tesseract/ccutil/ambigs.cpp
2012-03-02 17:31:24 +00:00

332 lines
13 KiB
C++

///////////////////////////////////////////////////////////////////////
// File: ambigs.cc
// Description: Functions for dealing with ambiguities
// (training and recognition).
// Author: Daria Antonova
// Created: Mon Feb 5 11:26:43 PDT 2009
//
// (C) Copyright 2008, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
///////////////////////////////////////////////////////////////////////
#include "ambigs.h"
#include "helpers.h"
#ifdef _WIN32
#ifndef __GNUC__
#define strtok_r strtok_s
#else
#include "strtok_r.h"
#endif /* __GNUC__ */
#endif /* _WIN32 */
namespace tesseract {
AmbigSpec::AmbigSpec() {
wrong_ngram[0] = INVALID_UNICHAR_ID;
correct_fragments[0] = INVALID_UNICHAR_ID;
correct_ngram_id = INVALID_UNICHAR_ID;
type = NOT_AMBIG;
wrong_ngram_size = 0;
}
ELISTIZE(AmbigSpec);
void UnicharAmbigs::LoadUnicharAmbigs(FILE *AmbigFile,
inT64 end_offset,
int debug_level,
bool use_ambigs_for_adaption,
UNICHARSET *unicharset) {
int i, j;
UnicharIdVector *adaption_ambigs_entry;
for (i = 0; i < unicharset->size(); ++i) {
replace_ambigs_.push_back(NULL);
dang_ambigs_.push_back(NULL);
one_to_one_definite_ambigs_.push_back(NULL);
if (use_ambigs_for_adaption) {
ambigs_for_adaption_.push_back(NULL);
reverse_ambigs_for_adaption_.push_back(NULL);
}
}
if (debug_level) tprintf("Reading ambiguities\n");
int TestAmbigPartSize;
int ReplacementAmbigPartSize;
// Maximum line size:
// 10 for sizes of ambigs, tabs, abmig type and newline
// UNICHAR_LEN * (MAX_AMBIG_SIZE + 1) for each part of the ambig
// The space for buffer is allocated on the heap to avoid
// GCC frame size warning.
const int kMaxAmbigStringSize = UNICHAR_LEN * (MAX_AMBIG_SIZE + 1);
const int kBufferSize = 10 + 2 * kMaxAmbigStringSize;
char *buffer = new char[kBufferSize];
char ReplacementString[kMaxAmbigStringSize];
UNICHAR_ID TestUnicharIds[MAX_AMBIG_SIZE + 1];
int line_num = 0;
int type = NOT_AMBIG;
// Determine the version of the ambigs file.
int version = 0;
ASSERT_HOST(fgets(buffer, kBufferSize, AmbigFile) != NULL &&
strlen(buffer) > 0);
if (*buffer == 'v') {
version = static_cast<int>(strtol(buffer+1, NULL, 10));
++line_num;
} else {
rewind(AmbigFile);
}
while ((end_offset < 0 || ftell(AmbigFile) < end_offset) &&
fgets(buffer, kBufferSize, AmbigFile) != NULL) {
chomp_string(buffer);
if (debug_level > 2) tprintf("read line %s\n", buffer);
++line_num;
if (!ParseAmbiguityLine(line_num, version, debug_level, *unicharset,
buffer, &TestAmbigPartSize, TestUnicharIds,
&ReplacementAmbigPartSize,
ReplacementString, &type)) continue;
// Construct AmbigSpec and add it to the appropriate AmbigSpec_LIST.
AmbigSpec *ambig_spec = new AmbigSpec();
InsertIntoTable((type == REPLACE_AMBIG) ? replace_ambigs_ : dang_ambigs_,
TestAmbigPartSize, TestUnicharIds,
ReplacementAmbigPartSize, ReplacementString, type,
ambig_spec, unicharset);
// Update one_to_one_definite_ambigs_.
if (TestAmbigPartSize == 1 &&
ReplacementAmbigPartSize == 1 && type == DEFINITE_AMBIG) {
if (one_to_one_definite_ambigs_[TestUnicharIds[0]] == NULL) {
one_to_one_definite_ambigs_[TestUnicharIds[0]] = new UnicharIdVector();
}
one_to_one_definite_ambigs_[TestUnicharIds[0]]->push_back(
ambig_spec->correct_ngram_id);
}
// Update ambigs_for_adaption_.
