tesseract/training/mfTraining.cpp
2009-03-10 19:03:06 +00:00

1342 lines
38 KiB
C++

/******************************************************************************
** Filename: mfTraining.c
** Purpose: Separates training pages into files for each character.
** Strips from files only the features and there parameters of
the feature type mf.
** Author: Dan Johnson
** Revisment: Christy Russon
** Environment: HPUX 6.5
** Library: HPUX 6.5
** History: Fri Aug 18 08:53:50 1989, DSJ, Created.
** 5/25/90, DSJ, Adapted to multiple feature types.
** Tuesday, May 17, 1998 Changes made to make feature specific and
** simplify structures. First step in simplifying training process.
**
** (c) Copyright Hewlett-Packard Company, 1988.
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
** http://www.apache.org/licenses/LICENSE-2.0
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
******************************************************************************/
/**----------------------------------------------------------------------------
Include Files and Type Defines
----------------------------------------------------------------------------**/
#include "oldlist.h"
#include "efio.h"
#include "emalloc.h"
#include "featdefs.h"
#include "tessopt.h"
#include "ocrfeatures.h"
#include "mf.h"
#include "general.h"
#include "clusttool.h"
#include "cluster.h"
#include "protos.h"
#include "minmax.h"
#include "debug.h"
#include "tprintf.h"
#include "const.h"
#include "mergenf.h"
#include "name2char.h"
#include "intproto.h"
#include "variables.h"
#include "freelist.h"
#include "efio.h"
#include "danerror.h"
#include "globals.h"
#include <string.h>
#include <stdio.h>
#define _USE_MATH_DEFINES
#include <math.h>
#ifdef WIN32
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
#endif
#define MAXNAMESIZE 80
#define MAX_NUM_SAMPLES 10000
#define PROGRAM_FEATURE_TYPE "mf"
#define MINSD (1.0f / 128.0f)
#define MINSD_ANGLE (1.0f / 64.0f)
int row_number; /* cjn: fixes link problem */
typedef struct
{
char *Label;
int SampleCount;
LIST List;
}
LABELEDLISTNODE, *LABELEDLIST;
typedef struct
{
char* Label;
int NumMerged[MAX_NUM_PROTOS];
CLASS_TYPE Class;
}MERGE_CLASS_NODE;
typedef MERGE_CLASS_NODE* MERGE_CLASS;
#define round(x,frag)(floor(x/frag+.5)*frag)
/**----------------------------------------------------------------------------
Public Function Prototypes
----------------------------------------------------------------------------**/
int main (
int argc,
char **argv);
/**----------------------------------------------------------------------------
Private Function Prototypes
----------------------------------------------------------------------------**/
void ParseArguments(
int argc,
char **argv);
char *GetNextFilename ();
LIST ReadTrainingSamples (
FILE *File);
LABELEDLIST FindList (
LIST List,
char *Label);
MERGE_CLASS FindClass (
LIST List,
char *Label);
LABELEDLIST NewLabeledList (
char *Label);
MERGE_CLASS NewLabeledClass (
char *Label);
void WriteTrainingSamples (
char *Directory,
LIST CharList);
void WriteClusteredTrainingSamples (
char *Directory,
LIST ProtoList,
CLUSTERER *Clusterer,
LABELEDLIST CharSample);
/**/
void WriteMergedTrainingSamples(
char *Directory,
LIST ClassList);
void WriteMicrofeat(
char *Directory,
LIST ClassList);
void WriteProtos(
FILE* File,
MERGE_CLASS MergeClass);
void WriteConfigs(
FILE* File,
CLASS_TYPE Class);
void FreeTrainingSamples (
LIST CharList);
void FreeLabeledClassList (
LIST ClassList);
void FreeLabeledList (
LABELEDLIST LabeledList);
CLUSTERER *SetUpForClustering(
LABELEDLIST CharSample);
/*
PARAMDESC *ConvertToPARAMDESC(
PARAM_DESC* Param_Desc,
int N);
*/
void MergeInsignificantProtos(LIST ProtoList, const char* label,
CLUSTERER *Clusterer, CLUSTERCONFIG *Config);
LIST RemoveInsignificantProtos(
LIST ProtoList,
BOOL8 KeepSigProtos,
BOOL8 KeepInsigProtos,
int N);
void CleanUpUnusedData(
LIST ProtoList);
void Normalize (
float *Values);
void SetUpForFloat2Int(
LIST LabeledClassList);
void WritePFFMTable(INT_TEMPLATES Templates, const char* filename);
//--------------Global Data Definitions and Declarations--------------
static char FontName[MAXNAMESIZE];
// globals used for parsing command line arguments
static char *Directory = NULL;
static int MaxNumSamples = MAX_NUM_SAMPLES;
static int Argc;
static char **Argv;
// globals used to control what information is saved in the output file
static BOOL8 ShowAllSamples = FALSE;
static BOOL8 ShowSignificantProtos = TRUE;
static BOOL8 ShowInsignificantProtos = FALSE;
// global variable to hold configuration parameters to control clustering
// -M 0.40 -B 0.05 -I 1.0 -C 1e-6.
