mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2024-12-15 01:24:54 +08:00
82 lines
3.1 KiB
C++
82 lines
3.1 KiB
C++
///////////////////////////////////////////////////////////////////////
|
|
// File: lstmeval.cpp
|
|
// Description: Evaluation program for LSTM-based networks.
|
|
// Author: Ray Smith
|
|
// Created: Wed Nov 23 12:20:06 PST 2016
|
|
//
|
|
// (C) Copyright 2016, Google Inc.
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
///////////////////////////////////////////////////////////////////////
|
|
|
|
#ifdef GOOGLE_TESSERACT
|
|
#include "base/commandlineflags.h"
|
|
#endif
|
|
#include "commontraining.h"
|
|
#include "genericvector.h"
|
|
#include "lstmtester.h"
|
|
#include "strngs.h"
|
|
#include "tprintf.h"
|
|
|
|
STRING_PARAM_FLAG(model, "", "Name of model file (training or recognition)");
|
|
STRING_PARAM_FLAG(traineddata, "",
|
|
"If model is a training checkpoint, then traineddata must "
|
|
"be the traineddata file that was given to the trainer");
|
|
STRING_PARAM_FLAG(eval_listfile, "",
|
|
"File listing sample files in lstmf training format.");
|
|
INT_PARAM_FLAG(max_image_MB, 2000, "Max memory to use for images.");
|
|
INT_PARAM_FLAG(verbosity, 1,
|
|
"Amount of diagnosting information to output (0-2).");
|
|
|
|
int main(int argc, char **argv) {
|
|
ParseArguments(&argc, &argv);
|
|
if (FLAGS_model.empty()) {
|
|
tprintf("Must provide a --model!\n");
|
|
return 1;
|
|
}
|
|
if (FLAGS_eval_listfile.empty()) {
|
|
tprintf("Must provide a --eval_listfile!\n");
|
|
return 1;
|
|
}
|
|
tesseract::TessdataManager mgr;
|
|
if (!mgr.Init(FLAGS_model.c_str())) {
|
|
if (FLAGS_traineddata.empty()) {
|
|
tprintf("Must supply --traineddata to eval a training checkpoint!\n");
|
|
return 1;
|
|
}
|
|
tprintf("%s is not a recognition model, trying training checkpoint...\n",
|
|
FLAGS_model.c_str());
|
|
if (!mgr.Init(FLAGS_traineddata.c_str())) {
|
|
tprintf("Failed to load language model from %s!\n",
|
|
FLAGS_traineddata.c_str());
|
|
return 1;
|
|
}
|
|
GenericVector<char> model_data;
|
|
if (!tesseract::LoadDataFromFile(FLAGS_model.c_str(), &model_data)) {
|
|
tprintf("Failed to load model from: %s\n", FLAGS_model.c_str());
|
|
return 1;
|
|
}
|
|
mgr.OverwriteEntry(tesseract::TESSDATA_LSTM, &model_data[0],
|
|
model_data.size());
|
|
}
|
|
tesseract::LSTMTester tester(static_cast<inT64>(FLAGS_max_image_MB) *
|
|
1048576);
|
|
if (!tester.LoadAllEvalData(FLAGS_eval_listfile.c_str())) {
|
|
tprintf("Failed to load eval data from: %s\n", FLAGS_eval_listfile.c_str());
|
|
return 1;
|
|
}
|
|
double errs = 0.0;
|
|
STRING result =
|
|
tester.RunEvalSync(0, &errs, mgr,
|
|
/*training_stage (irrelevant)*/ 0, FLAGS_verbosity);
|
|
tprintf("%s\n", result.string());
|
|
return 0;
|
|
} /* main */
|