mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2025-01-07 18:27:48 +08:00
a389b7c8e9
Signed-off-by: Stefan Weil <sw@weilnetz.de>
217 lines
7.8 KiB
C++
217 lines
7.8 KiB
C++
/**********************************************************************
|
|
* File: otsuthr.cpp
|
|
* Description: Simple Otsu thresholding for binarizing images.
|
|
* Author: Ray Smith
|
|
* Created: Fri Mar 07 12:31:01 PST 2008
|
|
*
|
|
* (C) Copyright 2008, Google Inc.
|
|
** Licensed under the Apache License, Version 2.0 (the "License");
|
|
** you may not use this file except in compliance with the License.
|
|
** You may obtain a copy of the License at
|
|
** http://www.apache.org/licenses/LICENSE-2.0
|
|
** Unless required by applicable law or agreed to in writing, software
|
|
** distributed under the License is distributed on an "AS IS" BASIS,
|
|
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
** See the License for the specific language governing permissions and
|
|
** limitations under the License.
|
|
*
|
|
**********************************************************************/
|
|
|
|
#include "otsuthr.h"
|
|
|
|
#include <string.h>
|
|
#include "allheaders.h"
|
|
#include "helpers.h"
|
|
#include "openclwrapper.h"
|
|
|
|
|
|
namespace tesseract {
|
|
|
|
// Computes the Otsu threshold(s) for the given image rectangle, making one
|
|
// for each channel. Each channel is always one byte per pixel.
|
|
// Returns an array of threshold values and an array of hi_values, such
|
|
// that a pixel value >threshold[channel] is considered foreground if
|
|
// hi_values[channel] is 0 or background if 1. A hi_value of -1 indicates
|
|
// that there is no apparent foreground. At least one hi_value will not be -1.
|
|
// Delete thresholds and hi_values with delete [] after use.
|
|
// The return value is the number of channels in the input image, being
|
|
// the size of the output thresholds and hi_values arrays.
|
|
int OtsuThreshold(Pix* src_pix, int left, int top, int width, int height,
|
|
int** thresholds, int** hi_values) {
|
|
int num_channels = pixGetDepth(src_pix) / 8;
|
|
// Of all channels with no good hi_value, keep the best so we can always
|
|
// produce at least one answer.
|
|
PERF_COUNT_START("OtsuThreshold")
|
|
int best_hi_value = 1;
|
|
int best_hi_index = 0;
|
|
bool any_good_hivalue = false;
|
|
double best_hi_dist = 0.0;
|
|
*thresholds = new int[num_channels];
|
|
*hi_values = new int[num_channels];
|
|
|
|
// only use opencl if compiled w/ OpenCL and selected device is opencl
|
|
#ifdef USE_OPENCL
|
|
// all of channel 0 then all of channel 1...
|
|
int* histogramAllChannels = new int[kHistogramSize * num_channels];
|
|
|
|
// Calculate Histogram on GPU
|
|
OpenclDevice od;
|
|
if (od.selectedDeviceIsOpenCL() && (num_channels == 1 || num_channels == 4) &&
|
|
top == 0 && left == 0) {
|
|
od.HistogramRectOCL((unsigned char*)pixGetData(src_pix), num_channels,
|
|
pixGetWpl(src_pix) * 4, left, top, width, height,
|
|
kHistogramSize, histogramAllChannels);
|
|
|
|
// Calculate Threshold from Histogram on cpu
|
|
for (int ch = 0; ch < num_channels; ++ch) {
|
|
(*thresholds)[ch] = -1;
|
|
(*hi_values)[ch] = -1;
|
|
int *histogram = &histogramAllChannels[kHistogramSize * ch];
|
|
int H;
|
|
int best_omega_0;
|
|
int best_t = OtsuStats(histogram, &H, &best_omega_0);
|
|
if (best_omega_0 == 0 || best_omega_0 == H) {
|
|
// This channel is empty.
|
|
continue;
|
|
}
|
|
// To be a convincing foreground we must have a small fraction of H
|
|
// or to be a convincing background we must have a large fraction of H.
|
|
// In between we assume this channel contains no thresholding information.
|
|
int hi_value = best_omega_0 < H * 0.5;
|
|
(*thresholds)[ch] = best_t;
|
|
if (best_omega_0 > H * 0.75) {
|
|
any_good_hivalue = true;
|
|
(*hi_values)[ch] = 0;
|
|
} else if (best_omega_0 < H * 0.25) {
|
|
any_good_hivalue = true;
|
|
(*hi_values)[ch] = 1;
|
|
} else {
|
|
// In case all channels are like this, keep the best of the bad lot.
|
|
double hi_dist = hi_value ? (H - best_omega_0) : best_omega_0;
|
|
if (hi_dist > best_hi_dist) {
|
|
best_hi_dist = hi_dist;
|
|
best_hi_value = hi_value;
|
|
best_hi_index = ch;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
#endif
|
|
for (int ch = 0; ch < num_channels; ++ch) {
|
|
(*thresholds)[ch] = -1;
|
|
(*hi_values)[ch] = -1;
|
|
// Compute the histogram of the image rectangle.
