mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2025-01-10 04:47:49 +08:00
524a61452d
Squashed commit from https://github.com/tesseract-ocr/tesseract/tree/more-doxygen closes #14 Commits:6317305
doxygen9f42f69
doxygen0fc4d52
doxygen37b4b55
fix typobded8f1
some more doxy020eb00
slight tweak524666d
doxygenify2a36a3e
doxygenify229d218
doxygenify7fd28ae
doxygenifya8c64bc
doxygenifyf5d21b6
fix5d8ede8
doxygenifya58a4e0
language_model.cppfa85709
lm_pain_points.cpp lm_state.cpp6418da3
merge06190ba
Merge branch 'old_doxygen_merge' into more-doxygen84acf08
Merge branch 'master' into more-doxygen50fe1ff
pagewalk.cpp cube_reco_context.cpp2982583
change to relative192a24a
applybox.cpp, take one8eeb053
delete docs for obsolete params52e4c77
modernise classify/ocrfeatures.cpp2a1cba6
modernise cutil/emalloc.cpp773e006
silence doxygen warningaeb1731
silence doxygen warningf18387f
silence doxygen; new params are unused?15ad6bd
doxygenify cutil/efio.cppc8b5dad
doxygenify cutil/danerror.cpp784450f
the globals and exceptions parts are obsolete; remove8bca324
doxygen classify/normfeat.cpp9bcbe16
doxygen classify/normmatch.cppaa9a971
doxygen ccmain/cube_control.cppc083ff2
doxygen ccmain/cube_reco_context.cppf842850
params changed5c94f12
doxygen ccmain/cubeclassifier.cpp15ba750
case sensitivef5c71d4
case sensitivef85655b
doxygen classify/intproto.cpp4bbc7aa
partial doxygen classify/mfx.cppdbb6041
partial doxygen classify/intproto.cpp2aa72db
finish doxygen classify/intproto.cpp0b8de99
doxygen training/mftraining.cpp0b5b35c
partial doxygen ccstruct/coutln.cppb81c766
partial doxygen ccstruct/coutln.cpp40fc415
finished? doxygen ccstruct/coutln.cpp6e4165c
doxygen classify/clusttool.cpp0267dec
doxygen classify/cutoffs.cpp7f0c70c
doxygen classify/fpoint.cpp512f3bd
ignore ~ files5668a52
doxygen classify/intmatcher.cpp84788d4
doxygen classify/kdtree.cpp29f36ca
doxygen classify/mfoutline.cpp40b94b1
silence doxygen warnings6c511b9
doxygen classify/mfx.cppf9b4080
doxygen classify/outfeat.cppaa1df05
doxygen classify/picofeat.cppcc5f466
doxygen training/cntraining.cppcce044f
doxygen training/commontraining.cpp167e216
missing param9498383
renamed params37eeac2
renamed paramd87b5dd
casec8ee174
renamed paramsb858db8
typo4c2a838
h2 context?81a2c0c
fix some param names; add some missing params, no docsbcf8a4c
add some missing params, no docsaf77f86
add some missing params, no docs; fix some param names01df24e
fix some params6161056
fix some params68508b6
fix some params285aeb6
doxygen complains here no matter what529bcfa
rm some missing params, typoscd21226
rm some missing params, add some new ones48a4bc2
fix paramsc844628
missing param312ce37
missing param; rename oneec2fdec
missing param05e15e0
missing paramsd515858
change "<" to < to make doxygen happyb476a28
wrong place
320 lines
12 KiB
C++
320 lines
12 KiB
C++
/******************************************************************************
|
|
** Filename: mftraining.c
|
|
** Purpose: Separates training pages into files for each character.
|
|
** Strips from files only the features and there parameters of
|
|
the feature type mf.