static CLUSTERCONFIG Config =
{ elliptical, 0.625, 0.05, 1.0, 1e-6, 0 };
static FLOAT32 RoundingAccuracy = 0.0f;
// The unicharset used during mftraining
static UNICHARSET unicharset_mftraining;
const char* test_ch = "";
/*----------------------------------------------------------------------------
Public Code
-----------------------------------------------------------------------------*/
void DisplayProtoList(const char* ch, LIST protolist) {
void* window = c_create_window("Char samples", 50, 200,
520, 520, -130.0, 130.0, -130.0, 130.0);
LIST proto = protolist;
iterate(proto) {
PROTOTYPE* prototype = reinterpret_cast<PROTOTYPE *>(first_node(proto));
if (prototype->Significant)
c_line_color_index(window, Green);
else if (prototype->NumSamples == 0)
c_line_color_index(window, Blue);
else if (prototype->Merged)
c_line_color_index(window, Magenta);
else
c_line_color_index(window, Red);
float x = CenterX(prototype->Mean);
float y = CenterY(prototype->Mean);
double angle = OrientationOf(prototype->Mean) * 2 * M_PI;
float dx = static_cast<float>(LengthOf(prototype->Mean) * cos(angle) / 2);
float dy = static_cast<float>(LengthOf(prototype->Mean) * sin(angle) / 2);
c_move(window, (x - dx) * 256, (y - dy) * 256);
c_draw(window, (x + dx) * 256, (y + dy) * 256);
if (prototype->Significant)
tprintf("Green proto at (%g,%g)+(%g,%g) %d samples\n",
x, y, dx, dy, prototype->NumSamples);
else if (prototype->NumSamples > 0 && !prototype->Merged)
tprintf("Red proto at (%g,%g)+(%g,%g) %d samples\n",
x, y, dx, dy, prototype->NumSamples);
}
c_make_current(window);
}
/*---------------------------------------------------------------------------*/
int main (int argc, char **argv) {
/*
** Parameters:
** argc number of command line arguments
** argv array of command line arguments
** Globals: none
** Operation:
** This program reads in a text file consisting of feature
** samples from a training page in the following format:
**
** FontName CharName NumberOfFeatureTypes(N)
** FeatureTypeName1 NumberOfFeatures(M)
** Feature1
** ...
** FeatureM
** FeatureTypeName2 NumberOfFeatures(M)
** Feature1
** ...
** FeatureM
** ...
** FeatureTypeNameN NumberOfFeatures(M)
** Feature1
** ...
** FeatureM
** FontName CharName ...
**
** The result of this program is a binary inttemp file used by
** the OCR engine.
** Return: none
** Exceptions: none
** History: Fri Aug 18 08:56:17 1989, DSJ, Created.
** Mon May 18 1998, Christy Russson, Revistion started.
*/
char *PageName;
FILE *TrainingPage;
FILE *OutFile;
LIST CharList;
CLUSTERER *Clusterer = NULL;
LIST ProtoList = NIL;
LABELEDLIST CharSample;
PROTOTYPE *Prototype;
LIST ClassList = NIL;
int Cid, Pid;
PROTO Proto;
PROTO_STRUCT DummyProto;
BIT_VECTOR Config2;
MERGE_CLASS MergeClass;
INT_TEMPLATES IntTemplates;
LIST pCharList, pProtoList;
char Filename[MAXNAMESIZE];
// Clean the unichar set
unicharset_mftraining.clear();
// Space character needed to represent NIL classification
unicharset_mftraining.unichar_insert(" ");
ParseArguments (argc, argv);
InitFastTrainerVars ();
InitSubfeatureVars ();
while ((PageName = GetNextFilename()) != NULL) {
printf ("Reading %s ...\n", PageName);
TrainingPage = Efopen (PageName, "r");
CharList = ReadTrainingSamples (TrainingPage);
fclose (TrainingPage);
//WriteTrainingSamples (Directory, CharList);
pCharList = CharList;
iterate(pCharList) {
//Cluster
CharSample = (LABELEDLIST) first_node (pCharList);
// printf ("\nClustering %s ...", CharSample->Label);
Clusterer = SetUpForClustering(CharSample);
Config.MagicSamples = CharSample->SampleCount;
ProtoList = ClusterSamples(Clusterer, &Config);
CleanUpUnusedData(ProtoList);
//Merge
MergeInsignificantProtos(ProtoList, CharSample->Label,
Clusterer, &Config);
if (strcmp(test_ch, CharSample->Label) == 0)
DisplayProtoList(test_ch, ProtoList);
ProtoList = RemoveInsignificantProtos(ProtoList, ShowSignificantProtos,
ShowInsignificantProtos,
Clusterer->SampleSize);
FreeClusterer(Clusterer);
MergeClass = FindClass (ClassList, CharSample->Label);
if (MergeClass == NULL) {
MergeClass = NewLabeledClass (CharSample->Label);
ClassList = push (ClassList, MergeClass);
}
Cid = AddConfigToClass(MergeClass->Class);
pProtoList = ProtoList;
iterate (pProtoList) {
Prototype = (PROTOTYPE *) first_node (pProtoList);
// see if proto can be approximated by existing proto
Pid = FindClosestExistingProto(MergeClass->Class,
MergeClass->NumMerged, Prototype);
if (Pid == NO_PROTO) {
Pid = AddProtoToClass (MergeClass->Class);
Proto = ProtoIn (MergeClass->Class, Pid);
MakeNewFromOld (Proto, Prototype);
MergeClass->NumMerged[Pid] = 1;
}
else {
MakeNewFromOld (&DummyProto, Prototype);
ComputeMergedProto (ProtoIn (MergeClass->Class, Pid), &DummyProto,
(FLOAT32) MergeClass->NumMerged[Pid], 1.0,
ProtoIn (MergeClass->Class, Pid));
MergeClass->NumMerged[Pid] ++;
}
Config2 = MergeClass->Class->Configurations[Cid];
AddProtoToConfig (Pid, Config2);
}
FreeProtoList (&ProtoList);
}
FreeTrainingSamples (CharList);
}
//WriteMergedTrainingSamples(Directory,ClassList);
WriteMicrofeat(Directory, ClassList);
InitIntProtoVars ();
InitPrototypes ();
SetUpForFloat2Int(ClassList);
IntTemplates = CreateIntTemplates(TrainingData, unicharset_mftraining);
strcpy (Filename, "");
if (Directory != NULL) {
strcat (Filename, Directory);
strcat (Filename, "/");
}
strcat (Filename, "inttemp");
#ifdef __UNIX__
OutFile = Efopen (Filename, "w");
#else
OutFile = Efopen (Filename, "wb");
#endif
WriteIntTemplates(OutFile, IntTemplates, unicharset_mftraining);
fclose (OutFile);
strcpy (Filename, "");
if (Directory != NULL) {
strcat (Filename, Directory);
strcat (Filename, "/");
}
strcat (Filename, "pffmtable");
// Now create pffmtable.
