tesseract/ccmain/applybox.cpp
joregan 95db341728 update comment about format
git-svn-id: https://tesseract-ocr.googlecode.com/svn/trunk@398 d0cd1f9f-072b-0410-8dd7-cf729c803f20
2010-06-05 11:52:17 +00:00

1092 lines
38 KiB
C++

/**********************************************************************
* File: applybox.cpp (Formerly applybox.c)
* Description: Re segment rows according to box file data
* Author: Phil Cheatle
* Created: Wed Nov 24 09:11:23 GMT 1993
*
* (C) Copyright 1993, Hewlett-Packard Ltd.
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
** http://www.apache.org/licenses/LICENSE-2.0
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*
**********************************************************************/
#include "mfcpch.h"
// Include automatically generated configuration file if running autoconf.
#ifdef HAVE_CONFIG_H
#include "config_auto.h"
#endif
#ifdef _MSC_VER
#pragma warning(disable:4244) // Conversion warnings
#endif
#ifdef HAVE_LIBLEPT
// Include leptonica library only if autoconf (or makefile etc) tell us to.
#include "allheaders.h"
#endif
#include "applybox.h"
#include <ctype.h>
#include <string.h>
#ifdef __UNIX__
#include <assert.h>
#include <errno.h>
#endif
#include "boxread.h"
#include "control.h"
#include "genblob.h"
#include "globals.h"
#include "fixxht.h"
#include "mainblk.h"
#include "matchdefs.h"
#include "secname.h"
#include "tessbox.h"
#include "unichar.h"
#include "unicharset.h"
#include "matchdefs.h"
#include "tesseractclass.h"
#define SECURE_NAMES
#ifndef SECURE_NAMES
#include "wordstats.h"
#endif
#define EXTERN
EXTERN BOOL_VAR (applybox_rebalance, TRUE, "Drop dead");
EXTERN INT_VAR (applybox_debug, 5, "Debug level");
EXTERN INT_VAR (applybox_page, 0, "Page number to apply boxes from");
EXTERN STRING_VAR (applybox_test_exclusions, "",
"Chars ignored for testing");
EXTERN double_VAR (applybox_error_band, 0.15, "Err band as fract of xht");
EXTERN STRING_VAR(exposure_pattern, ".exp",
"Exposure value follows this pattern in the image"
" filename. The name of the image files are expected"
" to be in the form [lang].[fontname].exp[num].tif");
EXTERN BOOL_VAR(learn_chars_and_char_frags_mode, FALSE,
"Learn both character fragments (as is done in the"
" special low exposure mode) as well as unfragmented"
" characters.");
extern IMAGE page_image;
// The unicharset used during box training
static UNICHARSET unicharset_boxes;
/*************************************************************************
* The code re-assigns outlines to form words each with ONE labelled blob.
* Noise is left in UNLABELLED words. The chars on the page are checked crudely
* for sensible position relative to baseline and xht. Failed boxes are
* compensated for by duplicating other believable instances of the character.
*
* The box file is assumed to contain box definitions, one per line, of the
* following format:
* <Char> <left> <bottom> <right> <top> <page> ... arbitrary trailing fields unused
*
* The approach taken is to search the WHOLE page for stuff overlapping each box.
* - This is not too inefficient and is SAFE.
* - We can detect overlapping blobs as we will be attempting to put a blob
* from a LABELLED word into the current word.
* - When all the boxes have been processed we can detect any stuff which is
* being ignored - it is the unlabelled words left on the page.
*
* A box should only overlap one row.
*
* A warning is given if the box is on the same row as the previous box, but NOT
* on the same row as the previous blob.
*
* Any OUTLINE which overlaps the box is put into the new word.
*
* ascender chars must ascend above xht significantly
* xht chars must not rise above row xht significantly
* bl chars must not descend below baseline significantly
* descender chars must descend below baseline significantly
*
* ?? Certain chars are DROPPED - to limit the training data.
*
*************************************************************************/
namespace tesseract {
void Tesseract::apply_boxes(const STRING& fname,
BLOCK_LIST *block_list //real blocks
) {
inT16 boxfile_lineno = 0;
inT16 boxfile_charno = 0;
TBOX box; //boxfile box
UNICHAR_ID uch_id; //correct ch from boxfile
ROW *row;
ROW *prev_row = NULL;
inT16 prev_box_right = MAX_INT16;
inT16 block_id;
inT16 row_id;
inT16 box_count = 0;
inT16 box_failures = 0;
inT16 labels_ok;
inT16 rows_ok;
inT16 bad_blobs;
inT16 *tgt_char_counts = NULL; // No. of box samples
inT16 i;
inT16 rebalance_count = 0;
UNICHAR_ID min_uch_id = INVALID_UNICHAR_ID;
inT16 min_samples;
inT16 final_labelled_blob_count;
bool low_exposure = false;
// Clean the unichar set
unicharset_boxes.clear();
// Space character needed to represent NIL classification
unicharset_boxes.unichar_insert(" ");
// Figure out whether this image file's exposure is less than 1, in which
// case when learning we will only pay attention to character fragments.
