height of blob
BLOBNBOX_IT blob_it = row->blob_list();
BLOBNBOX *blob; // current blob
STATS heights (min_height, max_height + 1);
for (blob_it.mark_cycle_pt(); !blob_it.cycled_list(); blob_it.forward()) {
blob = blob_it.data();
if (!blob->joined_to_prev()) {
xcentre = (blob->bounding_box().left() +
blob->bounding_box().right()) / 2.0f;
height = (gradient * xcentre + row->parallel_c() -
blob->bounding_box().bottom());
if (height >= min_height && height <= max_height)
heights.add(static_cast<int>(floor(height + 0.5)), 1);
}
}
int blob_index = heights.mode(); // find mode
int blob_count = heights.pile_count(blob_index); // get count of mode
float total_fraction =
(textord_descheight_mode_fraction + textord_ascheight_mode_fraction);
if (static_cast<float>(blob_count + num_potential_asc) <
xheight_blob_count * total_fraction) {
blob_count = 0;
}
int descdrop = blob_count > 0 ? -blob_index : 0;
if (textord_debug_xheights) {
tprintf("Descdrop: %d (potential ascenders %d, descenders %d)\n",
descdrop, num_potential_asc, blob_count);
heights.print();
}
return descdrop;
}
/**
* @name compute_height_modes
*
* Find the top maxmodes values in the input array and put their
* indices in the output in the order in which they occurred.
*/
inT32 compute_height_modes(STATS *heights, // stats to search
inT32 min_height, // bottom of range
inT32 max_height, // top of range
inT32 *modes, // output array
inT32 maxmodes) { // size of modes
inT32 pile_count; // no in source pile
inT32 src_count; // no of source entries
inT32 src_index; // current entry
inT32 least_count; // height of smalllest
inT32 least_index; // index of least
inT32 dest_count; // index in modes
src_count = max_height + 1 - min_height;
dest_count = 0;
least_count = MAX_INT32;
least_index = -1;
for (src_index = 0; src_index < src_count; src_index++) {
pile_count = heights->pile_count(min_height + src_index);
if (pile_count > 0) {
if (dest_count < maxmodes) {
if (pile_count < least_count) {
// find smallest in array
least_count = pile_count;
least_index = dest_count;
}
modes[dest_count++] = min_height + src_index;
} else if (pile_count >= least_count) {
while (least_index < maxmodes - 1) {
modes[least_index] = modes[least_index + 1];
// shuffle up
least_index++;
}
// new one on end
modes[maxmodes - 1] = min_height + src_index;
if (pile_count == least_count) {
// new smallest
least_index = maxmodes - 1;
} else {
least_count = heights->pile_count(modes[0]);
least_index = 0;
for (dest_count = 1; dest_count < maxmodes; dest_count++) {
pile_count = heights->pile_count(modes[dest_count]);
if (pile_count < least_count) {
// find smallest
least_count = pile_count;
least_index = dest_count;
}
}
}
}
}
}
return dest_count;
}
/**
* @name correct_row_xheight
*
* Adjust the xheight etc of this row if not within reasonable limits
* of the average for the block.
*/
void correct_row_xheight(TO_ROW *row, float xheight,
float ascrise, float descdrop) {
ROW_CATEGORY row_category = get_row_category(row);
if (textord_debug_xheights) {
tprintf("correcting row xheight: row->xheight %.4f"
", row->acrise %.4f row->descdrop %.4f\n",
row->xheight, row->ascrise, row->descdrop);
}
bool normal_xheight =
within_error_margin(row->xheight, xheight, textord_xheight_error_margin);
bool cap_xheight =
within_error_margin(row->xheight, xheight + ascrise,
textord_xheight_error_margin);
// Use the average xheight/ascrise for the following cases:
// -- the xheight of the row could not be determined at all
// -- the row has descenders (e.g. "many groups", "ISBN 12345 p.3")
// and its xheight is close to either cap height or average xheight
// -- the row does not have ascenders or descenders, but its xheight
// is close to the average block xheight (e.g. row with "www.mmm.com")
if (row_category == ROW_ASCENDERS_FOUND) {
if (row->descdrop >= 0.0) {
row->descdrop = row->xheight * (descdrop / xheight);
}
} else if (row_category == ROW_INVALID ||
(row_category == ROW_DESCENDERS_FOUND &&
(normal_xheight || cap_xheight)) ||
(row_category == ROW_UNKNOWN && normal_xheight)) {
if (textord_debug_xheights) tprintf("using average xheight\n");
row->xheight = xheight;
row->ascrise = ascrise;
row->descdrop = descdrop;
} else if (row_category == ROW_DESCENDERS_FOUND) {
// Assume this is a row with mostly lowercase letters and it's xheight
// is computed correctly (unfortunately there is no way to distinguish
// this from the case when descenders are found, but the most common
// height is capheight).