WritePFFMTable(IntTemplates, Filename);
printf ("Done!\n"); /**/
FreeLabeledClassList (ClassList);
return 0;
} /* main */
/**----------------------------------------------------------------------------
Private Code
----------------------------------------------------------------------------**/
/*---------------------------------------------------------------------------*/
void ParseArguments(
int argc,
char **argv)
/*
** Parameters:
** argc number of command line arguments to parse
** argv command line arguments
** Globals:
** ShowAllSamples flag controlling samples display
** ShowSignificantProtos flag controlling proto display
** ShowInsignificantProtos flag controlling proto display
** Config current clustering parameters
** tessoptarg, tessoptind defined by tessopt sys call
** Argc, Argv global copies of argc and argv
** Operation:
** This routine parses the command line arguments that were
** passed to the program. The legal arguments are:
** -d "turn off display of samples"
** -p "turn off significant protos"
** -n "turn off insignificant proto"
** -S [ spherical | elliptical | mixed | automatic ]
** -M MinSamples "min samples per prototype (%)"
** -B MaxIllegal "max illegal chars per cluster (%)"
** -I Independence "0 to 1"
** -C Confidence "1e-200 to 1.0"
** -D Directory
** -N MaxNumSamples
** -R RoundingAccuracy
** Return: none
** Exceptions: Illegal options terminate the program.
** History: 7/24/89, DSJ, Created.
*/
{
int Option;
int ParametersRead;
BOOL8 Error;
Error = FALSE;
Argc = argc;
Argv = argv;
while (( Option = tessopt( argc, argv, "R:N:D:C:I:M:B:S:d:n:p" )) != EOF )
{
switch ( Option )
{
case 'n':
ShowInsignificantProtos = FALSE;
break;
case 'p':
ShowSignificantProtos = FALSE;
break;
case 'd':
ShowAllSamples = FALSE;
break;
case 'C':
ParametersRead = sscanf( tessoptarg, "%lf", &(Config.Confidence) );
if ( ParametersRead != 1 ) Error = TRUE;
else if ( Config.Confidence > 1 ) Config.Confidence = 1;
else if ( Config.Confidence < 0 ) Config.Confidence = 0;
break;
case 'I':
ParametersRead = sscanf( tessoptarg, "%f", &(Config.Independence) );
if ( ParametersRead != 1 ) Error = TRUE;
else if ( Config.Independence > 1 ) Config.Independence = 1;
else if ( Config.Independence < 0 ) Config.Independence = 0;
break;
case 'M':
ParametersRead = sscanf( tessoptarg, "%f", &(Config.MinSamples) );
if ( ParametersRead != 1 ) Error = TRUE;
else if ( Config.MinSamples > 1 ) Config.MinSamples = 1;
else if ( Config.MinSamples < 0 ) Config.MinSamples = 0;
break;
case 'B':
ParametersRead = sscanf( tessoptarg, "%f", &(Config.MaxIllegal) );
if ( ParametersRead != 1 ) Error = TRUE;
else if ( Config.MaxIllegal > 1 ) Config.MaxIllegal = 1;
else if ( Config.MaxIllegal < 0 ) Config.MaxIllegal = 0;
break;
case 'R':
ParametersRead = sscanf( tessoptarg, "%f", &RoundingAccuracy );
if ( ParametersRead != 1 ) Error = TRUE;
else if ( RoundingAccuracy > 0.01f ) RoundingAccuracy = 0.01f;
else if ( RoundingAccuracy < 0.0f ) RoundingAccuracy = 0.0f;
break;
case 'S':
switch ( tessoptarg[0] )
{
case 's': Config.ProtoStyle = spherical; break;
case 'e': Config.ProtoStyle = elliptical; break;
case 'm': Config.ProtoStyle = mixed; break;
case 'a': Config.ProtoStyle = automatic; break;
default: Error = TRUE;
}
break;
case 'D':
Directory = tessoptarg;
break;
case 'N':
if (sscanf (tessoptarg, "%d", &MaxNumSamples) != 1 ||
MaxNumSamples <= 0)
Error = TRUE;
break;
case '?':
Error = TRUE;
break;
}
if ( Error )
{
fprintf (stderr, "usage: %s [-D] [-P] [-N]\n", argv[0] );
fprintf (stderr, "\t[-S ProtoStyle]\n");
fprintf (stderr, "\t[-M MinSamples] [-B MaxBad] [-I Independence] [-C Confidence]\n" );
fprintf (stderr, "\t[-d directory] [-n MaxNumSamples] [ TrainingPage ... ]\n");
exit (2);
}
}
} // ParseArguments
/*---------------------------------------------------------------------------*/
char *GetNextFilename ()