|
|
** Author: Dan Johnson
|
|
** Revisment: Christy Russon
|
|
** Environment: HPUX 6.5
|
|
** Library: HPUX 6.5
|
|
** History: Fri Aug 18 08:53:50 1989, DSJ, Created.
|
|
** 5/25/90, DSJ, Adapted to multiple feature types.
|
|
** Tuesday, May 17, 1998 Changes made to make feature specific and
|
|
** simplify structures. First step in simplifying training process.
|
|
**
|
|
** (c) Copyright Hewlett-Packard Company, 1988.
|
|
** Licensed under the Apache License, Version 2.0 (the "License");
|
|
** you may not use this file except in compliance with the License.
|
|
** You may obtain a copy of the License at
|
|
** http://www.apache.org/licenses/LICENSE-2.0
|
|
** Unless required by applicable law or agreed to in writing, software
|
|
** distributed under the License is distributed on an "AS IS" BASIS,
|
|
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
** See the License for the specific language governing permissions and
|
|
** limitations under the License.
|
|
******************************************************************************/
|
|
/*----------------------------------------------------------------------------
|
|
Include Files and Type Defines
|
|
----------------------------------------------------------------------------*/
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config_auto.h"
|
|
#endif
|
|
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#define _USE_MATH_DEFINES
|
|
#include <math.h>
|
|
#ifdef _WIN32
|
|
#ifndef M_PI
|
|
#define M_PI 3.14159265358979323846
|
|
#endif
|
|
#endif
|
|
|
|
#include "classify.h"
|
|
#include "cluster.h"
|
|
#include "clusttool.h"
|
|
#include "commontraining.h"
|
|
#include "danerror.h"
|
|
#include "efio.h"
|
|
#include "emalloc.h"
|
|
#include "featdefs.h"
|
|
#include "fontinfo.h"
|
|
#include "genericvector.h"
|
|
#include "indexmapbidi.h"
|
|
#include "intproto.h"
|
|
#include "mastertrainer.h"
|
|
#include "mergenf.h"
|
|
#include "mf.h"
|
|
#include "ndminx.h"
|
|
#include "ocrfeatures.h"
|
|
#include "oldlist.h"
|
|
#include "protos.h"
|
|
#include "shapetable.h"
|
|
#include "tessopt.h"
|
|
#include "tprintf.h"
|
|
#include "unicity_table.h"
|
|
|
|
using tesseract::Classify;
|
|
using tesseract::FontInfo;
|
|
using tesseract::FontSpacingInfo;
|
|
using tesseract::IndexMapBiDi;
|
|
using tesseract::MasterTrainer;
|
|
using tesseract::Shape;
|
|
using tesseract::ShapeTable;
|
|
|
|
#define PROGRAM_FEATURE_TYPE "mf"
|
|
|
|
// Max length of a fake shape label.
|
|
const int kMaxShapeLabelLength = 10;
|
|
|
|
DECLARE_STRING_PARAM_FLAG(test_ch);
|
|
|
|
/*----------------------------------------------------------------------------
|
|
Public Function Prototypes
|
|
----------------------------------------------------------------------------*/
|
|
int main (
|
|
int argc,
|
|
char **argv);
|
|
|
|
|
|
/*----------------------------------------------------------------------------
|
|
Public Code
|
|
-----------------------------------------------------------------------------*/
|
|
#ifndef GRAPHICS_DISABLED
|
|
static void DisplayProtoList(const char* ch, LIST protolist) {
|
|
void* window = c_create_window("Char samples", 50, 200,
|
|
520, 520, -130.0, 130.0, -130.0, 130.0);
|
|
LIST proto = protolist;
|
|
iterate(proto) {
|
|
PROTOTYPE* prototype = reinterpret_cast<PROTOTYPE *>(first_node(proto));
|
|
if (prototype->Significant)
|
|
c_line_color_index(window, Green);
|
|
else if (prototype->NumSamples == 0)
|
|
c_line_color_index(window, Blue);
|
|
else if (prototype->Merged)
|
|
c_line_color_index(window, Magenta);
|
|
else
|
|
c_line_color_index(window, Red);
|
|
float x = CenterX(prototype->Mean);
|
|
float y = CenterY(prototype->Mean);
|
|
double angle = OrientationOf(prototype->Mean) * 2 * M_PI;
|
|
float dx = static_cast<float>(LengthOf(prototype->Mean) * cos(angle) / 2);
|
|
float dy = static_cast<float>(LengthOf(prototype->Mean) * sin(angle) / 2);
|
|
c_move(window, (x - dx) * 256, (y - dy) * 256);
|
|
c_draw(window, (x + dx) * 256, (y + dy) * 256);
|
|
if (prototype->Significant)
|
|
tprintf("Green proto at (%g,%g)+(%g,%g) %d samples\n",
|
|
x, y, dx, dy, prototype->NumSamples);
|
|
else if (prototype->NumSamples > 0 && !prototype->Merged)
|
|
tprintf("Red proto at (%g,%g)+(%g,%g) %d samples\n",
|
|
x, y, dx, dy, prototype->NumSamples);
|
|
}
|
|
c_make_current(window);
|
|
}
|
|
#endif // GRAPHICS_DISABLED
|
|
|
|
// Helper to run clustering on a single config.
|
|
// Mostly copied from the old mftraining, but with renamed variables.