if (textord_debug_xheights) tprintf("lowercase, corrected ascrise\n");
row->ascrise = row->xheight * (ascrise / xheight);
} else if (row_category == ROW_UNKNOWN) {
// Otherwise assume this row is an all-caps or small-caps row
// and adjust xheight and ascrise of the row.
row->all_caps = true;
if (cap_xheight) { // regular all caps
if (textord_debug_xheights) tprintf("all caps\n");
row->xheight = xheight;
row->ascrise = ascrise;
row->descdrop = descdrop;
} else { // small caps or caps with an odd xheight
if (textord_debug_xheights) {
if (row->xheight < xheight + ascrise && row->xheight > xheight) {
tprintf("small caps\n");
} else {
tprintf("all caps with irregular xheight\n");
}
}
row->ascrise = row->xheight * (ascrise / (xheight + ascrise));
row->xheight -= row->ascrise;
row->descdrop = row->xheight * (descdrop / xheight);
}
}
if (textord_debug_xheights) {
tprintf("corrected row->xheight = %.4f, row->acrise = %.4f, row->descdrop"
" = %.4f\n", row->xheight, row->ascrise, row->descdrop);
}
}
static int CountOverlaps(const TBOX& box, int min_height,
BLOBNBOX_LIST* blobs) {
int overlaps = 0;
BLOBNBOX_IT blob_it(blobs);
for (blob_it.mark_cycle_pt(); !blob_it.cycled_list(); blob_it.forward()) {
BLOBNBOX* blob = blob_it.data();
TBOX blob_box = blob->bounding_box();
if (blob_box.height() >= min_height && box.major_overlap(blob_box)) {
++overlaps;
}
}
return overlaps;
}
/**
* @name separate_underlines
*
* Test wide objects for being potential underlines. If they are then
* put them in a separate list in the block.
*/
void separate_underlines(TO_BLOCK *block, // block to do
float gradient, // skew angle
FCOORD rotation, // inverse landscape
BOOL8 testing_on) { // correct orientation
BLOBNBOX *blob; // current blob
C_BLOB *rotated_blob; // rotated blob
TO_ROW *row; // current row
float length; // of g_vec
TBOX blob_box;
FCOORD blob_rotation; // inverse of rotation
FCOORD g_vec; // skew rotation
BLOBNBOX_IT blob_it; // iterator
// iterator
BLOBNBOX_IT under_it = &block->underlines;
BLOBNBOX_IT large_it = &block->large_blobs;
TO_ROW_IT row_it = block->get_rows();
int min_blob_height = static_cast<int>(textord_min_blob_height_fraction *
block->line_size + 0.5);
// length of vector
length = sqrt(1 + gradient * gradient);
g_vec = FCOORD(1 / length, -gradient / length);
blob_rotation = FCOORD(rotation.x(), -rotation.y());
blob_rotation.rotate(g_vec); // undoing everything
for (row_it.mark_cycle_pt(); !row_it.cycled_list(); row_it.forward()) {
row = row_it.data();
// get blobs
blob_it.set_to_list(row->blob_list());
for (blob_it.mark_cycle_pt(); !blob_it.cycled_list();
blob_it.forward()) {
blob = blob_it.data();
blob_box = blob->bounding_box();
if (blob_box.width() > block->line_size * textord_underline_width) {
ASSERT_HOST(blob->cblob() != NULL);
rotated_blob = crotate_cblob (blob->cblob(),
blob_rotation);
if (test_underline(
testing_on && textord_show_final_rows,
rotated_blob, static_cast<inT16>(row->intercept()),
static_cast<inT16>(
block->line_size *
(tesseract::CCStruct::kXHeightFraction +
tesseract::CCStruct::kAscenderFraction / 2.0f)))) {
under_it.add_after_then_move(blob_it.extract());
if (testing_on && textord_show_final_rows) {
tprintf("Underlined blob at:");
rotated_blob->bounding_box().print();
tprintf("Was:");
blob_box.print();
}
} else if (CountOverlaps(blob->bounding_box(), min_blob_height,
row->blob_list()) >
textord_max_blob_overlaps) {
large_it.add_after_then_move(blob_it.extract());
if (testing_on && textord_show_final_rows) {
tprintf("Large blob overlaps %d blobs at:",
CountOverlaps(blob_box, min_blob_height,
row->blob_list()));
blob_box.print();
}
}
delete rotated_blob;
}
}
}
}
/**
* @name pre_associate_blobs
*
* Associate overlapping blobs and fake chop wide blobs.