/*
** Parameters: none
** Globals:
** tessoptind defined by tessopt sys call
** Argc, Argv global copies of argc and argv
** Operation:
** This routine returns the next command line argument. If
** there are no remaining command line arguments, it returns
** NULL. This routine should only be called after all option
** arguments have been parsed and removed with ParseArguments.
** Return: Next command line argument or NULL.
** Exceptions: none
** History: Fri Aug 18 09:34:12 1989, DSJ, Created.
*/
{
if (tessoptind < Argc)
return (Argv [tessoptind++]);
else
return (NULL);
} /* GetNextFilename */
/*---------------------------------------------------------------------------*/
LIST ReadTrainingSamples (
FILE *File)
/*
** Parameters:
** File open text file to read samples from
** Globals: none
** Operation:
** This routine reads training samples from a file and
** places them into a data structure which organizes the
** samples by FontName and CharName. It then returns this
** data structure.
** Return: none
** Exceptions: none
** History: Fri Aug 18 13:11:39 1989, DSJ, Created.
** Tue May 17 1998 simplifications to structure, illiminated
** font, and feature specification levels of structure.
*/
{
char unichar[UNICHAR_LEN + 1];
LABELEDLIST CharSample;
FEATURE_SET FeatureSamples;
LIST TrainingSamples = NIL;
CHAR_DESC CharDesc;
int Type, i;
while (fscanf (File, "%s %s", FontName, unichar) == 2) {
if (!unicharset_mftraining.contains_unichar(unichar)) {
unicharset_mftraining.unichar_insert(unichar);
if (unicharset_mftraining.size() > MAX_NUM_CLASSES) {
cprintf("Error: Size of unicharset of mftraining is "
"greater than MAX_NUM_CLASSES\n");
exit(1);
}
}
CharSample = FindList (TrainingSamples, unichar);
if (CharSample == NULL) {
CharSample = NewLabeledList (unichar);
TrainingSamples = push (TrainingSamples, CharSample);
}
CharDesc = ReadCharDescription (File);
Type = ShortNameToFeatureType(PROGRAM_FEATURE_TYPE);
FeatureSamples = CharDesc->FeatureSets[Type];
for (int feature = 0; feature < FeatureSamples->NumFeatures; ++feature) {
FEATURE f = FeatureSamples->Features[feature];
for (int dim =0; dim < f->Type->NumParams; ++dim)
f->Params[dim] += dim == MFDirection ?
UniformRandomNumber(-MINSD_ANGLE, MINSD_ANGLE) :
UniformRandomNumber(-MINSD, MINSD);
}
CharSample->List = push (CharSample->List, FeatureSamples);
CharSample->SampleCount++;
for (i = 0; i < CharDesc->NumFeatureSets; i++)
if (Type != i)
FreeFeatureSet(CharDesc->FeatureSets[i]);
free (CharDesc);
}
return (TrainingSamples);
} /* ReadTrainingSamples */
/*---------------------------------------------------------------------------*/
LABELEDLIST FindList (
LIST List,
char *Label)
/*
** Parameters:
** List list to search
** Label label to search for
** Globals: none
** Operation:
** This routine searches thru a list of labeled lists to find
** a list with the specified label. If a matching labeled list
** cannot be found, NULL is returned.
** Return: Labeled list with the specified Label or NULL.
** Exceptions: none
** History: Fri Aug 18 15:57:41 1989, DSJ, Created.
*/
{
LABELEDLIST LabeledList;
iterate (List)
{
LabeledList = (LABELEDLIST) first_node (List);
if (strcmp (LabeledList->Label, Label) == 0)
return (LabeledList);
}
return (NULL);
} /* FindList */
/*----------------------------------------------------------------------------*/
MERGE_CLASS FindClass (
LIST List,
char *Label)
{
MERGE_CLASS MergeClass;
iterate (List)
{
MergeClass = (MERGE_CLASS) first_node (List);
if (strcmp (MergeClass->Label, Label) == 0)
return (MergeClass);
}
return (NULL);
} /* FindClass */
/*---------------------------------------------------------------------------*/
LABELEDLIST NewLabeledList (
char *Label)