if (use_ambigs_for_adaption) {
for (i = 0; i < TestAmbigPartSize; ++i) {
if (ambigs_for_adaption_[TestUnicharIds[i]] == NULL) {
ambigs_for_adaption_[TestUnicharIds[i]] = new UnicharIdVector();
}
adaption_ambigs_entry = ambigs_for_adaption_[TestUnicharIds[i]];
const char *tmp_ptr = ReplacementString;
const char *tmp_ptr_end = ReplacementString + strlen(ReplacementString);
int step = unicharset->step(tmp_ptr);
while (step > 0) {
UNICHAR_ID id_to_insert = unicharset->unichar_to_id(tmp_ptr, step);
ASSERT_HOST(id_to_insert != INVALID_UNICHAR_ID);
// Add the new unichar id to adaption_ambigs_entry (only if the
// vector does not already contain it) keeping it in sorted order.
for (j = 0; j < adaption_ambigs_entry->size() &&
(*adaption_ambigs_entry)[j] > id_to_insert; ++j);
if (j < adaption_ambigs_entry->size()) {
if ((*adaption_ambigs_entry)[j] != id_to_insert) {
adaption_ambigs_entry->insert(id_to_insert, j);
}
} else {
adaption_ambigs_entry->push_back(id_to_insert);
}
// Update tmp_ptr and step.
tmp_ptr += step;
step = tmp_ptr < tmp_ptr_end ? unicharset->step(tmp_ptr) : 0;
}
}
}
}
delete[] buffer;
// Fill in reverse_ambigs_for_adaption from ambigs_for_adaption vector.
if (use_ambigs_for_adaption) {
for (i = 0; i < ambigs_for_adaption_.size(); ++i) {
adaption_ambigs_entry = ambigs_for_adaption_[i];
if (adaption_ambigs_entry == NULL) continue;
for (j = 0; j < adaption_ambigs_entry->size(); ++j) {
UNICHAR_ID ambig_id = (*adaption_ambigs_entry)[j];
if (reverse_ambigs_for_adaption_[ambig_id] == NULL) {
reverse_ambigs_for_adaption_[ambig_id] = new UnicharIdVector();
}
reverse_ambigs_for_adaption_[ambig_id]->push_back(i);
}
}
}
// Print what was read from the input file.
if (debug_level > 1) {
for (int tbl = 0; tbl < 2; ++tbl) {
const UnicharAmbigsVector &print_table =
(tbl == 0) ? replace_ambigs_ : dang_ambigs_;
for (i = 0; i < print_table.size(); ++i) {
AmbigSpec_LIST *lst = print_table[i];
if (lst == NULL) continue;
if (!lst->empty()) {
tprintf("%s Ambiguities for %s:\n",
(tbl == 0) ? "Replaceable" : "Dangerous",
unicharset->debug_str(i).string());
}
AmbigSpec_IT lst_it(lst);
for (lst_it.mark_cycle_pt(); !lst_it.cycled_list(); lst_it.forward()) {
AmbigSpec *ambig_spec = lst_it.data();
tprintf("wrong_ngram:");
UnicharIdArrayUtils::print(ambig_spec->wrong_ngram, *unicharset);
tprintf("correct_fragments:");
UnicharIdArrayUtils::print(ambig_spec->correct_fragments, *unicharset);
}
}
}
if (use_ambigs_for_adaption) {
for (int vec_id = 0; vec_id < 2; ++vec_id) {
const GenericVector<UnicharIdVector *> &vec = (vec_id == 0) ?
ambigs_for_adaption_ : reverse_ambigs_for_adaption_;
for (i = 0; i < vec.size(); ++i) {
adaption_ambigs_entry = vec[i];
if (adaption_ambigs_entry != NULL) {
tprintf("%sAmbigs for adaption for %s:\n",
(vec_id == 0) ? "" : "Reverse ",
unicharset->debug_str(i).string());
for (j = 0; j < adaption_ambigs_entry->size(); ++j) {
tprintf("%s ", unicharset->debug_str(
(*adaption_ambigs_entry)[j]).string());
}
tprintf("\n");
}
}
}
}
}
}
bool UnicharAmbigs::ParseAmbiguityLine(
int line_num, int version, int debug_level, const UNICHARSET &unicharset,
char *buffer, int *TestAmbigPartSize, UNICHAR_ID *TestUnicharIds,
int *ReplacementAmbigPartSize, char *ReplacementString, int *type) {
int i;
char *token;
char *next_token;
if (!(token = strtok_r(buffer, kAmbigDelimiters, &next_token)) ||
!sscanf(token, "%d", TestAmbigPartSize) || TestAmbigPartSize <= 0) {
if (debug_level) tprintf(kIllegalMsg, line_num);
return false;
}
if (*TestAmbigPartSize > MAX_AMBIG_SIZE) {
tprintf("Too many unichars in ambiguity on line %d\n");
return false;
}
for (i = 0; i < *TestAmbigPartSize; ++i) {
if (!(token = strtok_r(NULL, kAmbigDelimiters, &next_token))) break;
if (!unicharset.contains_unichar(token)) {
if (debug_level) tprintf(kIllegalUnicharMsg, token);
break;
}
TestUnicharIds[i] = unicharset.unichar_to_id(token);
}
TestUnicharIds[i] = INVALID_UNICHAR_ID;
if (i != *TestAmbigPartSize ||
!(token = strtok_r(NULL, kAmbigDelimiters, &next_token)) ||
!sscanf(token, "%d", ReplacementAmbigPartSize) ||
*ReplacementAmbigPartSize <= 0) {
if (debug_level) tprintf(kIllegalMsg, line_num);
return false;
}
if (*ReplacementAmbigPartSize > MAX_AMBIG_SIZE) {
tprintf("Too many unichars in ambiguity on line %d\n");
return false;
}
ReplacementString[0] = '\0';
for (i = 0; i < *ReplacementAmbigPartSize; ++i) {
if (!(token = strtok_r(NULL, kAmbigDelimiters, &next_token))) break;
strcat(ReplacementString, token);
if (!unicharset.contains_unichar(token)) {
if (debug_level) tprintf(kIllegalUnicharMsg, token);
break;
}
}
if (i != *ReplacementAmbigPartSize) {
if (debug_level) tprintf(kIllegalMsg, line_num);
return false;
}
if (version > 0) {
// The next field being true indicates that the abiguity should
// always be substituted (e.g. '' should always be changed to ").