*/
void pre_associate_blobs( //make rough chars
ICOORD page_tr, //top right
TO_BLOCK *block, //block to do
FCOORD rotation, //inverse landscape
BOOL8 testing_on //correct orientation
) {
#ifndef GRAPHICS_DISABLED
ScrollView::Color colour; //of boxes
#endif
BLOBNBOX *blob; //current blob
BLOBNBOX *nextblob; //next in list
TBOX blob_box;
FCOORD blob_rotation; //inverse of rotation
BLOBNBOX_IT blob_it; //iterator
BLOBNBOX_IT start_it; //iterator
TO_ROW_IT row_it = block->get_rows ();
#ifndef GRAPHICS_DISABLED
colour = ScrollView::RED;
#endif
blob_rotation = FCOORD (rotation.x (), -rotation.y ());
for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ()) {
//get blobs
blob_it.set_to_list (row_it.data ()->blob_list ());
for (blob_it.mark_cycle_pt (); !blob_it.cycled_list ();
blob_it.forward ()) {
blob = blob_it.data ();
blob_box = blob->bounding_box ();
start_it = blob_it; //save start point
// if (testing_on && textord_show_final_blobs)
// {
// tprintf("Blob at (%d,%d)->(%d,%d), addr=%x, count=%d\n",
// blob_box.left(),blob_box.bottom(),
// blob_box.right(),blob_box.top(),
// (void*)blob,blob_it.length());
// }
bool overlap;
do {
overlap = false;
if (!blob_it.at_last ()) {
nextblob = blob_it.data_relative(1);
overlap = blob_box.major_x_overlap(nextblob->bounding_box());
if (overlap) {
blob->merge(nextblob); // merge new blob
blob_box = blob->bounding_box(); // get bigger box
blob_it.forward();
}
}
}
while (overlap);
blob->chop (&start_it, &blob_it,
blob_rotation,
block->line_size * tesseract::CCStruct::kXHeightFraction *
textord_chop_width);
//attempt chop
}
#ifndef GRAPHICS_DISABLED
if (testing_on && textord_show_final_blobs) {
if (to_win == NULL)
create_to_win(page_tr);
to_win->Pen(colour);
for (blob_it.mark_cycle_pt (); !blob_it.cycled_list ();
blob_it.forward ()) {
blob = blob_it.data ();
blob_box = blob->bounding_box ();
blob_box.rotate (rotation);
if (!blob->joined_to_prev ()) {
to_win->Rectangle (blob_box.left (), blob_box.bottom (),
blob_box.right (), blob_box.top ());
}
}
colour = (ScrollView::Color) (colour + 1);
if (colour > ScrollView::MAGENTA)
colour = ScrollView::RED;
}
#endif
}
}
/**
* @name fit_parallel_rows
*
* Re-fit the rows in the block to the given gradient.
*/
void fit_parallel_rows( //find lines
TO_BLOCK *block, //block to do
float gradient, //gradient to fit
FCOORD rotation, //for drawing
inT32 block_edge, //edge of block
BOOL8 testing_on //correct orientation
) {
#ifndef GRAPHICS_DISABLED
ScrollView::Color colour; //of row
#endif
TO_ROW_IT row_it = block->get_rows ();
row_it.move_to_first ();
for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ()) {
if (row_it.data ()->blob_list ()->empty ())
delete row_it.extract (); //nothing in it
else
fit_parallel_lms (gradient, row_it.data ());
}
#ifndef GRAPHICS_DISABLED
if (testing_on) {
colour = ScrollView::RED;
for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ()) {
plot_parallel_row (row_it.data (), gradient,
block_edge, colour, rotation);
colour = (ScrollView::Color) (colour + 1);
if (colour > ScrollView::MAGENTA)
colour = ScrollView::RED;
}
}
#endif
row_it.sort (row_y_order); //may have gone out of order
}
/**
* @name fit_parallel_lms
*
* Fit an LMS line to a row.
* Make the fit parallel to the given gradient and set the
* row accordingly.
