tesseract/opencl/openclwrapper.cpp
Stefan Weil c0f4e86ef5 Fix case of include file name
Windows.h works on Windows, but not for cross builds on Linux hosts
with case sensitive file systems which only provide windows.h.

Signed-off-by: Stefan Weil <sw@weilnetz.de>
2016-02-05 11:13:23 +01:00

3491 lines
112 KiB
C++

#ifdef _WIN32
#include <windows.h>
#include <io.h>
#else
#include <sys/types.h>
#include <unistd.h>
#endif
#include <float.h>
#include "openclwrapper.h"
#include "oclkernels.h"
// for micro-benchmark
#include "otsuthr.h"
#include "thresholder.h"
#if ON_APPLE
#include <stdio.h>
#include <mach/mach_time.h>
#endif
#ifdef USE_OPENCL
#include "opencl_device_selection.h"
GPUEnv OpenclDevice::gpuEnv;
bool OpenclDevice::deviceIsSelected = false;
ds_device OpenclDevice::selectedDevice;
int OpenclDevice::isInited = 0;
struct tiff_transform {
int vflip; /* if non-zero, image needs a vertical fip */
int hflip; /* if non-zero, image needs a horizontal flip */
int rotate; /* -1 -> counterclockwise 90-degree rotation,
0 -> no rotation
1 -> clockwise 90-degree rotation */
};
static struct tiff_transform tiff_orientation_transforms[] = {
{0, 0, 0},
{0, 1, 0},
{1, 1, 0},
{1, 0, 0},
{0, 1, -1},
{0, 0, 1},
{0, 1, 1},
{0, 0, -1}
};
static const l_int32 MAX_PAGES_IN_TIFF_FILE = 3000;
cl_mem pixsCLBuffer, pixdCLBuffer, pixdCLIntermediate; //Morph operations buffers
cl_mem pixThBuffer; //output from thresholdtopix calculation
cl_int clStatus;
KernelEnv rEnv;
// substitute invalid characters in device name with _
void legalizeFileName( char *fileName) {
//printf("fileName: %s\n", fileName);
const char* invalidChars = "/\?:*\"><| "; // space is valid but can cause headaches
// for each invalid char
for (int i = 0; i < strlen(invalidChars); i++) {
char invalidStr[4];
invalidStr[0] = invalidChars[i];
invalidStr[1] = NULL;
//printf("eliminating %s\n", invalidStr);
//char *pos = strstr(fileName, invalidStr);
// initial ./ is valid for present directory
//if (*pos == '.') pos++;
//if (*pos == '/') pos++;
for ( char *pos = strstr(fileName, invalidStr); pos != NULL; pos = strstr(pos+1, invalidStr)) {
//printf("\tfound: %s, ", pos);
pos[0] = '_';
//printf("fileName: %s\n", fileName);
}
}
}
void populateGPUEnvFromDevice( GPUEnv *gpuInfo, cl_device_id device ) {
//printf("[DS] populateGPUEnvFromDevice\n");
size_t size;
gpuInfo->mnIsUserCreated = 1;
// device
gpuInfo->mpDevID = device;
gpuInfo->mpArryDevsID = new cl_device_id[1];
gpuInfo->mpArryDevsID[0] = gpuInfo->mpDevID;
clStatus = clGetDeviceInfo(gpuInfo->mpDevID, CL_DEVICE_TYPE , sizeof(cl_device_type), (void *) &gpuInfo->mDevType , &size);
CHECK_OPENCL( clStatus, "populateGPUEnv::getDeviceInfo(TYPE)");
// platform
clStatus = clGetDeviceInfo(gpuInfo->mpDevID, CL_DEVICE_PLATFORM , sizeof(cl_platform_id), (void *) &gpuInfo->mpPlatformID , &size);