// For such "certain" n -> m ambigs tesseract will insert character
// fragments for the n pieces in the unicharset. AmbigsFound()
// will then replace the incorrect ngram with the character
// fragments of the correct character (or ngram if m > 1).
// Note that if m > 1, an ngram will be inserted into the
// modified word, not the individual unigrams. Tesseract
// has limited support for ngram unichar (e.g. dawg permuter).
if (!(token = strtok_r(NULL, kAmbigDelimiters, &next_token)) ||
!sscanf(token, "%d", type)) {
if (debug_level) tprintf(kIllegalMsg, line_num);
return false;
}
}
return true;
}
void UnicharAmbigs::InsertIntoTable(
UnicharAmbigsVector &table, int TestAmbigPartSize,
UNICHAR_ID *TestUnicharIds, int ReplacementAmbigPartSize,
const char *ReplacementString, int type,
AmbigSpec *ambig_spec, UNICHARSET *unicharset) {
ambig_spec->type = static_cast<AmbigType>(type);
if (TestAmbigPartSize == 1 && ReplacementAmbigPartSize == 1 &&
unicharset->to_lower(TestUnicharIds[0]) ==
unicharset->to_lower(unicharset->unichar_to_id(ReplacementString))) {
ambig_spec->type = CASE_AMBIG;
}
ambig_spec->wrong_ngram_size =
UnicharIdArrayUtils::copy(TestUnicharIds, ambig_spec->wrong_ngram);
// Since we need to maintain a constant number of unichar positions in
// order to construct ambig_blob_choices vector in NoDangerousAmbig(), for
// each n->m ambiguity we will have to place n character fragments of the
// correct ngram into the corresponding positions in the vector (e.g. given
// "vvvvw" and vvvv->ww we will place v and |ww|0|4 into position 0, v and
// |ww|1|4 into position 1 and so on. The correct ngram is reconstructed
// from fragments by dawg_permute_and_select().
// Insert the corresponding correct ngram into the unicharset.
// Unicharset code assumes that the "base" ngram is inserted into
// the unicharset before fragments of this ngram are inserted.
unicharset->unichar_insert(ReplacementString);
ambig_spec->correct_ngram_id =
unicharset->unichar_to_id(ReplacementString);
if (ReplacementAmbigPartSize > 1) {
unicharset->set_isngram(ambig_spec->correct_ngram_id, true);
}
// Add the corresponding fragments of the wrong ngram to unicharset.
int i;
for (i = 0; i < TestAmbigPartSize; ++i) {
UNICHAR_ID unichar_id;
if (TestAmbigPartSize == 1) {
unichar_id = ambig_spec->correct_ngram_id;
} else {
STRING frag_str = CHAR_FRAGMENT::to_string(
ReplacementString, i, TestAmbigPartSize, false);
unicharset->unichar_insert(frag_str.string());
unichar_id = unicharset->unichar_to_id(frag_str.string());
}
ambig_spec->correct_fragments[i] = unichar_id;
}
ambig_spec->correct_fragments[i] = INVALID_UNICHAR_ID;
// Add AmbigSpec for this ambiguity to the corresponding AmbigSpec_LIST.
// Keep AmbigSpec_LISTs sorted by AmbigSpec.wrong_ngram.
if (table[TestUnicharIds[0]] == NULL) {
table[TestUnicharIds[0]] = new AmbigSpec_LIST();
}
table[TestUnicharIds[0]]->add_sorted(
AmbigSpec::compare_ambig_specs, false, ambig_spec);
}
} // namespace tesseract