tesseract/ccstruct/params_training_featdef.h

150 lines
5.8 KiB
C++

///////////////////////////////////////////////////////////////////////
// File: params_training_featdef.h
// Description: Feature definitions for params training.
// Author: Rika Antonova
// Created: Mon Nov 28 11:26:42 PDT 2011
//
// (C) Copyright 2011, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
///////////////////////////////////////////////////////////////////////
#ifndef TESSERACT_WORDREC_PARAMS_TRAINING_FEATDEF_H_
#define TESSERACT_WORDREC_PARAMS_TRAINING_FEATDEF_H_
#include "genericvector.h"
#include "strngs.h"
namespace tesseract {
// Maximum number of unichars in the small and medium sized words
static const int kMaxSmallWordUnichars = 3;
static const int kMaxMediumWordUnichars = 6;
// Raw features extracted from a single OCR hypothesis.
// The features are normalized (by outline length or number of unichars as
// appropriate) real-valued quantities with unbounded range and
// unknown distribution.
// Normalization / binarization of these features is done at a later stage.
// Note: when adding new fields to this enum make sure to modify
// kParamsTrainingFeatureTypeName
enum kParamsTrainingFeatureType {
// Digits
PTRAIN_DIGITS_SHORT, // 0
PTRAIN_DIGITS_MED, // 1
PTRAIN_DIGITS_LONG, // 2
// Number or pattern (NUMBER_PERM, USER_PATTERN_PERM)
PTRAIN_NUM_SHORT, // 3
PTRAIN_NUM_MED, // 4
PTRAIN_NUM_LONG, // 5
// Document word (DOC_DAWG_PERM)
PTRAIN_DOC_SHORT, // 6
PTRAIN_DOC_MED, // 7
PTRAIN_DOC_LONG, // 8
// Word (SYSTEM_DAWG_PERM, USER_DAWG_PERM, COMPOUND_PERM)
PTRAIN_DICT_SHORT, // 9
PTRAIN_DICT_MED, // 10
PTRAIN_DICT_LONG, // 11
// Frequent word (FREQ_DAWG_PERM)
PTRAIN_FREQ_SHORT, // 12
PTRAIN_FREQ_MED, // 13
PTRAIN_FREQ_LONG, // 14
PTRAIN_SHAPE_COST_PER_CHAR, // 15
PTRAIN_NGRAM_COST_PER_CHAR, // 16
PTRAIN_NUM_BAD_PUNC, // 17
PTRAIN_NUM_BAD_CASE, // 18
PTRAIN_XHEIGHT_CONSISTENCY, // 19
PTRAIN_NUM_BAD_CHAR_TYPE, // 20
PTRAIN_NUM_BAD_SPACING, // 21
PTRAIN_NUM_BAD_FONT, // 22
PTRAIN_RATING_PER_CHAR, // 23
PTRAIN_NUM_FEATURE_TYPES
};
static const char * const kParamsTrainingFeatureTypeName[] = {
"PTRAIN_DIGITS_SHORT", // 0
"PTRAIN_DIGITS_MED", // 1
"PTRAIN_DIGITS_LONG", // 2
"PTRAIN_NUM_SHORT", // 3
"PTRAIN_NUM_MED", // 4
"PTRAIN_NUM_LONG", // 5
"PTRAIN_DOC_SHORT", // 6
"PTRAIN_DOC_MED", // 7
"PTRAIN_DOC_LONG", // 8
"PTRAIN_DICT_SHORT", // 9
"PTRAIN_DICT_MED", // 10
"PTRAIN_DICT_LONG", // 11
"PTRAIN_FREQ_SHORT", // 12
"PTRAIN_FREQ_MED", // 13
"PTRAIN_FREQ_LONG", // 14
"PTRAIN_SHAPE_COST_PER_CHAR", // 15
"PTRAIN_NGRAM_COST_PER_CHAR", // 16
"PTRAIN_NUM_BAD_PUNC", // 17
"PTRAIN_NUM_BAD_CASE", // 18
"PTRAIN_XHEIGHT_CONSISTENCY", // 19
"PTRAIN_NUM_BAD_CHAR_TYPE", // 20
"PTRAIN_NUM_BAD_SPACING", // 21
"PTRAIN_NUM_BAD_FONT", // 22
"PTRAIN_RATING_PER_CHAR", // 23
};
// Returns the index of the given feature (by name),
// or -1 meaning the feature is unknown.
int ParamsTrainingFeatureByName(const char *name);
// Entry with features extracted from a single OCR hypothesis for a word.
struct ParamsTrainingHypothesis {
ParamsTrainingHypothesis() : cost(0.0) {
memset(features, 0, sizeof(float) * PTRAIN_NUM_FEATURE_TYPES);
}
ParamsTrainingHypothesis(const ParamsTrainingHypothesis &other) {
memcpy(features, other.features,
sizeof(float) * PTRAIN_NUM_FEATURE_TYPES);
str = other.str;
cost = other.cost;
}
float features[PTRAIN_NUM_FEATURE_TYPES];
STRING str; // string corresponding to word hypothesis (for debugging)
float cost; // path cost computed by segsearch
};
// A list of hypotheses explored during one run of segmentation search.
typedef GenericVector<ParamsTrainingHypothesis> ParamsTrainingHypothesisList;
// A bundle that accumulates all of the hypothesis lists explored during all
// of the runs of segmentation search on a word (e.g. a list of hypotheses
// explored on PASS1, PASS2, fix xheight pass, etc).
class ParamsTrainingBundle {
public:
ParamsTrainingBundle() {};
// Starts a new hypothesis list.
// Should be called at the beginning of a new run of the segmentation search.
void StartHypothesisList() {
hyp_list_vec.push_back(ParamsTrainingHypothesisList());
}
// Adds a new ParamsTrainingHypothesis to the current hypothesis list
// and returns the reference to the newly added entry.
ParamsTrainingHypothesis &AddHypothesis(
const ParamsTrainingHypothesis &other) {
if (hyp_list_vec.empty()) StartHypothesisList();
hyp_list_vec.back().push_back(ParamsTrainingHypothesis(other));
return hyp_list_vec.back().back();
}
GenericVector<ParamsTrainingHypothesisList> hyp_list_vec;
};
} // namespace tesseract
#endif // TESSERACT_WORDREC_PARAMS_TRAINING_FEATDEF_H_