const char *ptr = strstr(imagefile.string(), exposure_pattern.string());
if (ptr != NULL &&
strtol(ptr += strlen(exposure_pattern.string()), NULL, 10) < 0) {
low_exposure = true;
}
FILE* box_file;
STRING filename = fname;
const char *lastdot; //of name
lastdot = strrchr (filename.string (), '.');
if (lastdot != NULL)
filename[lastdot - filename.string()] = '\0';
filename += ".box";
if (!(box_file = fopen (filename.string(), "r"))) {
CANTOPENFILE.error ("read_next_box", EXIT,
"Cant open box file %s %d",
filename.string(), errno);
}
tgt_char_counts = new inT16[MAX_NUM_CLASSES];
for (i = 0; i < MAX_NUM_CLASSES; i++)
tgt_char_counts[i] = 0;
clear_any_old_text(block_list);
while (read_next_box(applybox_page, box_file, &box, &uch_id)) {
box_count++;
if (!low_exposure || learn_chars_and_char_frags_mode) {
tgt_char_counts[uch_id]++;
}
row = find_row_of_box (block_list, box, block_id, row_id);
if (box.left () < prev_box_right) {
boxfile_lineno++;
boxfile_charno = 1;
}
else
boxfile_charno++;
if (row == NULL) {
box_failures++;
report_failed_box (boxfile_lineno, boxfile_charno, box,
unicharset_boxes.id_to_unichar(uch_id),
"FAILURE! box overlaps no blobs or blobs in multiple rows");
}
else {
if ((box.left () >= prev_box_right) && (row != prev_row))
report_failed_box (boxfile_lineno, boxfile_charno, box,
unicharset_boxes.id_to_unichar(uch_id),
"WARNING! false row break");
box_failures += resegment_box (row, box, uch_id, block_id, row_id,
boxfile_lineno, boxfile_charno, tgt_char_counts, low_exposure, true);
prev_row = row;
}
prev_box_right = box.right ();
}
tidy_up(block_list,
labels_ok,
rows_ok,
bad_blobs,
tgt_char_counts,
rebalance_count,
&min_uch_id,
min_samples,
final_labelled_blob_count,
low_exposure,
true);
tprintf ("APPLY_BOXES:\n");
tprintf (" Boxes read from boxfile: %6d\n", box_count);
tprintf (" Initially labelled blobs: %6d in %d rows\n",
labels_ok, rows_ok);
tprintf (" Box failures detected: %6d\n", box_failures);
tprintf (" Duped blobs for rebalance:%6d\n", rebalance_count);
tprintf (" \"%s\" has fewest samples:%6d\n",
unicharset_boxes.id_to_unichar(min_uch_id), min_samples);
tprintf (" Total unlabelled words: %6d\n",
bad_blobs);
tprintf (" Final labelled words: %6d\n",
final_labelled_blob_count);
// Clean up.
delete[] tgt_char_counts;
}
int Tesseract::Boxes2BlockList(int box_cnt, TBOX *boxes,
BLOCK_LIST *block_list,
bool right2left) {
inT16 boxfile_lineno = 0;
inT16 boxfile_charno = 0;
TBOX box;
ROW *row;
ROW *prev_row = NULL;
inT16 prev_box_right = MAX_INT16;
inT16 prev_box_left = 0;
inT16 block_id;
inT16 row_id;
inT16 box_failures = 0;
inT16 labels_ok;
inT16 rows_ok;
inT16 bad_blobs;
inT16 rebalance_count = 0;
UNICHAR_ID min_uch_id;
inT16 min_samples;
inT16 final_labelled_blob_count;
clear_any_old_text(block_list);
for (int box_idx = 0; box_idx < box_cnt; box_idx++) {
box = boxes[box_idx];
row = find_row_of_box(block_list, box, block_id, row_id);
// check for a new row
if ((right2left && box.right () > prev_box_left) ||
(!right2left && box.left () < prev_box_right)) {
boxfile_lineno++;
boxfile_charno = 1;
}
else {
boxfile_charno++;
}
if (row == NULL) {
box_failures++;
}
else {
box_failures += resegment_box(row, box, 0, block_id, row_id,
boxfile_lineno, boxfile_charno,
NULL, false, false);
prev_row = row;
}
prev_box_right = box.right ();
prev_box_left = box.left ();
}
tidy_up(block_list, labels_ok, rows_ok, bad_blobs, NULL,
rebalance_count, &min_uch_id, min_samples, final_labelled_blob_count,
false, false);
return box_failures;
}
} // namespace tesseract