/*
** Parameters:
** Label label for new list
** Globals: none
** Operation:
** This routine allocates a new, empty labeled list and gives
** it the specified label.
** Return: New, empty labeled list.
** Exceptions: none
** History: Fri Aug 18 16:08:46 1989, DSJ, Created.
*/
{
LABELEDLIST LabeledList;
LabeledList = (LABELEDLIST) Emalloc (sizeof (LABELEDLISTNODE));
LabeledList->Label = (char*)Emalloc (strlen (Label)+1);
strcpy (LabeledList->Label, Label);
LabeledList->List = NIL;
LabeledList->SampleCount = 0;
return (LabeledList);
} /* NewLabeledList */
/*---------------------------------------------------------------------------*/
MERGE_CLASS NewLabeledClass (
char *Label)
{
MERGE_CLASS MergeClass;
MergeClass = (MERGE_CLASS) Emalloc (sizeof (MERGE_CLASS_NODE));
MergeClass->Label = (char*)Emalloc (strlen (Label)+1);
strcpy (MergeClass->Label, Label);
MergeClass->Class = NewClass (MAX_NUM_PROTOS, MAX_NUM_CONFIGS);
return (MergeClass);
} /* NewLabeledClass */
/*---------------------------------------------------------------------------*/
void WriteTrainingSamples (
char *Directory,
LIST CharList)
/*
** Parameters:
** Directory directory to place sample files into
** FontList list of fonts used in the training samples
** Globals:
** MaxNumSamples max number of samples per class to write
** Operation:
** This routine writes the specified samples into files which
** are organized according to the font name and character name
** of the samples.
** Return: none
** Exceptions: none
** History: Fri Aug 18 16:17:06 1989, DSJ, Created.
*/
{
LABELEDLIST CharSample;
FEATURE_SET FeatureSet;
LIST FeatureList;
FILE *File;
char Filename[MAXNAMESIZE];
int NumSamples;
iterate (CharList) // iterate thru all of the fonts
{
CharSample = (LABELEDLIST) first_node (CharList);
// construct the full pathname for the current samples file
strcpy (Filename, "");
if (Directory != NULL)
{
strcat (Filename, Directory);
strcat (Filename, "/");
}
strcat (Filename, FontName);
strcat (Filename, "/");
strcat (Filename, CharSample->Label);
strcat (Filename, ".");
strcat (Filename, PROGRAM_FEATURE_TYPE);
printf ("\nWriting %s ...", Filename);
/* if file does not exist, create a new one with an appropriate
header; otherwise append samples to the existing file */
File = fopen (Filename, "r");
if (File == NULL)
{
File = Efopen (Filename, "w");
WriteOldParamDesc
(File, FeatureDefs.FeatureDesc[ShortNameToFeatureType (PROGRAM_FEATURE_TYPE)]);
}
else
{
fclose (File);
File = Efopen (Filename, "a");
}
// append samples onto the file
FeatureList = CharSample->List;
NumSamples = 0;
iterate (FeatureList)
{
if (NumSamples >= MaxNumSamples) break;
FeatureSet = (FEATURE_SET) first_node (FeatureList);
WriteFeatureSet (File, FeatureSet);
NumSamples++;
}
fclose (File);
}
} /* WriteTrainingSamples */
/*----------------------------------------------------------------------------*/
void WriteClusteredTrainingSamples (
char *Directory,
LIST ProtoList,
CLUSTERER *Clusterer,
LABELEDLIST CharSample)
/*
** Parameters:
** Directory directory to place sample files into
** Globals:
** MaxNumSamples max number of samples per class to write
** Operation:
** This routine writes the specified samples into files which
** are organized according to the font name and character name
** of the samples.
** Return: none
** Exceptions: none
** History: Fri Aug 18 16:17:06 1989, DSJ, Created.
*/
{
FILE *File;
char Filename[MAXNAMESIZE];
strcpy (Filename, "");
if (Directory != NULL)
{
strcat (Filename, Directory);
strcat (Filename, "/");
}
strcat (Filename, FontName);
strcat (Filename, "/");
strcat (Filename, CharSample->Label);
strcat (Filename, ".");
strcat (Filename, PROGRAM_FEATURE_TYPE);
strcat (Filename, ".p");
printf ("\nWriting %s ...", Filename);
File = Efopen (Filename, "w");
WriteProtoList(File, Clusterer->SampleSize, Clusterer->ParamDesc,
ProtoList, ShowSignificantProtos, ShowInsignificantProtos);
fclose (File);
} /* WriteClusteredTrainingSamples */
/*---------------------------------------------------------------------------*/
void WriteMergedTrainingSamples(
char *Directory,
LIST ClassList)
{
FILE *File;
char Filename[MAXNAMESIZE];
MERGE_CLASS MergeClass;
iterate (ClassList)
{
MergeClass = (MERGE_CLASS) first_node (ClassList);
strcpy (Filename, "");
if (Directory != NULL)
{
strcat (Filename, Directory);
strcat (Filename, "/");
}
strcat (Filename, "Merged/");
strcat (Filename, MergeClass->Label);
strcat (Filename, PROTO_SUFFIX);