CHECK_OPENCL( clStatus, "populateGPUEnv::getDeviceInfo(PLATFORM)");
// context
cl_context_properties props[3];
props[0] = CL_CONTEXT_PLATFORM;
props[1] = (cl_context_properties) gpuInfo->mpPlatformID;
props[2] = 0;
gpuInfo->mpContext = clCreateContext(props, 1, &gpuInfo->mpDevID, NULL, NULL, &clStatus);
CHECK_OPENCL( clStatus, "populateGPUEnv::createContext");
// queue
cl_command_queue_properties queueProperties = 0;
gpuInfo->mpCmdQueue = clCreateCommandQueue( gpuInfo->mpContext, gpuInfo->mpDevID, queueProperties, &clStatus );
CHECK_OPENCL( clStatus, "populateGPUEnv::createCommandQueue");
}
int OpenclDevice::LoadOpencl()
{
#ifdef WIN32
HINSTANCE HOpenclDll = NULL;
void * OpenclDll = NULL;
//fprintf(stderr, " LoadOpenclDllxx... \n");
OpenclDll = static_cast<HINSTANCE>( HOpenclDll );
OpenclDll = LoadLibrary( "openCL.dll" );
if ( !static_cast<HINSTANCE>( OpenclDll ) )
{
fprintf(stderr, "[OD] Load opencl.dll failed!\n");
FreeLibrary( static_cast<HINSTANCE>( OpenclDll ) );
return 0;
}
fprintf(stderr, "[OD] Load opencl.dll successful!\n");
#endif
return 1;
}
int OpenclDevice::SetKernelEnv( KernelEnv *envInfo )
{
envInfo->mpkContext = gpuEnv.mpContext;
envInfo->mpkCmdQueue = gpuEnv.mpCmdQueue;
envInfo->mpkProgram = gpuEnv.mpArryPrograms[0];
return 1;
}
cl_mem allocateZeroCopyBuffer(KernelEnv rEnv, l_uint32 *hostbuffer, size_t nElements, cl_mem_flags flags, cl_int *pStatus)
{
cl_mem membuffer = clCreateBuffer( rEnv.mpkContext, (cl_mem_flags) (flags),
nElements * sizeof(l_uint32), hostbuffer, pStatus);
return membuffer;
}
PIX* mapOutputCLBuffer(KernelEnv rEnv, cl_mem clbuffer, PIX* pixd, PIX* pixs, int elements, cl_mem_flags flags, bool memcopy = false, bool sync = true)
{
PROCNAME("mapOutputCLBuffer");
if (!pixd)
{
if (memcopy)
{
if ((pixd = pixCreateTemplate(pixs)) == NULL)
(PIX *)ERROR_PTR("pixd not made", procName, NULL);
}
else
{
if ((pixd = pixCreateHeader(pixGetWidth(pixs), pixGetHeight(pixs), pixGetDepth(pixs))) == NULL)
(PIX *)ERROR_PTR("pixd not made", procName, NULL);
}
}
l_uint32 *pValues = (l_uint32 *)clEnqueueMapBuffer(rEnv.mpkCmdQueue, clbuffer, CL_TRUE, flags, 0,
elements * sizeof(l_uint32), 0, NULL, NULL, NULL );
if (memcopy)
{
memcpy(pixGetData(pixd), pValues, elements * sizeof(l_uint32));
}
else
{
pixSetData(pixd, pValues);
}
clEnqueueUnmapMemObject(rEnv.mpkCmdQueue,clbuffer,pValues,0,NULL,NULL);
if (sync)
{
clFinish( rEnv.mpkCmdQueue );
}
return pixd;
}
cl_mem allocateIntBuffer( KernelEnv rEnv, const l_uint32 *_pValues, size_t nElements, cl_int *pStatus , bool sync = false)
{
cl_mem xValues = clCreateBuffer( rEnv.mpkContext, (cl_mem_flags) (CL_MEM_READ_WRITE),
nElements * sizeof(l_int32), NULL, pStatus);
if (_pValues != NULL)
{
l_int32 *pValues = (l_int32 *)clEnqueueMapBuffer( rEnv.mpkCmdQueue, xValues, CL_TRUE, CL_MAP_WRITE, 0,