|
|
static LIST ClusterOneConfig(int shape_id, const char* class_label,
|
|
LIST mf_classes,
|
|
const ShapeTable& shape_table,
|
|
MasterTrainer* trainer) {
|
|
int num_samples;
|
|
CLUSTERER *clusterer = trainer->SetupForClustering(shape_table,
|
|
feature_defs,
|
|
shape_id,
|
|
&num_samples);
|
|
Config.MagicSamples = num_samples;
|
|
LIST proto_list = ClusterSamples(clusterer, &Config);
|
|
CleanUpUnusedData(proto_list);
|
|
|
|
// Merge protos where reasonable to make more of them significant by
|
|
// representing almost all samples of the class/font.
|
|
MergeInsignificantProtos(proto_list, class_label, clusterer, &Config);
|
|
#ifndef GRAPHICS_DISABLED
|
|
if (strcmp(FLAGS_test_ch.c_str(), class_label) == 0)
|
|
DisplayProtoList(FLAGS_test_ch.c_str(), proto_list);
|
|
#endif // GRAPHICS_DISABLED
|
|
// Delete the protos that will not be used in the inttemp output file.
|
|
proto_list = RemoveInsignificantProtos(proto_list, true,
|
|
false,
|
|
clusterer->SampleSize);
|
|
FreeClusterer(clusterer);
|
|
MERGE_CLASS merge_class = FindClass(mf_classes, class_label);
|
|
if (merge_class == NULL) {
|
|
merge_class = NewLabeledClass(class_label);
|
|
mf_classes = push(mf_classes, merge_class);
|
|
}
|
|
int config_id = AddConfigToClass(merge_class->Class);
|
|
merge_class->Class->font_set.push_back(shape_id);
|
|
LIST proto_it = proto_list;
|
|
iterate(proto_it) {
|
|
PROTOTYPE* prototype = reinterpret_cast<PROTOTYPE*>(first_node(proto_it));
|
|
// See if proto can be approximated by existing proto.
|
|
int p_id = FindClosestExistingProto(merge_class->Class,
|
|
merge_class->NumMerged, prototype);
|
|
if (p_id == NO_PROTO) {
|
|
// Need to make a new proto, as it doesn't match anything.
|
|
p_id = AddProtoToClass(merge_class->Class);
|
|
MakeNewFromOld(ProtoIn(merge_class->Class, p_id), prototype);
|
|
merge_class->NumMerged[p_id] = 1;
|
|
} else {
|
|
PROTO_STRUCT dummy_proto;
|
|
MakeNewFromOld(&dummy_proto, prototype);
|
|
// Merge with the similar proto.
|
|
ComputeMergedProto(ProtoIn(merge_class->Class, p_id), &dummy_proto,
|
|
static_cast<FLOAT32>(merge_class->NumMerged[p_id]),
|
|
1.0,
|
|
ProtoIn(merge_class->Class, p_id));
|
|
merge_class->NumMerged[p_id]++;
|
|
}
|
|
AddProtoToConfig(p_id, merge_class->Class->Configurations[config_id]);
|
|
}
|
|
FreeProtoList(&proto_list);
|
|
return mf_classes;
|
|
}
|
|
|
|
// Helper to setup the config map.
|
|
// Setup an index mapping from the shapes in the shape table to the classes
|
|
// that will be trained. In keeping with the original design, each shape
|
|
// with the same list of unichars becomes a different class and the configs
|
|
// represent the different combinations of fonts.
|
|
static void SetupConfigMap(ShapeTable* shape_table, IndexMapBiDi* config_map) {
|
|
int num_configs = shape_table->NumShapes();
|
|
config_map->Init(num_configs, true);
|
|
config_map->Setup();
|
|
for (int c1 = 0; c1 < num_configs; ++c1) {
|
|
// Only process ids that are not already merged.
|
|
if (config_map->SparseToCompact(c1) == c1) {
|
|
Shape* shape1 = shape_table->MutableShape(c1);
|
|
// Find all the subsequent shapes that are equal.
|
|
for (int c2 = c1 + 1; c2 < num_configs; ++c2) {
|
|
if (shape_table->MutableShape(c2)->IsEqualUnichars(shape1)) {
|
|
config_map->Merge(c1, c2);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
config_map->CompleteMerges();
|
|
}
|
|
|
|
/**
|
|
* This program reads in a text file consisting of feature
|
|
* samples from a training page in the following format:
|
|
* @verbatim
|
|
FontName UTF8-char-str xmin ymin xmax ymax page-number
|
|
NumberOfFeatureTypes(N)
|
|
FeatureTypeName1 NumberOfFeatures(M)
|
|
Feature1
|
|
...
|
|
FeatureM
|
|
FeatureTypeName2 NumberOfFeatures(M)
|
|
Feature1
|
|
...