*/
void fit_parallel_lms(float gradient, TO_ROW *row) {
float c; // fitted line
int blobcount; // no of blobs
tesseract::DetLineFit lms;
BLOBNBOX_IT blob_it = row->blob_list();
blobcount = 0;
for (blob_it.mark_cycle_pt(); !blob_it.cycled_list(); blob_it.forward()) {
if (!blob_it.data()->joined_to_prev()) {
const TBOX& box = blob_it.data()->bounding_box();
lms.Add(ICOORD((box.left() + box.right()) / 2, box.bottom()));
blobcount++;
}
}
double error = lms.ConstrainedFit(gradient, &c);
row->set_parallel_line(gradient, c, error);
if (textord_straight_baselines && blobcount > textord_lms_line_trials) {
error = lms.Fit(&gradient, &c);
}
//set the other too
row->set_line(gradient, c, error);
}
/**
* @name make_spline_rows
*
* Re-fit the rows in the block to the given gradient.
*/
namespace tesseract {
void Textord::make_spline_rows(TO_BLOCK *block, // block to do
float gradient, // gradient to fit
FCOORD rotation, // for drawing
inT32 block_edge, // edge of block
BOOL8 testing_on) {
#ifndef GRAPHICS_DISABLED
ScrollView::Color colour; //of row
#endif
TO_ROW_IT row_it = block->get_rows ();
row_it.move_to_first ();
for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ()) {
if (row_it.data ()->blob_list ()->empty ())
delete row_it.extract (); //nothing in it
else
make_baseline_spline (row_it.data (), block);
}
if (textord_old_baselines) {
#ifndef GRAPHICS_DISABLED
if (testing_on) {
colour = ScrollView::RED;
for (row_it.mark_cycle_pt (); !row_it.cycled_list ();
row_it.forward ()) {
row_it.data ()->baseline.plot (to_win, colour);
colour = (ScrollView::Color) (colour + 1);
if (colour > ScrollView::MAGENTA)
colour = ScrollView::RED;
}
}
#endif
make_old_baselines(block, testing_on, gradient);
}
#ifndef GRAPHICS_DISABLED
if (testing_on) {
colour = ScrollView::RED;
for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ()) {
row_it.data ()->baseline.plot (to_win, colour);
colour = (ScrollView::Color) (colour + 1);
if (colour > ScrollView::MAGENTA)
colour = ScrollView::RED;
}
}
#endif
}
} // namespace tesseract.
/**
* @name make_baseline_spline
*
* Fit an LMS line to a row.
* Make the fit parallel to the given gradient and set the
* row accordingly.
*/
void make_baseline_spline(TO_ROW *row, //row to fit
TO_BLOCK *block) {
BLOBNBOX_IT blob_it = row->blob_list ();
inT32 *xstarts; // spline boundaries
double *coeffs; // quadratic coeffs
inT32 segments; // no of segments
xstarts =
(inT32 *) alloc_mem((row->blob_list()->length() + 1) * sizeof(inT32));
if (segment_baseline(row, block, segments, xstarts)
&& !textord_straight_baselines && !textord_parallel_baselines) {
coeffs = linear_spline_baseline(row, block, segments, xstarts);
} else {
xstarts[1] = xstarts[segments];
segments = 1;
coeffs = (double *) alloc_mem (3 * sizeof (double));
coeffs[0] = 0;
coeffs[1] = row->line_m ();
coeffs[2] = row->line_c ();
}
row->baseline = QSPLINE (segments, xstarts, coeffs);
free_mem(coeffs);
free_mem(xstarts);
}
/**
* @name segment_baseline
*
* Divide the baseline up into segments which require a different
* quadratic fitted to them.
* Return TRUE if enough blobs were far enough away to need a quadratic.