printf ("\nWriting Merged %s ...", Filename);
File = Efopen (Filename, "w");
WriteOldProtoFile (File, MergeClass->Class);
fclose (File);
strcpy (Filename, "");
if (Directory != NULL)
{
strcat (Filename, Directory);
strcat (Filename, "/");
}
strcat (Filename, "Merged/");
strcat (Filename, MergeClass->Label);
strcat (Filename, CONFIG_SUFFIX);
printf ("\nWriting Merged %s ...", Filename);
File = Efopen (Filename, "w");
WriteOldConfigFile (File, MergeClass->Class);
fclose (File);
}
} // WriteMergedTrainingSamples
/*--------------------------------------------------------------------------*/
void WriteMicrofeat(
char *Directory,
LIST ClassList)
{
FILE *File;
char Filename[MAXNAMESIZE];
MERGE_CLASS MergeClass;
strcpy (Filename, "");
if (Directory != NULL)
{
strcat (Filename, Directory);
strcat (Filename, "/");
}
strcat (Filename, "Microfeat");
File = Efopen (Filename, "w");
printf ("\nWriting Merged %s ...", Filename);
iterate(ClassList)
{
MergeClass = (MERGE_CLASS) first_node (ClassList);
WriteProtos(File, MergeClass);
WriteConfigs(File, MergeClass->Class);
}
fclose (File);
} // WriteMicrofeat
/*---------------------------------------------------------------------------*/
void WriteProtos(
FILE* File,
MERGE_CLASS MergeClass)
{
float Values[3];
int i;
PROTO Proto;
fprintf(File, "%s\n", MergeClass->Label);
fprintf(File, "%d\n", MergeClass->Class->NumProtos);
for(i=0; i < (MergeClass->Class)->NumProtos; i++)
{
Proto = ProtoIn(MergeClass->Class,i);
fprintf(File, "\t%8.4f %8.4f %8.4f %8.4f ", Proto->X, Proto->Y,
Proto->Length, Proto->Angle);
Values[0] = Proto->X;
Values[1] = Proto->Y;
Values[2] = Proto->Angle;
Normalize(Values);
fprintf(File, "%8.4f %8.4f %8.4f\n", Values[0], Values[1], Values[2]);
}
} // WriteProtos
/*----------------------------------------------------------------------------*/
void WriteConfigs(
FILE* File,
CLASS_TYPE Class)
{
BIT_VECTOR Config;
int i, j, WordsPerConfig;
WordsPerConfig = WordsInVectorOfSize(Class->NumProtos);
fprintf(File, "%d %d\n", Class->NumConfigs, WordsPerConfig);
for(i=0; i < Class->NumConfigs; i++)
{
Config = Class->Configurations[i];
for(j=0; j < WordsPerConfig; j++)
fprintf(File, "%08x ", Config[j]);
fprintf(File, "\n");
}
fprintf(File, "\n");
} // WriteConfigs
/*---------------------------------------------------------------------------*/
void FreeTrainingSamples (
LIST CharList)
/*
** Parameters:
** FontList list of all fonts in document
** Globals: none
** Operation:
** This routine deallocates all of the space allocated to
** the specified list of training samples.
** Return: none
** Exceptions: none
** History: Fri Aug 18 17:44:27 1989, DSJ, Created.
*/
{
LABELEDLIST CharSample;
FEATURE_SET FeatureSet;
LIST FeatureList;
// printf ("FreeTrainingSamples...\n");
iterate (CharList) /* iterate thru all of the fonts */
{
CharSample = (LABELEDLIST) first_node (CharList);
FeatureList = CharSample->List;
iterate (FeatureList) /* iterate thru all of the classes */
{
FeatureSet = (FEATURE_SET) first_node (FeatureList);
FreeFeatureSet (FeatureSet);
}
FreeLabeledList (CharSample);
}
destroy (CharList);
} /* FreeTrainingSamples */
/*-----------------------------------------------------------------------------*/
void FreeLabeledClassList (
LIST ClassList)
/*
** Parameters:
** FontList list of all fonts in document
** Globals: none
** Operation:
** This routine deallocates all of the space allocated to
** the specified list of training samples.
** Return: none
** Exceptions: none
** History: Fri Aug 18 17:44:27 1989, DSJ, Created.
*/
{
MERGE_CLASS MergeClass;
iterate (ClassList) /* iterate thru all of the fonts */
{
MergeClass = (MERGE_CLASS) first_node (ClassList);
free (MergeClass->Label);
FreeClass(MergeClass->Class);
free (MergeClass);
}
destroy (ClassList);
} /* FreeLabeledClassList */
/*---------------------------------------------------------------------------*/
void FreeLabeledList (
LABELEDLIST LabeledList)
/*
** Parameters:
** LabeledList labeled list to be freed
** Globals: none
** Operation:
** This routine deallocates all of the memory consumed by
** a labeled list. It does not free any memory which may be
** consumed by the items in the list.
** Return: none
** Exceptions: none
** History: Fri Aug 18 17:52:45 1989, DSJ, Created.
*/
{
destroy (LabeledList->List);
free (LabeledList->Label);
free (LabeledList);
} /* FreeLabeledList */
/*---------------------------------------------------------------------------*/
CLUSTERER *SetUpForClustering(
LABELEDLIST CharSample)