|
|
FeatureM
|
|
...
|
|
FeatureTypeNameN NumberOfFeatures(M)
|
|
Feature1
|
|
...
|
|
FeatureM
|
|
FontName CharName ...
|
|
@endverbatim
|
|
* The result of this program is a binary inttemp file used by
|
|
* the OCR engine.
|
|
* @param argc number of command line arguments
|
|
* @param argv array of command line arguments
|
|
* @return none
|
|
* @note Exceptions: none
|
|
* @note History: Fri Aug 18 08:56:17 1989, DSJ, Created.
|
|
* @note History: Mon May 18 1998, Christy Russson, Revistion started.
|
|
*/
|
|
int main (int argc, char **argv) {
|
|
ParseArguments(&argc, &argv);
|
|
|
|
ShapeTable* shape_table = NULL;
|
|
STRING file_prefix;
|
|
// Load the training data.
|
|
MasterTrainer* trainer = tesseract::LoadTrainingData(argc, argv,
|
|
false,
|
|
&shape_table,
|
|
&file_prefix);
|
|
if (trainer == NULL)
|
|
return 1; // Failed.
|
|
|
|
// Setup an index mapping from the shapes in the shape table to the classes
|
|
// that will be trained. In keeping with the original design, each shape
|
|
// with the same list of unichars becomes a different class and the configs
|
|
// represent the different combinations of fonts.
|
|
IndexMapBiDi config_map;
|
|
SetupConfigMap(shape_table, &config_map);
|
|
|
|
WriteShapeTable(file_prefix, *shape_table);
|
|
// If the shape_table is flat, then either we didn't run shape clustering, or
|
|
// it did nothing, so we just output the trainer's unicharset.
|
|
// Otherwise shape_set will hold a fake unicharset with an entry for each
|
|
// shape in the shape table, and we will output that instead.
|
|
UNICHARSET shape_set;
|
|
const UNICHARSET* unicharset = &trainer->unicharset();
|
|
// If we ran shapeclustering (and it worked) then at least one shape will
|
|
// have multiple unichars, so we have to build a fake unicharset.
|
|
if (shape_table->AnyMultipleUnichars()) {
|
|
unicharset = &shape_set;
|
|
// Now build a fake unicharset for the compact shape space to keep the
|
|
// output modules happy that we are doing things correctly.
|
|
int num_shapes = config_map.CompactSize();
|
|
for (int s = 0; s < num_shapes; ++s) {
|
|
char shape_label[kMaxShapeLabelLength + 1];
|
|
snprintf(shape_label, kMaxShapeLabelLength, "sh%04d", s);
|
|
shape_set.unichar_insert(shape_label);
|
|
}
|
|
}
|
|
|
|
// Now train each config separately.
|
|
int num_configs = shape_table->NumShapes();
|
|
LIST mf_classes = NIL_LIST;
|
|
for (int s = 0; s < num_configs; ++s) {
|
|
int unichar_id, font_id;
|
|
if (unicharset == &shape_set) {
|
|
// Using fake unichar_ids from the config_map/shape_set.
|
|
unichar_id = config_map.SparseToCompact(s);
|
|
} else {
|
|
// Get the real unichar_id from the shape table/unicharset.
|
|
shape_table->GetFirstUnicharAndFont(s, &unichar_id, &font_id);
|
|
}
|
|
const char* class_label = unicharset->id_to_unichar(unichar_id);
|
|
mf_classes = ClusterOneConfig(s, class_label, mf_classes, *shape_table,
|
|
trainer);
|
|
}
|
|
STRING inttemp_file = file_prefix;
|
|
inttemp_file += "inttemp";
|
|
STRING pffmtable_file = file_prefix;
|
|
pffmtable_file += "pffmtable";
|
|
CLASS_STRUCT* float_classes = SetUpForFloat2Int(*unicharset, mf_classes);
|
|
// Now write the inttemp and pffmtable.
|
|
trainer->WriteInttempAndPFFMTable(trainer->unicharset(), *unicharset,
|
|
*shape_table, float_classes,
|
|
inttemp_file.string(),
|
|
pffmtable_file.string());
|
|
delete [] float_classes;
|
|
FreeLabeledClassList(mf_classes);
|
|
delete trainer;
|
|
delete shape_table;
|
|
printf("Done!\n");
|
|
if (!FLAGS_test_ch.empty()) {
|
|
// If we are displaying debug window(s), wait for the user to look at them.
|
|
printf("Hit return to exit...\n");
|
|
while (getchar() != '\n');
|
|
}
|
|
return 0;
|
|
} /* main */
|