*/
BOOL8
segment_baseline ( //split baseline
TO_ROW * row, //row to fit
TO_BLOCK * block, //block it came from
inT32 & segments, //no fo segments
inT32 xstarts[] //coords of segments
) {
BOOL8 needs_curve; //needs curved line
int blobcount; //no of blobs
int blobindex; //current blob
int last_state; //above, on , below
int state; //of current blob
float yshift; //from baseline
TBOX box; //blob box
TBOX new_box; //new_it box
float middle; //xcentre of blob
//blobs
BLOBNBOX_IT blob_it = row->blob_list ();
BLOBNBOX_IT new_it = blob_it; //front end
SORTED_FLOATS yshifts; //shifts from baseline
needs_curve = FALSE;
box = box_next_pre_chopped (&blob_it);
xstarts[0] = box.left ();
segments = 1;
blobcount = row->blob_list ()->length ();
if (textord_oldbl_debug)
tprintf ("Segmenting baseline of %d blobs at (%d,%d)\n",
blobcount, box.left (), box.bottom ());
if (blobcount <= textord_spline_medianwin
|| blobcount < textord_spline_minblobs) {
blob_it.move_to_last ();
box = blob_it.data ()->bounding_box ();
xstarts[1] = box.right ();
return FALSE;
}
last_state = 0;
new_it.mark_cycle_pt ();
for (blobindex = 0; blobindex < textord_spline_medianwin; blobindex++) {
new_box = box_next_pre_chopped (&new_it);
middle = (new_box.left () + new_box.right ()) / 2.0;
yshift = new_box.bottom () - row->line_m () * middle - row->line_c ();
//record shift
yshifts.add (yshift, blobindex);
if (new_it.cycled_list ()) {
xstarts[1] = new_box.right ();
return FALSE;
}
}
for (blobcount = 0; blobcount < textord_spline_medianwin / 2; blobcount++)
box = box_next_pre_chopped (&blob_it);
do {
new_box = box_next_pre_chopped (&new_it);
//get middle one
yshift = yshifts[textord_spline_medianwin / 2];
if (yshift > textord_spline_shift_fraction * block->line_size)
state = 1;
else if (-yshift > textord_spline_shift_fraction * block->line_size)
state = -1;
else
state = 0;
if (state != 0)
needs_curve = TRUE;
// tprintf("State=%d, prev=%d, shift=%g\n",
// state,last_state,yshift);
if (state != last_state && blobcount > textord_spline_minblobs) {
xstarts[segments++] = box.left ();
blobcount = 0;
}
last_state = state;
yshifts.remove (blobindex - textord_spline_medianwin);
box = box_next_pre_chopped (&blob_it);
middle = (new_box.left () + new_box.right ()) / 2.0;
yshift = new_box.bottom () - row->line_m () * middle - row->line_c ();
yshifts.add (yshift, blobindex);
blobindex++;
blobcount++;
}
while (!new_it.cycled_list ());
if (blobcount > textord_spline_minblobs || segments == 1) {
xstarts[segments] = new_box.right ();
}
else {
xstarts[--segments] = new_box.right ();
}
if (textord_oldbl_debug)
tprintf ("Made %d segments on row at (%d,%d)\n",
segments, box.right (), box.bottom ());
return needs_curve;
}
/**
* @name linear_spline_baseline
*
* Divide the baseline up into segments which require a different
* quadratic fitted to them.
* @return TRUE if enough blobs were far enough away to need a quadratic.
*/
double *
linear_spline_baseline ( //split baseline
TO_ROW * row, //row to fit
TO_BLOCK * block, //block it came from
inT32 & segments, //no fo segments
inT32 xstarts[] //coords of segments
) {
int blobcount; //no of blobs
int blobindex; //current blob
int index1, index2; //blob numbers
int blobs_per_segment; //blobs in each
TBOX box; //blob box
TBOX new_box; //new_it box
//blobs
BLOBNBOX_IT blob_it = row->blob_list ();
BLOBNBOX_IT new_it = blob_it; //front end
float b, c; //fitted curve
tesseract::DetLineFit lms;
double *coeffs; //quadratic coeffs
inT32 segment; //current segment
box = box_next_pre_chopped (&blob_it);
xstarts[0] = box.left ();
blobcount = 1;
while (!blob_it.at_first ()) {
blobcount++;
box = box_next_pre_chopped (&blob_it);
}
segments = blobcount / textord_spline_medianwin;
if (segments < 1)
segments = 1;
blobs_per_segment = blobcount / segments;
coeffs = (double *) alloc_mem (segments * 3 * sizeof (double));
if (textord_oldbl_debug)
tprintf
("Linear splining baseline of %d blobs at (%d,%d), into %d segments of %d blobs\n",
blobcount, box.left (), box.bottom (), segments, blobs_per_segment);
segment = 1;
for (index2 = 0; index2 < blobs_per_segment / 2; index2++)
box_next_pre_chopped(&new_it);
index1 = 0;
blobindex = index2;
do {
blobindex += blobs_per_segment;
lms.Clear();
while (index1 < blobindex || (segment == segments && index1 < blobcount)) {
box = box_next_pre_chopped (&blob_it);
int middle = (box.left() + box.right()) / 2;
lms.Add(ICOORD(middle, box.bottom()));
index1++;
if (index1 == blobindex - blobs_per_segment / 2
|| index1 == blobcount - 1) {
xstarts[segment] = box.left ();
}
}
lms.Fit(&b, &c);
coeffs[segment * 3 - 3] = 0;
coeffs[segment * 3 - 2] = b;
coeffs[segment * 3 - 1] = c;
segment++;
if (segment > segments)
break;
blobindex += blobs_per_segment;
lms.Clear();
while (index2 < blobindex || (segment == segments && index2 < blobcount)) {
new_box = box_next_pre_chopped (&new_it);
int middle = (new_box.left() + new_box.right()) / 2;
lms.Add(ICOORD (middle, new_box.bottom()));
index2++;
if (index2 == blobindex - blobs_per_segment / 2
|| index2 == blobcount - 1) {
xstarts[segment] = new_box.left ();
}
}
lms.Fit(&b, &c);
coeffs[segment * 3 - 3] = 0;
coeffs[segment * 3 - 2] = b;
coeffs[segment * 3 - 1] = c;
segment++;
}
while (segment <= segments);
return coeffs;
}
/**
* @name assign_blobs_to_rows
*
* Make enough rows to allocate all the given blobs to one.