void clear_any_old_text( //remove correct text
BLOCK_LIST *block_list //real blocks
) {
BLOCK_IT block_it(block_list);
ROW_IT row_it;
WERD_IT word_it;
for (block_it.mark_cycle_pt ();
!block_it.cycled_list (); block_it.forward ()) {
row_it.set_to_list (block_it.data ()->row_list ());
for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ()) {
word_it.set_to_list (row_it.data ()->word_list ());
for (word_it.mark_cycle_pt ();
!word_it.cycled_list (); word_it.forward ()) {
word_it.data ()->set_text ("");
}
}
}
}
UNICHAR_ID register_char(const char *uch) {
if (!unicharset_boxes.contains_unichar(uch)) {
unicharset_boxes.unichar_insert(uch);
if (unicharset_boxes.size() > MAX_NUM_CLASSES) {
tprintf("Error: Size of unicharset of boxes is "
"greater than MAX_NUM_CLASSES (%d)\n", MAX_NUM_CLASSES);
exit(1);
}
}
return unicharset_boxes.unichar_to_id(uch);
}
BOOL8 read_next_box(int page,
FILE* box_file,
TBOX *box,
UNICHAR_ID *uch_id) {
int x_min;
int y_min;
int x_max;
int y_max;
char uch[kBoxReadBufSize];
if (read_next_box(page, box_file, uch, &x_min, &y_min, &x_max, &y_max)) {
*uch_id = register_char(uch);
*box = TBOX (ICOORD (x_min, y_min), ICOORD (x_max, y_max));
return TRUE; // read a box ok
} else {
return FALSE; // EOF
}
}
ROW *find_row_of_box( //
BLOCK_LIST *block_list, //real blocks
const TBOX &box, //from boxfile
inT16 &block_id,
inT16 &row_id_to_process) {
BLOCK_IT block_it(block_list);
BLOCK *block;
ROW_IT row_it;
ROW *row;
ROW *row_to_process = NULL;
inT16 row_id;
WERD_IT word_it;
WERD *word;
BOOL8 polyg;
PBLOB_IT blob_it;
PBLOB *blob;
OUTLINE_IT outline_it;
OUTLINE *outline;
/*
Find row to process - error if box REALLY overlaps more than one row. (I.e
it overlaps blobs in the row - not just overlaps the bounding box of the
whole row.)
*/
block_id = 0;
for (block_it.mark_cycle_pt ();
!block_it.cycled_list (); block_it.forward ()) {
block_id++;
row_id = 0;
block = block_it.data ();
if (block->bounding_box ().overlap (box)) {
row_it.set_to_list (block->row_list ());
for (row_it.mark_cycle_pt ();
!row_it.cycled_list (); row_it.forward ()) {
row_id++;
row = row_it.data ();
if (row->bounding_box ().overlap (box)) {
word_it.set_to_list (row->word_list ());
for (word_it.mark_cycle_pt ();
!word_it.cycled_list (); word_it.forward ()) {
word = word_it.data ();
polyg = word->flag (W_POLYGON);
if (word->bounding_box ().overlap (box)) {
blob_it.set_to_list (word->gblob_list ());
for (blob_it.mark_cycle_pt ();
!blob_it.cycled_list (); blob_it.forward ()) {
blob = blob_it.data ();
if (gblob_bounding_box (blob, polyg).
overlap (box)) {
outline_it.
set_to_list (gblob_out_list
(blob, polyg));
for (outline_it.mark_cycle_pt ();
!outline_it.cycled_list ();
outline_it.forward ()) {
outline = outline_it.data ();
if (goutline_bounding_box
(outline, polyg).major_overlap (box)) {
if ((row_to_process == NULL) ||
(row_to_process == row)) {
row_to_process = row;
row_id_to_process = row_id;
}
else
/* RETURN ERROR Box overlaps blobs in more than one row */
return NULL;
}
}
}
}
}
}
}
}
}
}
return row_to_process;
}
inT16 resegment_box( //
ROW *row,
TBOX &box,
UNICHAR_ID uch_id,
inT16 block_id,
inT16 row_id,
inT16 boxfile_lineno,
inT16 boxfile_charno,
inT16 *tgt_char_counts,
bool learn_char_fragments,
bool learning) {
WERD_LIST new_word_list;
WERD_IT word_it;
WERD_IT new_word_it(&new_word_list);
WERD *word = NULL;
WERD *new_word = NULL;
BOOL8 polyg = false;
PBLOB_IT blob_it;
PBLOB_IT new_blob_it;
PBLOB *blob;
PBLOB *new_blob;
OUTLINE_IT outline_it;
OUTLINE_LIST dummy; // Just to initialize new_outline_it.