|
|
int histogram[kHistogramSize];
|
|
HistogramRect(src_pix, ch, left, top, width, height, histogram);
|
|
int H;
|
|
int best_omega_0;
|
|
int best_t = OtsuStats(histogram, &H, &best_omega_0);
|
|
if (best_omega_0 == 0 || best_omega_0 == H) {
|
|
// This channel is empty.
|
|
continue;
|
|
}
|
|
// To be a convincing foreground we must have a small fraction of H
|
|
// or to be a convincing background we must have a large fraction of H.
|
|
// In between we assume this channel contains no thresholding information.
|
|
int hi_value = best_omega_0 < H * 0.5;
|
|
(*thresholds)[ch] = best_t;
|
|
if (best_omega_0 > H * 0.75) {
|
|
any_good_hivalue = true;
|
|
(*hi_values)[ch] = 0;
|
|
} else if (best_omega_0 < H * 0.25) {
|
|
any_good_hivalue = true;
|
|
(*hi_values)[ch] = 1;
|
|
} else {
|
|
// In case all channels are like this, keep the best of the bad lot.
|
|
double hi_dist = hi_value ? (H - best_omega_0) : best_omega_0;
|
|
if (hi_dist > best_hi_dist) {
|
|
best_hi_dist = hi_dist;
|
|
best_hi_value = hi_value;
|
|
best_hi_index = ch;
|
|
}
|
|
}
|
|
}
|
|
#ifdef USE_OPENCL
|
|
}
|
|
delete[] histogramAllChannels;
|
|
#endif // USE_OPENCL
|
|
|
|
if (!any_good_hivalue) {
|
|
// Use the best of the ones that were not good enough.
|
|
(*hi_values)[best_hi_index] = best_hi_value;
|
|
}
|
|
PERF_COUNT_END
|
|
return num_channels;
|
|
}
|
|
|
|
// Computes the histogram for the given image rectangle, and the given
|
|
// single channel. Each channel is always one byte per pixel.
|
|
// Histogram is always a kHistogramSize(256) element array to count
|
|
// occurrences of each pixel value.
|
|
void HistogramRect(Pix* src_pix, int channel,
|
|
int left, int top, int width, int height,
|
|
int* histogram) {
|
|
PERF_COUNT_START("HistogramRect")
|
|
int num_channels = pixGetDepth(src_pix) / 8;
|
|
channel = ClipToRange(channel, 0, num_channels - 1);
|
|
int bottom = top + height;
|
|
memset(histogram, 0, sizeof(*histogram) * kHistogramSize);
|
|
int src_wpl = pixGetWpl(src_pix);
|
|
l_uint32* srcdata = pixGetData(src_pix);
|
|
for (int y = top; y < bottom; ++y) {
|
|
const l_uint32* linedata = srcdata + y * src_wpl;
|
|
for (int x = 0; x < width; ++x) {
|
|
int pixel = GET_DATA_BYTE(const_cast<void*>(
|
|
reinterpret_cast<const void *>(linedata)),
|
|
(x + left) * num_channels + channel);
|
|
++histogram[pixel];
|
|
}
|
|
}
|
|
PERF_COUNT_END
|
|
}
|
|
|
|
// Computes the Otsu threshold(s) for the given histogram.
|
|
// Also returns H = total count in histogram, and
|
|
// omega0 = count of histogram below threshold.
|
|
int OtsuStats(const int* histogram, int* H_out, int* omega0_out) {
|
|
int H = 0;
|
|
double mu_T = 0.0;
|
|
for (int i = 0; i < kHistogramSize; ++i) {
|
|
H += histogram[i];
|
|
mu_T += static_cast<double>(i) * histogram[i];
|
|
}
|
|
|
|
// Now maximize sig_sq_B over t.
|
|
// http://www.ctie.monash.edu.au/hargreave/Cornall_Terry_328.pdf
|
|
int best_t = -1;
|
|
int omega_0, omega_1;
|
|
int best_omega_0 = 0;
|
|
double best_sig_sq_B = 0.0;
|
|
double mu_0, mu_1, mu_t;
|
|
omega_0 = 0;
|
|
mu_t = 0.0;
|
|
for (int t = 0; t < kHistogramSize - 1; ++t) {
|
|
omega_0 += histogram[t];
|
|
mu_t += t * static_cast<double>(histogram[t]);
|
|
if (omega_0 == 0)
|
|
continue;
|
|
omega_1 = H - omega_0;
|
|
if (omega_1 == 0)
|
|
break;
|
|
mu_0 = mu_t / omega_0;
|
|
mu_1 = (mu_T - mu_t) / omega_1;
|
|
double sig_sq_B = mu_1 - mu_0;
|
|
sig_sq_B *= sig_sq_B * omega_0 * omega_1;
|
|
if (best_t < 0 || sig_sq_B > best_sig_sq_B) {
|
|
best_sig_sq_B = sig_sq_B;
|
|
best_t = t;
|
|
best_omega_0 = omega_0;
|
|
}
|
|
}
|
|
if (H_out != NULL) *H_out = H;
|
|
if (omega0_out != NULL) *omega0_out = best_omega_0;
|
|
return best_t;
|
|
}
|
|
|
|
} // namespace tesseract.
|