* If a block skew is given, use that, else attempt to track it.
*/
void assign_blobs_to_rows( //find lines
TO_BLOCK *block, //block to do
float *gradient, //block skew
int pass, //identification
BOOL8 reject_misses, //chuck big ones out
BOOL8 make_new_rows, //add rows for unmatched
BOOL8 drawing_skew //draw smoothed skew
) {
OVERLAP_STATE overlap_result; //what to do with it
float ycoord; //current y
float top, bottom; //of blob
float g_length = 1.0f; //from gradient
inT16 row_count; //no of rows
inT16 left_x; //left edge
inT16 last_x; //previous edge
float block_skew; //y delta
float smooth_factor; //for new coords
float near_dist; //dist to nearest row
ICOORD testpt; //testing only
BLOBNBOX *blob; //current blob
TO_ROW *row; //current row
TO_ROW *dest_row = NULL; //row to put blob in
//iterators
BLOBNBOX_IT blob_it = &block->blobs;
TO_ROW_IT row_it = block->get_rows ();
ycoord =
(block->block->bounding_box ().bottom () +
block->block->bounding_box ().top ()) / 2.0f;
if (gradient != NULL)
g_length = sqrt (1 + *gradient * *gradient);
#ifndef GRAPHICS_DISABLED
if (drawing_skew)
to_win->SetCursor(block->block->bounding_box ().left (), ycoord);
#endif
testpt = ICOORD (textord_test_x, textord_test_y);
blob_it.sort (blob_x_order);
smooth_factor = 1.0;
block_skew = 0.0f;
row_count = row_it.length (); //might have rows
if (!blob_it.empty ()) {
left_x = blob_it.data ()->bounding_box ().left ();
}
else {
left_x = block->block->bounding_box ().left ();
}
last_x = left_x;
for (blob_it.mark_cycle_pt (); !blob_it.cycled_list (); blob_it.forward ()) {
blob = blob_it.data ();
if (gradient != NULL) {
block_skew = (1 - 1 / g_length) * blob->bounding_box ().bottom ()
+ *gradient / g_length * blob->bounding_box ().left ();
}
else if (blob->bounding_box ().left () - last_x > block->line_size / 2
&& last_x - left_x > block->line_size * 2
&& textord_interpolating_skew) {
// tprintf("Interpolating skew from %g",block_skew);
block_skew *= (float) (blob->bounding_box ().left () - left_x)
/ (last_x - left_x);
// tprintf("to %g\n",block_skew);
}
last_x = blob->bounding_box ().left ();
top = blob->bounding_box ().top () - block_skew;
bottom = blob->bounding_box ().bottom () - block_skew;
#ifndef GRAPHICS_DISABLED
if (drawing_skew)
to_win->DrawTo(blob->bounding_box ().left (), ycoord + block_skew);
#endif
if (!row_it.empty ()) {
for (row_it.move_to_first ();
!row_it.at_last () && row_it.data ()->min_y () > top;
row_it.forward ());
row = row_it.data ();
if (row->min_y () <= top && row->max_y () >= bottom) {
//any overlap
dest_row = row;
overlap_result = most_overlapping_row (&row_it, dest_row,
top, bottom,
block->line_size,
blob->bounding_box ().