OUTLINE_IT new_outline_it = &dummy;
OUTLINE *outline;
TBOX new_word_box;
TBOX curr_outline_box;
TBOX prev_outline_box;
float word_x_centre;
float baseline;
inT16 error_count = 0; //number of chars lost
STRING label;
UNICHAR_ID fragment_uch_id;
int fragment_index;
int new_word_it_len;
if (learning && applybox_debug > 6) {
tprintf("\nAPPLY_BOX: in resegment_box() for %s(%d)\n",
unicharset_boxes.id_to_unichar(uch_id), uch_id);
}
word_it.set_to_list (row->word_list ());
for (word_it.mark_cycle_pt (); !word_it.cycled_list (); word_it.forward ()) {
word = word_it.data ();
polyg = word->flag (W_POLYGON);
if (word->bounding_box ().overlap (box)) {
blob_it.set_to_list (word->gblob_list ());
prev_outline_box = TBOX(); // clear prev_outline_box
curr_outline_box = TBOX(); // clear curr_outline_box
for (blob_it.mark_cycle_pt ();
!blob_it.cycled_list (); blob_it.forward ()) {
blob = blob_it.data ();
if (gblob_bounding_box (blob, polyg).overlap (box)) {
outline_it.set_to_list (gblob_out_list (blob, polyg));
for (outline_it.mark_cycle_pt ();
!outline_it.cycled_list (); outline_it.forward ()) {
outline = outline_it.data ();
prev_outline_box += curr_outline_box;
curr_outline_box = goutline_bounding_box(outline, polyg);
if (curr_outline_box.major_overlap (box)) {
if (strlen (word->text ()) > 0) {
if (error_count == 0) {
error_count = 1;
if (learning && applybox_debug > 4)
report_failed_box (boxfile_lineno,
boxfile_charno,
box, unicharset_boxes.id_to_unichar(uch_id),
"FAILURE! box overlaps blob in labelled word");
}
if (learning && applybox_debug > 4)
tprintf ("APPLY_BOXES: ALSO ignoring corrupted char"
" blk:%d row:%d \"%s\"\n",
block_id, row_id, word_it.data()->text());
word_it.data ()->set_text (""); // UN label it
error_count++;
}
// Do not learn from fragments of characters that are broken
// into very small pieces to avoid picking up noise.
if ((learn_char_fragments || learn_chars_and_char_frags_mode) &&
((C_OUTLINE *)outline)->area() < kMinFragmentOutlineArea) {
if (applybox_debug > 6) {
tprintf("APPLY_BOX: fragment outline area %d is too small"
" - not recording fragments of this character\n",
((C_OUTLINE *)outline)->area());
}
error_count++;
}
if (error_count == 0) {
if (applybox_debug > 6 ) {
tprintf("APPLY_BOX: Previous ");
prev_outline_box.print();
tprintf("APPLY_BOX: Current area: %d ",
((C_OUTLINE *)outline)->area());
curr_outline_box.print();
}
// When learning character fragments is enabled, we put
// outlines that do not overlap on x axis in separate WERDs.
bool start_new_word =
(learn_char_fragments || learn_chars_and_char_frags_mode) &&
!curr_outline_box.major_x_overlap(prev_outline_box);
if (new_word == NULL || start_new_word) {
if (new_word != NULL) { // add prev new_word to new_word_list
new_word_it.add_to_end(new_word);
}
// Make a new word with a single blob.
new_word = word->shallow_copy();
new_word->set_flag(W_FUZZY_NON, false);
new_word->set_flag(W_FUZZY_SP, false);
if (polyg){
new_blob = new PBLOB;
} else {
new_blob = (PBLOB *) new C_BLOB;
}
new_blob_it.set_to_list(new_word->gblob_list());
new_blob_it.add_to_end(new_blob);
new_outline_it.set_to_list(
gblob_out_list(new_blob, polyg));
}
new_outline_it.add_to_end(outline_it.extract()); // move blob
}
}
}
if (outline_it.empty()) // no outlines in blob
delete blob_it.extract(); // so delete blob
}
}
if (blob_it.empty()) // no blobs in word
delete word_it.extract(); // so delete word
}
}
if (new_word != NULL) { // add prev new_word to new_word_list
new_word_it.add_to_end(new_word);
}
new_word_it_len = new_word_it.length();
// Check for failures.
