mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2024-12-21 05:21:35 +08:00
2215174951
Signed-off-by: Stefan Weil <sw@weilnetz.de>
233 lines
8.0 KiB
C++
233 lines
8.0 KiB
C++
// (C) Copyright 2017, Google Inc.
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
// Unit test to run Tesseract instances in parallel threads and verify
|
|
// the OCR result.
|
|
|
|
// Note that success of running this test as-is does NOT verify
|
|
// thread-safety. For that, you need to run this binary under TSAN using the
|
|
// associated baseapi_thread_test_with_tsan.sh script.
|
|
//
|
|
// The tests are partitioned by instance to allow running Tesseract/Cube/both
|
|
// and by stage to run initialization/recognition/both. See flag descriptions
|
|
// for details.
|
|
|
|
#include <functional>
|
|
#include <memory>
|
|
#include <string>
|
|
#ifdef INCLUDE_TENSORFLOW
|
|
# include <tensorflow/core/lib/core/threadpool.h>
|
|
#endif
|
|
#include <allheaders.h>
|
|
#include <tesseract/baseapi.h>
|
|
#include "commandlineflags.h"
|
|
#include "include_gunit.h"
|
|
#include "log.h"
|
|
#include "image.h"
|
|
|
|
// Run with Tesseract instances.
|
|
BOOL_PARAM_FLAG(test_tesseract, true, "Test tesseract instances");
|
|
// Run with Cube instances.
|
|
// Note that with TSAN, Cube typically takes much longer to test. Ignoring
|
|
// std::string operations using the associated tess_tsan.ignore file when
|
|
// testing Cube significantly reduces testing time.
|
|
BOOL_PARAM_FLAG(test_cube, true, "Test Cube instances");
|
|
|
|
// When used with TSAN, having more repetitions can help in finding hidden
|
|
// thread-safety violations at the expense of increased testing time.
|
|
INT_PARAM_FLAG(reps, 1, "Num of parallel test repetitions to run.");
|
|
|
|
INT_PARAM_FLAG(max_concurrent_instances, 0,
|
|
"Maximum number of instances to run in parallel at any given "
|
|
"instant. The number of concurrent instances cannot exceed "
|
|
"reps * number_of_langs_tested, which is also the default value.");
|
|
|
|
namespace tesseract {
|
|
|
|
static const char *kTessLangs[] = {"eng", "vie", nullptr};
|
|
static const char *kTessImages[] = {"HelloGoogle.tif", "viet.tif", nullptr};
|
|
static const char *kTessTruthText[] = {"Hello Google", "\x74\x69\xe1\xba\xbf\x6e\x67", nullptr};
|
|
|
|
static const char *kCubeLangs[] = {"hin", "ara", nullptr};
|
|
static const char *kCubeImages[] = {"raaj.tif", "arabic.tif", nullptr};
|
|
static const char *kCubeTruthText[] = {"\xe0\xa4\xb0\xe0\xa4\xbe\xe0\xa4\x9c",
|
|
"\xd8\xa7\xd9\x84\xd8\xb9\xd8\xb1\xd8\xa8\xd9\x8a", nullptr};
|
|
|
|
class BaseapiThreadTest : public ::testing::Test {
|
|
protected:
|
|
static void SetUpTestCase() {
|
|
CHECK(FLAGS_test_tesseract || FLAGS_test_cube)
|
|
<< "Need to test at least one of Tesseract/Cube!";
|
|
// Form a list of langs/gt_text/image_files we will work with.
|
|
std::vector<std::string> image_files;
|
|
if (FLAGS_test_tesseract) {
|
|
int i = 0;
|
|
while (kTessLangs[i] && kTessTruthText[i] && kTessImages[i]) {
|
|
langs_.emplace_back(kTessLangs[i]);
|
|
gt_text_.emplace_back(kTessTruthText[i]);
|
|
image_files.emplace_back(kTessImages[i]);
|
|
++i;
|
|
}
|
|
LOG(INFO) << "Testing Tesseract on " << i << " languages.";
|
|
}
|
|
if (FLAGS_test_cube) {
|
|
int i = 0;
|
|
while (kCubeLangs[i] && kCubeTruthText[i] && kCubeImages[i]) {
|
|
langs_.emplace_back(kCubeLangs[i]);
|
|
gt_text_.emplace_back(kCubeTruthText[i]);
|
|
image_files.emplace_back(kCubeImages[i]);
|
|
++i;
|
|
}
|
|
LOG(INFO) << "Testing Cube on " << i << " languages.";
|
|
}
|
|
num_langs_ = langs_.size();
|
|
|
|
// Pre-load the images into an array. We will be making multiple copies of
|
|
// an image here if FLAGS_reps > 1 and that is intentional. In this test, we
|
|
// wish to not make any assumptions about the thread-safety of Pix objects,
|
|
// and so entirely disallow concurrent access of a Pix instance.