/*
** Parameters:
** CharSample: LABELEDLIST that holds all the feature information for a
** given character.
** Globals:
** None
** Operation:
** This routine reads samples from a LABELEDLIST and enters
** those samples into a clusterer data structure. This
** data structure is then returned to the caller.
** Return:
** Pointer to new clusterer data structure.
** Exceptions:
** None
** History:
** 8/16/89, DSJ, Created.
*/
{
uinT16 N;
int i, j;
FLOAT32 *Sample = NULL;
CLUSTERER *Clusterer;
inT32 CharID;
LIST FeatureList = NULL;
FEATURE_SET FeatureSet = NULL;
FEATURE_DESC FeatureDesc = NULL;
// PARAM_DESC* ParamDesc;
FeatureDesc = FeatureDefs.FeatureDesc[ShortNameToFeatureType(PROGRAM_FEATURE_TYPE)];
N = FeatureDesc->NumParams;
// ParamDesc = ConvertToPARAMDESC(FeatureDesc->ParamDesc, N);
Clusterer = MakeClusterer(N,FeatureDesc->ParamDesc);
// free(ParamDesc);
FeatureList = CharSample->List;
CharID = 0;
iterate(FeatureList)
{
if (CharID >= MaxNumSamples) break;
FeatureSet = (FEATURE_SET) first_node (FeatureList);
for (i=0; i < FeatureSet->MaxNumFeatures; i++)
{
if (Sample == NULL)
Sample = (FLOAT32 *)Emalloc(N * sizeof(FLOAT32));
for (j=0; j < N; j++)
if (RoundingAccuracy != 0.0f)
Sample[j] = round(FeatureSet->Features[i]->Params[j], RoundingAccuracy);
else
Sample[j] = FeatureSet->Features[i]->Params[j];
MakeSample (Clusterer, Sample, CharID);
}
CharID++;
}
if ( Sample != NULL ) free( Sample );
return( Clusterer );
} /* SetUpForClustering */
/*------------------------------------------------------------------------*/
void MergeInsignificantProtos(LIST ProtoList, const char* label,
CLUSTERER *Clusterer, CLUSTERCONFIG *Config) {
PROTOTYPE *Prototype;
bool debug = strcmp(test_ch, label) == 0;
LIST pProtoList = ProtoList;
iterate(pProtoList) {
Prototype = (PROTOTYPE *) first_node (pProtoList);
if (Prototype->Significant || Prototype->Merged)
continue;
FLOAT32 best_dist = 0.125;
PROTOTYPE* best_match = NULL;
// Find the nearest alive prototype.
LIST list_it = ProtoList;
iterate(list_it) {
PROTOTYPE* test_p = (PROTOTYPE *) first_node (list_it);
if (test_p != Prototype && !test_p->Merged) {
FLOAT32 dist = ComputeDistance(Clusterer->SampleSize,
Clusterer->ParamDesc,
Prototype->Mean, test_p->Mean);
if (dist < best_dist) {
best_match = test_p;
best_dist = dist;
}
}
}
if (best_match != NULL && !best_match->Significant) {
if (debug)
tprintf("Merging red clusters (%d+%d) at %g,%g and %g,%g\n",
best_match->NumSamples, Prototype->NumSamples,
best_match->Mean[0], best_match->Mean[1],
Prototype->Mean[0], Prototype->Mean[1]);
best_match->NumSamples = MergeClusters(Clusterer->SampleSize,
Clusterer->ParamDesc,
best_match->NumSamples,
Prototype->NumSamples,
best_match->Mean,
best_match->Mean, Prototype->Mean);
Prototype->NumSamples = 0;
Prototype->Merged = 1;
} else if (best_match != NULL) {
if (debug)
tprintf("Red proto at %g,%g matched a green one at %g,%g\n",
Prototype->Mean[0], Prototype->Mean[1],
best_match->Mean[0], best_match->Mean[1]);
Prototype->Merged = 1;
}
}
// Mark significant those that now have enough samples.
int min_samples = (inT32) (Config->MinSamples * Clusterer->NumChar);
pProtoList = ProtoList;
iterate(pProtoList) {
Prototype = (PROTOTYPE *) first_node (pProtoList);
// Process insignificant protos that do not match a green one
if (!Prototype->Significant && Prototype->NumSamples >= min_samples &&
!Prototype->Merged) {
if (debug)
tprintf("Red proto at %g,%g becoming green\n",
Prototype->Mean[0], Prototype->Mean[1]);
Prototype->Significant = true;
}
}
} /* MergeInsignificantProtos */
/*------------------------------------------------------------------------*/
LIST RemoveInsignificantProtos(
LIST ProtoList,
BOOL8 KeepSigProtos,
BOOL8 KeepInsigProtos,
int N)
{
LIST NewProtoList = NIL;
LIST pProtoList;
PROTOTYPE* Proto;
PROTOTYPE* NewProto;
int i;
pProtoList = ProtoList;
iterate(pProtoList)
{
Proto = (PROTOTYPE *) first_node (pProtoList);
if ((Proto->Significant && KeepSigProtos) ||
(!Proto->Significant && KeepInsigProtos))
{
NewProto = (PROTOTYPE *)Emalloc(sizeof(PROTOTYPE));
NewProto->Mean = (FLOAT32 *)Emalloc(N * sizeof(FLOAT32));
NewProto->Significant = Proto->Significant;
NewProto->Style = Proto->Style;
NewProto->NumSamples = Proto->NumSamples;
NewProto->Cluster = NULL;
NewProto->Distrib = NULL;
for (i=0; i < N; i++)