if (error_count > 0)
return error_count;
if (learning && new_word_it_len <= 0) {
report_failed_box(boxfile_lineno, boxfile_charno, box,
unicharset_boxes.id_to_unichar(uch_id),
"FAILURE! Couldn't find any blobs");
return 1; // failure
}
if (learning && new_word_it_len > CHAR_FRAGMENT::kMaxChunks) {
tprintf("APPLY_BOXES: too many fragments (%d) for char %s\n",
new_word_it_len, unicharset_boxes.id_to_unichar(uch_id));
return 1; // failure
}
// Add labelled character or character fragments to the word list.
fragment_index = 0;
new_word_it.move_to_first();
for (new_word_it.mark_cycle_pt(); !new_word_it.cycled_list();
new_word_it.forward()) {
new_word = new_word_it.extract();
if (new_word_it_len > 1) { // deal with a fragment
if (learning) {
label = CHAR_FRAGMENT::to_string(unicharset_boxes.id_to_unichar(uch_id),
fragment_index, new_word_it_len);
fragment_uch_id = register_char(label.string());
new_word->set_text(label.string());
++fragment_index;
// For now we cheat by setting the expected number of char fragments
// to the number of char fragments actually parsed and labelled.
// TODO(daria): find out whether this can be improved.
tgt_char_counts[fragment_uch_id]++;
} else {
// No learning involved, Just stick a place-holder string
new_word->set_text("*");
}
if (applybox_debug > 5) {
tprintf("APPLY_BOX: adding char fragment %s\n", label.string());
}
} else { // deal with a regular character
if (learning) {
if (!learn_char_fragments || learn_chars_and_char_frags_mode) {
new_word->set_text(unicharset_boxes.id_to_unichar(uch_id));
} else {
// not interested in non-fragmented chars if learning fragments, so
// unlabel it.
new_word->set_text("");
}
} else {
// No learning involved here. Just stick a place holder string
new_word->set_text("*");
}
}
gblob_sort_list(new_word->gblob_list(), polyg);
word_it.add_to_end(new_word);
new_word_box = new_word->bounding_box();
word_x_centre = (new_word_box.left() + new_word_box.right()) / 2.0f;
baseline = row->base_line(word_x_centre);
}
// All done. Now check if the EOL, BOL flags are set correctly.
word_it.move_to_first();
for (word_it.mark_cycle_pt(); !word_it.cycled_list(); word_it.forward()) {
word = word_it.data();
word->set_flag(W_BOL, false);
word->set_flag(W_EOL, false);
}
word->set_flag(W_EOL, true);
word_it.move_to_first();
word_it.data()->set_flag(W_BOL, true);
return 0; //success
#if 0
if (strlen(unicharset_boxes.id_to_unichar(uch_id)) == 1) {
if (STRING (chs_caps_ht).contains (unicharset_boxes.id_to_unichar(uch_id)[0]) &&
(new_word_box.top () <
baseline + (1 + applybox_error_band) * row->x_height ())) {
report_failed_box (boxfile_lineno, boxfile_charno, box,
unicharset_boxes.id_to_unichar(uch_id),
"FAILURE! caps-ht char didn't ascend");
new_word->set_text ("");
return 1;
}
if (STRING (chs_odd_top).contains (unicharset_boxes.id_to_unichar(uch_id)[0]) &&
(new_word_box.top () <
baseline + (1 - applybox_error_band) * row->x_height ())) {
report_failed_box (boxfile_lineno, boxfile_charno, box,
unicharset_boxes.id_to_unichar(uch_id),
"FAILURE! Odd top char below xht");
new_word->set_text ("");
return 1;
}
if (STRING (chs_x_ht).contains (unicharset_boxes.id_to_unichar(uch_id)[0]) &&
((new_word_box.top () >
baseline + (1 + applybox_error_band) * row->x_height ()) ||
(new_word_box.top () <
baseline + (1 - applybox_error_band) * row->x_height ()))) {
report_failed_box (boxfile_lineno, boxfile_charno, box,
unicharset_boxes.id_to_unichar(uch_id),
"FAILURE! x-ht char didn't have top near xht");
new_word->set_text ("");
return 1;
}
if (STRING (chs_non_ambig_bl).contains
(unicharset_boxes.id_to_unichar(uch_id)[0]) &&
((new_word_box.bottom () <
baseline - applybox_error_band * row->x_height ()) ||
(new_word_box.bottom () >
baseline + applybox_error_band * row->x_height ()))) {
report_failed_box (boxfile_lineno, boxfile_charno, box,
unicharset_boxes.id_to_unichar(uch_id),
"FAILURE! non ambig BL char didnt have bottom near baseline");
new_word->set_text ("");
return 1;
}
if (STRING (chs_odd_bot).contains (unicharset_boxes.id_to_unichar(uch_id)[0]) &&
(new_word_box.bottom () >
baseline + applybox_error_band * row->x_height ())) {
report_failed_box (boxfile_lineno, boxfile_charno, box,
unicharset_boxes.id_to_unichar(uch_id),
"FAILURE! Odd bottom char above baseline");
new_word->set_text ("");
return 1;
}
if (STRING (chs_desc).contains (unicharset_boxes.id_to_unichar(uch_id)[0]) &&
(new_word_box.bottom () >
baseline - applybox_error_band * row->x_height ())) {
report_failed_box (boxfile_lineno, boxfile_charno, box,
unicharset_boxes.id_to_unichar(uch_id),
"FAILURE! Descender doesn't descend");
new_word->set_text ("");
return 1;
}
}
#endif
}
/*************************************************************************
* tidy_up()
* - report >1 block
* - sort the words in each row.