|
|
const int n = num_langs_ * FLAGS_reps;
|
|
for (int i = 0; i < n; ++i) {
|
|
std::string path = TESTING_DIR "/" + image_files[i % num_langs_];
|
|
Image new_pix = pixRead(path.c_str());
|
|
QCHECK(new_pix != nullptr) << "Could not read " << path;
|
|
pix_.push_back(new_pix);
|
|
}
|
|
|
|
#ifdef INCLUDE_TENSORFLOW
|
|
pool_size_ = (FLAGS_max_concurrent_instances < 1) ? num_langs_ * FLAGS_reps
|
|
: FLAGS_max_concurrent_instances;
|
|
#endif
|
|
}
|
|
|
|
static void TearDownTestCase() {
|
|
for (auto &pix : pix_) {
|
|
pix.destroy();
|
|
}
|
|
}
|
|
|
|
#ifdef INCLUDE_TENSORFLOW
|
|
void ResetPool() {
|
|
pool_.reset(
|
|
new tensorflow::thread::ThreadPool(tensorflow::Env::Default(), "tessthread", pool_size_));
|
|
}
|
|
|
|
void WaitForPoolWorkers() {
|
|
pool_.reset(nullptr);
|
|
}
|
|
|
|
std::unique_ptr<tensorflow::thread::ThreadPool> pool_;
|
|
static int pool_size_;
|
|
#endif
|
|
static std::vector<Image > pix_;
|
|
static std::vector<std::string> langs_;
|
|
static std::vector<std::string> gt_text_;
|
|
static int num_langs_;
|
|
};
|
|
|
|
// static member variable declarations.
|
|
#ifdef INCLUDE_TENSORFLOW
|
|
int BaseapiThreadTest::pool_size_;
|
|
#endif
|
|
std::vector<Image > BaseapiThreadTest::pix_;
|
|
std::vector<std::string> BaseapiThreadTest::langs_;
|
|
std::vector<std::string> BaseapiThreadTest::gt_text_;
|
|
int BaseapiThreadTest::num_langs_;
|
|
|
|
static void InitTessInstance(TessBaseAPI *tess, const std::string &lang) {
|
|
CHECK(tess != nullptr);
|
|
EXPECT_EQ(0, tess->Init(TESSDATA_DIR, lang.c_str()));
|
|
}
|
|
|
|
static void GetCleanedText(TessBaseAPI *tess, Image pix, std::string &ocr_text) {
|
|
tess->SetImage(pix);
|
|
char *result = tess->GetUTF8Text();
|
|
ocr_text = result;
|
|
delete[] result;
|
|
trim(ocr_text);
|
|
}
|
|
|
|
#ifdef INCLUDE_TENSORFLOW
|
|
static void VerifyTextResult(TessBaseAPI *tess, Image pix, const std::string &lang,
|
|
const std::string &expected_text) {
|
|
TessBaseAPI *tess_local = nullptr;
|
|
if (tess) {
|
|
tess_local = tess;
|
|
} else {
|
|
tess_local = new TessBaseAPI;
|
|
InitTessInstance(tess_local, lang);
|
|
}
|
|
std::string ocr_text;
|
|
GetCleanedText(tess_local, pix, ocr_text);
|
|
EXPECT_STREQ(expected_text.c_str(), ocr_text.c_str());
|
|
if (tess_local != tess) {
|
|
delete tess_local;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Check that Tesseract/Cube produce the correct results in single-threaded
|
|
// operation. If not, it is pointless to run the real multi-threaded tests.
|
|
TEST_F(BaseapiThreadTest, TestBasicSanity) {
|
|
for (int i = 0; i < num_langs_; ++i) {
|
|
TessBaseAPI tess;
|
|
InitTessInstance(&tess, langs_[i]);
|
|
std::string ocr_text;
|
|
GetCleanedText(&tess, pix_[i], ocr_text);
|
|
CHECK(strcmp(gt_text_[i].c_str(), ocr_text.c_str()) == 0) << "Failed with lang = " << langs_[i];
|
|
}
|
|
}
|
|
|
|
// Test concurrent instance initialization.
|
|
TEST_F(BaseapiThreadTest, TestInit) {
|
|
#ifdef INCLUDE_TENSORFLOW
|
|
const int n = num_langs_ * FLAGS_reps;
|
|
ResetPool();
|
|
std::vector<TessBaseAPI> tess(n);
|
|
for (int i = 0; i < n; ++i) {
|
|
pool_->Schedule(std::bind(InitTessInstance, &tess[i], langs_[i % num_langs_]));
|
|
}
|
|
WaitForPoolWorkers();
|
|
#endif
|
|
}
|
|
|
|
// Test concurrent recognition.
|
|
TEST_F(BaseapiThreadTest, TestRecognition) {
|
|
#ifdef INCLUDE_TENSORFLOW
|
|
const int n = num_langs_ * FLAGS_reps;
|
|
std::vector<TessBaseAPI> tess(n);
|
|
// Initialize api instances in a single thread.
|
|
for (int i = 0; i < n; ++i) {
|
|
InitTessInstance(&tess[i], langs_[i % num_langs_]);
|
|
}
|
|
|
|
ResetPool();
|
|
for (int i = 0; i < n; ++i) {
|
|
pool_->Schedule(std::bind(VerifyTextResult, &tess[i], pix_[i], langs_[i % num_langs_],
|
|
gt_text_[i % num_langs_]));
|
|
}
|
|
WaitForPoolWorkers();
|
|
#endif
|
|
}
|
|
|
|
TEST_F(BaseapiThreadTest, TestAll) {
|
|
#ifdef INCLUDE_TENSORFLOW
|
|
const int n = num_langs_ * FLAGS_reps;
|
|
ResetPool();
|
|
for (int i = 0; i < n; ++i) {
|
|
pool_->Schedule(std::bind(VerifyTextResult, nullptr, pix_[i], langs_[i % num_langs_],
|
|
gt_text_[i % num_langs_]));
|
|
}
|
|
WaitForPoolWorkers();
|
|
#endif
|
|
}
|
|
} // namespace tesseract
|