contains (testpt));
if (overlap_result == NEW_ROW && !reject_misses)
overlap_result = ASSIGN;
}
else {
overlap_result = NEW_ROW;
if (!make_new_rows) {
near_dist = row_it.data_relative (-1)->min_y () - top;
//below bottom
if (bottom < row->min_y ()) {
if (row->min_y () - bottom <=
(block->line_spacing -
block->line_size) * tesseract::CCStruct::kDescenderFraction) {
//done it
overlap_result = ASSIGN;
dest_row = row;
}
}
else if (near_dist > 0
&& near_dist < bottom - row->max_y ()) {
row_it.backward ();
dest_row = row_it.data ();
if (dest_row->min_y () - bottom <=
(block->line_spacing -
block->line_size) * tesseract::CCStruct::kDescenderFraction) {
//done it
overlap_result = ASSIGN;
}
}
else {
if (top - row->max_y () <=
(block->line_spacing -
block->line_size) * (textord_overlap_x +
tesseract::CCStruct::kAscenderFraction)) {
//done it
overlap_result = ASSIGN;
dest_row = row;
}
}
}
}
if (overlap_result == ASSIGN)
dest_row->add_blob (blob_it.extract (), top, bottom,
block->line_size);
if (overlap_result == NEW_ROW) {
if (make_new_rows && top - bottom < block->max_blob_size) {
dest_row =
new TO_ROW (blob_it.extract (), top, bottom,
block->line_size);
row_count++;
if (bottom > row_it.data ()->min_y ())
row_it.add_before_then_move (dest_row);
//insert in right place
else
row_it.add_after_then_move (dest_row);
smooth_factor =
1.0 / (row_count * textord_skew_lag +
textord_skewsmooth_offset);
}
else
overlap_result = REJECT;
}
}
else if (make_new_rows && top - bottom < block->max_blob_size) {
overlap_result = NEW_ROW;
dest_row =
new TO_ROW (blob_it.extract (), top, bottom, block->line_size);
row_count++;
row_it.add_after_then_move (dest_row);
smooth_factor = 1.0 / (row_count * textord_skew_lag +
textord_skewsmooth_offset2);
}
else
overlap_result = REJECT;
if (blob->bounding_box ().contains (testpt)) {
if (overlap_result != REJECT) {
tprintf ("Test blob assigned to row at (%g,%g) on pass %d\n",
dest_row->min_y (), dest_row->max_y (), pass);
}
else {
tprintf ("Test blob assigned to no row on pass %d\n", pass);
}
}
if (overlap_result != REJECT) {
while (!row_it.at_first ()
&& row_it.data ()->min_y () >
row_it.data_relative (-1)->min_y ()) {
row = row_it.extract ();
row_it.backward ();
row_it.add_before_then_move (row);
}
while (!row_it.at_last ()
&& row_it.data ()->min_y () <
row_it.data_relative (1)->min_y ()) {
row = row_it.extract ();
row_it.forward ();
//keep rows in order
row_it.add_after_then_move (row);
}
block_skew = (1 - smooth_factor) * block_skew
+ smooth_factor * (blob->bounding_box ().bottom () -
dest_row->initial_min_y ());
}
}
for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ()) {
if (row_it.data ()->blob_list ()->empty ())
delete row_it.extract (); //discard empty rows
}
}
/**
* @name most_overlapping_row
*
* Return the row which most overlaps the blob.
*/
OVERLAP_STATE most_overlapping_row( //find best row
TO_ROW_IT *row_it, //iterator
TO_ROW *&best_row, //output row
float top, //top of blob
float bottom, //bottom of blob
float rowsize, //max row size
BOOL8 testing_blob //test stuff
) {
OVERLAP_STATE result; //result of tests
float overlap; //of blob & row
float bestover; //nearest row
float merge_top, merge_bottom; //size of merged row
ICOORD testpt; //testing only
TO_ROW *row; //current row
TO_ROW *test_row; //for multiple overlaps
BLOBNBOX_IT blob_it; //for merging rows
result = ASSIGN;
row = row_it->data ();
bestover = top - bottom;
if (top > row->max_y ())
bestover -= top - row->max_y ();
if (bottom < row->min_y ())
//compute overlap
bestover -= row->min_y () - bottom;
if (testing_blob) {
tprintf ("Test blob y=(%g,%g), row=(%f,%f), overlap=%f\n",
bottom, top, row->min_y (), row->max_y (), bestover);
}
test_row = row;
do {
if (!row_it->at_last ()) {
row_it->forward ();
test_row = row_it->data ();
if (test_row->min_y () <= top && test_row->max_y () >= bottom) {
merge_top =
test_row->max_y () >
row->max_y ()? test_row->max_y () : row->max_y ();
merge_bottom =