* - report any rows with no labelled words.
* - report any remaining unlabelled words
* - report total labelled words
*
*************************************************************************/
void tidy_up( //
BLOCK_LIST *block_list, //real blocks
inT16 &ok_char_count,
inT16 &ok_row_count,
inT16 &unlabelled_words,
inT16 *tgt_char_counts,
inT16 &rebalance_count,
UNICHAR_ID *min_uch_id,
inT16 &min_samples,
inT16 &final_labelled_blob_count,
bool learn_character_fragments,
bool learning) {
BLOCK_IT block_it(block_list);
ROW_IT row_it;
ROW *row;
WERD_IT word_it;
WERD *word;
WERD *duplicate_word;
inT16 block_idx = 0;
inT16 row_idx;
inT16 all_row_idx = 0;
BOOL8 row_ok;
BOOL8 rebalance_needed = FALSE;
inT16 *labelled_char_counts = NULL; // num unique labelled samples
inT16 i;
UNICHAR_ID uch_id;
UNICHAR_ID prev_uch_id = -1;
BOOL8 at_dupe_of_prev_word;
ROW *prev_row = NULL;
inT16 left;
inT16 prev_left = -1;
labelled_char_counts = new inT16[MAX_NUM_CLASSES];
for (i = 0; i < MAX_NUM_CLASSES; i++)
labelled_char_counts[i] = 0;
ok_char_count = 0;
ok_row_count = 0;
unlabelled_words = 0;
if (learning && (applybox_debug > 4) && (block_it.length () != 1)) {
if (block_it.length() > 1) {
tprintf("APPLY_BOXES: More than one block??\n");
} else {
tprintf("APPLY_BOXES: No blocks identified.\n");
}
}
for (block_it.mark_cycle_pt ();
!block_it.cycled_list (); block_it.forward ()) {
block_idx++;
row_idx = 0;
row_ok = FALSE;
row_it.set_to_list (block_it.data ()->row_list ());
for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ()) {
row_idx++;
all_row_idx++;
row = row_it.data ();
word_it.set_to_list (row->word_list ());
word_it.sort (word_comparator);
for (word_it.mark_cycle_pt ();
!word_it.cycled_list (); word_it.forward ()) {
word = word_it.data ();
if (strlen (word->text ()) == 0 ||
unicharset_boxes.unichar_to_id(word->text()) < 0) {
unlabelled_words++;
if (learning && applybox_debug > 4 && !learn_character_fragments) {
tprintf("APPLY_BOXES: Unlabelled word blk:%d row:%d allrows:%d\n",
block_idx, row_idx, all_row_idx);
}
} else {
if (word->gblob_list ()->length () != 1)
tprintf ("APPLY_BOXES: FATALITY - MULTIBLOB Labelled word blk:%d"
" row:%d allrows:%d\n", block_idx, row_idx, all_row_idx);
ok_char_count++;
++labelled_char_counts[unicharset_boxes.unichar_to_id(word->text())];
row_ok = TRUE;
}
}
if ((applybox_debug > 6) && (!row_ok)) {
tprintf("APPLY_BOXES: Row with no labelled words blk:%d row:%d"
" allrows:%d\n", block_idx, row_idx, all_row_idx);
}
else
ok_row_count++;
}
}
min_samples = 9999;
for (i = 0; i < unicharset_boxes.size(); i++) {
if (tgt_char_counts[i] > labelled_char_counts[i]) {
if (labelled_char_counts[i] <= 1) {
tprintf("APPLY_BOXES: FATALITY - %d labelled samples of \"%s\" -"
" target is %d:\n",
labelled_char_counts[i], unicharset_boxes.debug_str(i).string(),
tgt_char_counts[i]);
}
else {
rebalance_needed = TRUE;
if (applybox_debug > 0)
tprintf("APPLY_BOXES: REBALANCE REQD \"%s\" - target of"
" %d from %d labelled samples\n",
unicharset_boxes.debug_str(i).string(), tgt_char_counts[i],
labelled_char_counts[i]);
}
}
if ((min_samples > labelled_char_counts[i]) && (tgt_char_counts[i] > 0)) {
min_samples = labelled_char_counts[i];
*min_uch_id = i;
}
}
while (applybox_rebalance && rebalance_needed) {
block_it.set_to_list (block_list);
for (block_it.mark_cycle_pt ();