NewProto->Mean[i] = Proto->Mean[i];
if (Proto->Variance.Elliptical != NULL)
{
NewProto->Variance.Elliptical = (FLOAT32 *)Emalloc(N * sizeof(FLOAT32));
for (i=0; i < N; i++)
NewProto->Variance.Elliptical[i] = Proto->Variance.Elliptical[i];
}
else
NewProto->Variance.Elliptical = NULL;
//---------------------------------------------
if (Proto->Magnitude.Elliptical != NULL)
{
NewProto->Magnitude.Elliptical = (FLOAT32 *)Emalloc(N * sizeof(FLOAT32));
for (i=0; i < N; i++)
NewProto->Magnitude.Elliptical[i] = Proto->Magnitude.Elliptical[i];
}
else
NewProto->Magnitude.Elliptical = NULL;
//------------------------------------------------
if (Proto->Weight.Elliptical != NULL)
{
NewProto->Weight.Elliptical = (FLOAT32 *)Emalloc(N * sizeof(FLOAT32));
for (i=0; i < N; i++)
NewProto->Weight.Elliptical[i] = Proto->Weight.Elliptical[i];
}
else
NewProto->Weight.Elliptical = NULL;
NewProto->TotalMagnitude = Proto->TotalMagnitude;
NewProto->LogMagnitude = Proto->LogMagnitude;
NewProtoList = push_last(NewProtoList, NewProto);
}
}
//FreeProtoList (ProtoList);
return (NewProtoList);
} /* RemoveInsignificantProtos */
/*-----------------------------------------------------------------------------*/
void CleanUpUnusedData(
LIST ProtoList)
{
PROTOTYPE* Prototype;
iterate(ProtoList)
{
Prototype = (PROTOTYPE *) first_node (ProtoList);
if(Prototype->Variance.Elliptical != NULL)
{
memfree(Prototype->Variance.Elliptical);
Prototype->Variance.Elliptical = NULL;
}
if(Prototype->Magnitude.Elliptical != NULL)
{
memfree(Prototype->Magnitude.Elliptical);
Prototype->Magnitude.Elliptical = NULL;
}
if(Prototype->Weight.Elliptical != NULL)
{
memfree(Prototype->Weight.Elliptical);
Prototype->Weight.Elliptical = NULL;
}
}
}
/*--------------------------------------------------------------------------*/
void Normalize (
float *Values)
{
register float Slope;
register float Intercept;
register float Normalizer;
Slope = tan (Values [2] * 2 * PI);
Intercept = Values [1] - Slope * Values [0];
Normalizer = 1 / sqrt (Slope * Slope + 1.0);
Values [0] = Slope * Normalizer;
Values [1] = - Normalizer;
Values [2] = Intercept * Normalizer;
} // Normalize
/** SetUpForFloat2Int **************************************************/
void SetUpForFloat2Int(
LIST LabeledClassList)
{
MERGE_CLASS MergeClass;
CLASS_TYPE Class;
int NumProtos;
int NumConfigs;
int NumWords;
int i, j;
float Values[3];
PROTO NewProto;
PROTO OldProto;
BIT_VECTOR NewConfig;
BIT_VECTOR OldConfig;
// printf("Float2Int ...\n");
iterate(LabeledClassList)
{
MergeClass = (MERGE_CLASS) first_node (LabeledClassList);
Class = &TrainingData[unicharset_mftraining.unichar_to_id(
MergeClass->Label)];
NumProtos = (MergeClass->Class)->NumProtos;
NumConfigs = MergeClass->Class->NumConfigs;
Class->NumProtos = NumProtos;
Class->MaxNumProtos = NumProtos;
Class->Prototypes = (PROTO) Emalloc (sizeof(PROTO_STRUCT) * NumProtos);
for(i=0; i < NumProtos; i++)
{
NewProto = ProtoIn(Class, i);
OldProto = ProtoIn(MergeClass->Class, i);
Values[0] = OldProto->X;
Values[1] = OldProto->Y;
Values[2] = OldProto->Angle;
Normalize(Values);
NewProto->X = OldProto->X;
NewProto->Y = OldProto->Y;
NewProto->Length = OldProto->Length;
NewProto->Angle = OldProto->Angle;
NewProto->A = Values[0];
NewProto->B = Values[1];
NewProto->C = Values[2];
}
Class->NumConfigs = NumConfigs;
Class->MaxNumConfigs = NumConfigs;
Class->Configurations = (BIT_VECTOR*) Emalloc (sizeof(BIT_VECTOR) * NumConfigs);
NumWords = WordsInVectorOfSize(NumProtos);
for(i=0; i < NumConfigs; i++)
{
NewConfig = NewBitVector(NumProtos);
OldConfig = MergeClass->Class->Configurations[i];
for(j=0; j < NumWords; j++)
NewConfig[j] = OldConfig[j];
Class->Configurations[i] = NewConfig;
}
}
} // SetUpForFloat2Int
/*--------------------------------------------------------------------------*/
void WritePFFMTable(INT_TEMPLATES Templates, const char* filename) {
FILE* fp = Efopen(filename, "wb");
/* then write out each class */
for (int i = 0; i < Templates->NumClasses; i++) {
int MaxLength = 0;
INT_CLASS Class = Templates->Class[i];
for (int ConfigId = 0; ConfigId < Class->NumConfigs; ConfigId++) {
if (Class->ConfigLengths[ConfigId] > MaxLength)
MaxLength = Class->ConfigLengths[ConfigId];
}
fprintf(fp, "%s %d\n", unicharset_mftraining.id_to_unichar(
Templates->ClassIdFor[i]), MaxLength);
}
fclose(fp);
} // WritePFFMTable