test_row->min_y () <
row->min_y ()? test_row->min_y () : row->min_y ();
if (merge_top - merge_bottom <= rowsize) {
if (testing_blob) {
tprintf ("Merging rows at (%g,%g), (%g,%g)\n",
row->min_y (), row->max_y (),
test_row->min_y (), test_row->max_y ());
}
test_row->set_limits (merge_bottom, merge_top);
blob_it.set_to_list (test_row->blob_list ());
blob_it.add_list_after (row->blob_list ());
blob_it.sort (blob_x_order);
row_it->backward ();
delete row_it->extract ();
row_it->forward ();
bestover = -1.0f; //force replacement
}
overlap = top - bottom;
if (top > test_row->max_y ())
overlap -= top - test_row->max_y ();
if (bottom < test_row->min_y ())
overlap -= test_row->min_y () - bottom;
if (bestover >= rowsize - 1 && overlap >= rowsize - 1) {
result = REJECT;
}
if (overlap > bestover) {
bestover = overlap; //find biggest overlap
row = test_row;
}
if (testing_blob) {
tprintf
("Test blob y=(%g,%g), row=(%f,%f), overlap=%f->%f\n",
bottom, top, test_row->min_y (), test_row->max_y (),
overlap, bestover);
}
}
}
}
while (!row_it->at_last ()
&& test_row->min_y () <= top && test_row->max_y () >= bottom);
while (row_it->data () != row)
row_it->backward (); //make it point to row
//doesn't overlap much
if (top - bottom - bestover > rowsize * textord_overlap_x &&
(!textord_fix_makerow_bug || bestover < rowsize * textord_overlap_x)
&& result == ASSIGN)
result = NEW_ROW; //doesn't overlap enough
best_row = row;
return result;
}
/**
* @name blob_x_order
*
* Sort function to sort blobs in x from page left.
*/
int blob_x_order( //sort function
const void *item1, //items to compare
const void *item2) {
//converted ptr
BLOBNBOX *blob1 = *(BLOBNBOX **) item1;
//converted ptr
BLOBNBOX *blob2 = *(BLOBNBOX **) item2;
if (blob1->bounding_box ().left () < blob2->bounding_box ().left ())
return -1;
else if (blob1->bounding_box ().left () > blob2->bounding_box ().left ())
return 1;
else
return 0;
}
/**
* @name row_y_order
*
* Sort function to sort rows in y from page top.
*/
int row_y_order( //sort function
const void *item1, //items to compare
const void *item2) {
//converted ptr
TO_ROW *row1 = *(TO_ROW **) item1;
//converted ptr
TO_ROW *row2 = *(TO_ROW **) item2;
if (row1->parallel_c () > row2->parallel_c ())
return -1;
else if (row1->parallel_c () < row2->parallel_c ())
return 1;
else
return 0;
}
/**
* @name row_spacing_order
*
* Qsort style function to compare 2 TO_ROWS based on their spacing value.
*/
int row_spacing_order( //sort function
const void *item1, //items to compare
const void *item2) {
//converted ptr
TO_ROW *row1 = *(TO_ROW **) item1;
//converted ptr
TO_ROW *row2 = *(TO_ROW **) item2;
if (row1->spacing < row2->spacing)
return -1;
else if (row1->spacing > row2->spacing)
return 1;
else
return 0;
}
/**
* @name mark_repeated_chars
*
* Mark blobs marked with BTFT_LEADER in repeated sets using the
* repeated_set member of BLOBNBOX.
*/
void mark_repeated_chars(TO_ROW *row) {
BLOBNBOX_IT box_it(row->blob_list()); // Iterator.
int num_repeated_sets = 0;
if (!box_it.empty()) {
do {
BLOBNBOX* bblob = box_it.data();
int repeat_length = 0;
if (bblob->flow() == BTFT_LEADER &&
!bblob->joined_to_prev() && bblob->cblob() != NULL) {
BLOBNBOX_IT test_it(box_it);
for (test_it.forward(); !test_it.at_first(); test_it.forward()) {
bblob = test_it.data();
if (bblob->flow() != BTFT_LEADER)
break;
if (bblob->joined_to_prev() || bblob->cblob() == NULL) {
tprintf("Cancelled repeat of length %d due to %s\n",
repeat_length,
bblob->joined_to_prev() ? "Joined" : "Null");
repeat_length = 0;
break;
}
++repeat_length;
}
}
if (repeat_length >= kMinLeaderCount) {
num_repeated_sets++;
for (; repeat_length > 0; box_it.forward(), --repeat_length) {
bblob = box_it.data();
bblob->set_repeated_set(num_repeated_sets);
}
if (!box_it.at_first())
bblob->set_repeated_set(0);
} else {
box_it.forward();
bblob->set_repeated_set(0);
}
} while (!box_it.at_first()); // until all done
}
row->set_num_repeated_sets(num_repeated_sets);
}