!block_it.cycled_list (); block_it.forward ()) {
row_it.set_to_list (block_it.data ()->row_list ());
for (row_it.mark_cycle_pt ();
!row_it.cycled_list (); row_it.forward ()) {
row = row_it.data ();
word_it.set_to_list (row->word_list ());
for (word_it.mark_cycle_pt ();
!word_it.cycled_list (); word_it.forward ()) {
word = word_it.data ();
left = word->bounding_box ().left ();
if (*word->text () != '\0')
uch_id = unicharset_boxes.unichar_to_id(word->text ());
else
uch_id = -1;
at_dupe_of_prev_word = ((row == prev_row) &&
(left = prev_left) &&
(uch_id == prev_uch_id));
if ((uch_id != -1) &&
(labelled_char_counts[uch_id] > 1) &&
(tgt_char_counts[uch_id] > labelled_char_counts[uch_id]) &&
(!at_dupe_of_prev_word)) {
/* Duplicate the word to rebalance the labelled samples */
if (applybox_debug > 9) {
tprintf ("Duping \"%s\" from ", unicharset_boxes.id_to_unichar(uch_id));
word->bounding_box ().print ();
}
duplicate_word = new WERD;
*duplicate_word = *word;
word_it.add_after_then_move (duplicate_word);
rebalance_count++;
labelled_char_counts[uch_id]++;
}
prev_row = row;
prev_left = left;
prev_uch_id = uch_id;
}
}
}
rebalance_needed = FALSE;
for (i = 0; i < unicharset_boxes.size(); i++) {
if ((tgt_char_counts[i] > labelled_char_counts[i]) &&
(labelled_char_counts[i] > 1)) {
rebalance_needed = TRUE;
break;
}
}
}
/* Now final check - count labeled blobs */
final_labelled_blob_count = 0;
block_it.set_to_list (block_list);
for (block_it.mark_cycle_pt ();
!block_it.cycled_list (); block_it.forward ()) {
row_it.set_to_list (block_it.data ()->row_list ());
for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ()) {
row = row_it.data ();
word_it.set_to_list (row->word_list ());
word_it.sort (word_comparator);
for (word_it.mark_cycle_pt ();
!word_it.cycled_list (); word_it.forward ()) {
word = word_it.data ();
if ((strlen(word->text ()) > 0) &&
(word->gblob_list()->length() == 1)) {
final_labelled_blob_count++;
} else {
delete word_it.extract();
}
}
// delete the row if empty
if (row->word_list()->empty()) {
delete row_it.extract();
}
}
}
// Clean up.
delete[] labelled_char_counts;
}
void report_failed_box(inT16 boxfile_lineno,
inT16 boxfile_charno,
TBOX box,
const char *box_ch,
const char *err_msg) {
if (applybox_debug > 4)
tprintf ("APPLY_BOXES: boxfile %1d/%1d/%s ((%1d,%1d),(%1d,%1d)): %s\n",
boxfile_lineno,
boxfile_charno,
box_ch,
box.left (), box.bottom (), box.right (), box.top (), err_msg);
}
void apply_box_training(const STRING& filename, BLOCK_LIST *block_list) {
BLOCK_IT block_it(block_list);
ROW_IT row_it;
ROW *row;
WERD_IT word_it;
WERD *word;
WERD *bln_word;
WERD copy_outword; // copy to denorm
PBLOB_IT blob_it;
DENORM denorm;
inT16 count = 0;
char unichar[UNICHAR_LEN + 1];
unichar[UNICHAR_LEN] = '\0';
tprintf ("Generating training data\n");
for (block_it.mark_cycle_pt ();
!block_it.cycled_list (); block_it.forward ()) {
row_it.set_to_list (block_it.data ()->row_list ());
for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ()) {
row = row_it.data ();
word_it.set_to_list (row->word_list ());
for (word_it.mark_cycle_pt ();
!word_it.cycled_list (); word_it.forward ()) {
word = word_it.data ();
if ((strlen (word->text ()) > 0) &&
(word->gblob_list ()->length () == 1)) {
// Here is a word with a single unichar label and a single blob so train on it.
bln_word = make_bln_copy(word, row, NULL, row->x_height (), &denorm);
blob_it.set_to_list (bln_word->blob_list ());
strncpy(unichar, word->text (), UNICHAR_LEN);
tess_training_tester (filename,
blob_it.data (), //single blob
&denorm, TRUE, //correct
unichar, //correct character
strlen(unichar), //character length
NULL);
copy_outword = *(bln_word);
copy_outword.baseline_denormalise (&denorm);
blob_it.set_to_list (copy_outword.blob_list ());
delete bln_word;
count++;
}
}
}
}
tprintf ("Generated training data for %d blobs\n", count);
}
namespace tesseract {
void Tesseract::apply_box_testing(BLOCK_LIST *block_list) {
BLOCK_IT block_it(block_list);
ROW_IT row_it;
ROW *row;
inT16 row_count = 0;
WERD_IT word_it;
WERD *word;
WERD *bln_word;
inT16 word_count = 0;
PBLOB_IT blob_it;
DENORM denorm;
inT16 count = 0;
char ch[2];
WERD *outword; //bln best choice
//segmentation
WERD_CHOICE *best_choice; //tess output
WERD_CHOICE *raw_choice; //top choice permuter
//detailed results
BLOB_CHOICE_LIST_CLIST blob_choices;
inT16 char_count = 0;
inT16 correct_count = 0;
inT16 err_count = 0;
inT16 rej_count = 0;
#ifndef SECURE_NAMES
WERDSTATS wordstats; //As from newdiff
#endif
char tess_rej_str[3];
char tess_long_str[3];
ch[1] = '\0';
strcpy (tess_rej_str, "|A");
strcpy (tess_long_str, "|B");
for (block_it.mark_cycle_pt ();
!block_it.cycled_list (); block_it.forward ()) {
row_it.set_to_list (block_it.data ()->row_list ());
for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ()) {
row = row_it.data ();
row_count++;
word_count = 0;
word_it.set_to_list (row->word_list ());
for (word_it.mark_cycle_pt ();
!word_it.cycled_list (); word_it.forward ()) {
word = word_it.data ();
word_count++;
if ((strlen (word->text ()) == 1) &&
!STRING (applybox_test_exclusions).contains (*word->text ())
&& (word->gblob_list ()->length () == 1)) {
// Here is a word with a single char label and a single blob so test it.
bln_word = make_bln_copy(word, row, NULL, row->x_height (), &denorm);
blob_it.set_to_list (bln_word->blob_list ());
ch[0] = *word->text ();
char_count++;
best_choice = tess_segment_pass1 (bln_word,
&denorm,
&Tesseract::tess_default_matcher,
raw_choice,
&blob_choices, outword);
/*
Test for TESS screw up on word. Recog_word has already ensured that the
choice list, outword blob lists and best_choice string are the same
length. A TESS screw up is indicated by a blank filled or 0 length string.
*/
if ((best_choice->length() == 0) ||
(strspn(best_choice->unichar_string().string(), " ") ==
best_choice->unichar_string().length())) {
rej_count++;
tprintf ("%d:%d: \"%s\" -> TESS FAILED\n",
row_count, word_count, ch);
#ifndef SECURE_NAMES
wordstats.word (tess_rej_str, 2, ch, 1);
#endif
}
else {
if ((best_choice->length() != outword->blob_list()->length()) ||
(best_choice->length() != blob_choices.length())) {
tprintf
("ASSERT FAIL String:\"%s\"; Strlen=%d; #Blobs=%d; #Choices=%d\n",
best_choice->unichar_string().string(),
best_choice->length(),
outword->blob_list ()->length(),
blob_choices.length());
}
ASSERT_HOST(best_choice->length() ==
outword->blob_list()->length());
ASSERT_HOST(best_choice->length() == blob_choices.length());
fix_quotes (best_choice,
//turn to double
outword, &blob_choices);
if (strcmp (best_choice->unichar_string().string(), ch) != 0) {
err_count++;
tprintf ("%d:%d: \"%s\" -> \"%s\"\n",
row_count, word_count, ch,
best_choice->unichar_string().string());
}
else
correct_count++;
#ifndef SECURE_NAMES
if (best_choice->unichar_string().length() > 2)
wordstats.word(tess_long_str, 2, ch, 1);
else
wordstats.word(best_choice->unichar_string().string(),
best_choice->unichar_string().length(),
ch, 1);
#endif
}
delete bln_word;
delete outword;
delete best_choice;
delete raw_choice;
blob_choices.deep_clear ();
count++;
}
}
}
}
#ifndef SECURE_NAMES
wordstats.print (1, 100.0);
wordstats.conf_matrix ();
tprintf ("Tested %d chars: %d correct; %d rejected by tess; %d errs\n",
char_count, correct_count, rej_count, err_count);
#endif
}
} // namespace tesseract