nElements * sizeof(l_int32), 0, NULL, NULL, NULL );
memcpy(pValues, _pValues, nElements * sizeof(l_int32));
clEnqueueUnmapMemObject(rEnv.mpkCmdQueue,xValues,pValues,0,NULL,NULL);
if (sync)
clFinish( rEnv.mpkCmdQueue );
}
return xValues;
}
void OpenclDevice::releaseMorphCLBuffers()
{
if (pixdCLIntermediate != NULL)
clReleaseMemObject(pixdCLIntermediate);
if (pixsCLBuffer != NULL)
clReleaseMemObject(pixsCLBuffer);
if (pixdCLBuffer != NULL)
clReleaseMemObject(pixdCLBuffer);
if (pixThBuffer != NULL)
clReleaseMemObject(pixThBuffer);
}
int OpenclDevice::initMorphCLAllocations(l_int32 wpl, l_int32 h, PIX* pixs)
{
SetKernelEnv( &rEnv );
if (pixThBuffer != NULL)
{
pixsCLBuffer = allocateZeroCopyBuffer(rEnv, NULL, wpl*h, CL_MEM_ALLOC_HOST_PTR, &clStatus);
//Get the output from ThresholdToPix operation
clStatus = clEnqueueCopyBuffer(rEnv.mpkCmdQueue, pixThBuffer, pixsCLBuffer, 0, 0, sizeof(l_uint32) * wpl*h, 0, NULL, NULL);
}
else
{
//Get data from the source image
l_uint32* srcdata = (l_uint32*) malloc(wpl*h*sizeof(l_uint32));
memcpy(srcdata, pixGetData(pixs), wpl*h*sizeof(l_uint32));
pixsCLBuffer = allocateZeroCopyBuffer(rEnv, srcdata, wpl*h, CL_MEM_USE_HOST_PTR, &clStatus);
}
pixdCLBuffer = allocateZeroCopyBuffer(rEnv, NULL, wpl*h, CL_MEM_ALLOC_HOST_PTR, &clStatus);
pixdCLIntermediate = allocateZeroCopyBuffer(rEnv, NULL, wpl*h, CL_MEM_ALLOC_HOST_PTR, &clStatus);
return (int)clStatus;
}
int OpenclDevice::InitEnv()
{
//PERF_COUNT_START("OD::InitEnv")
// printf("[OD] OpenclDevice::InitEnv()\n");
#ifdef SAL_WIN32
while( 1 )
{
if( 1 == LoadOpencl() )
break;
}
PERF_COUNT_SUB("LoadOpencl")
#endif
// sets up environment, compiles programs
InitOpenclRunEnv_DeviceSelection( 0 );
//PERF_COUNT_SUB("called InitOpenclRunEnv_DS")
//PERF_COUNT_END
return 1;
}
int OpenclDevice::ReleaseOpenclRunEnv()
{
ReleaseOpenclEnv( &gpuEnv );
#ifdef SAL_WIN32
FreeOpenclDll();
#endif
return 1;
}
inline int OpenclDevice::AddKernelConfig( int kCount, const char *kName )
{
if ( kCount < 1 )
fprintf(stderr,"Error: ( KCount < 1 ) AddKernelConfig\n" );
strcpy( gpuEnv.mArrykernelNames[kCount-1], kName );
gpuEnv.mnKernelCount++;
return 0;
}
int OpenclDevice::RegistOpenclKernel()
{
if ( !gpuEnv.mnIsUserCreated )
memset( &gpuEnv, 0, sizeof(gpuEnv) );
gpuEnv.mnFileCount = 0; //argc;
gpuEnv.mnKernelCount = 0UL;
AddKernelConfig( 1, (const char*) "oclAverageSub1" );
return 0;
}
int OpenclDevice::InitOpenclRunEnv_DeviceSelection( int argc ) {
//PERF_COUNT_START("InitOpenclRunEnv_DS")
if (!isInited) {
// after programs compiled, selects best device
//printf("[DS] InitOpenclRunEnv_DS::Calling performDeviceSelection()\n");
ds_device bestDevice_DS = getDeviceSelection( );
//PERF_COUNT_SUB("called getDeviceSelection()")
cl_device_id bestDevice = bestDevice_DS.oclDeviceID;
// overwrite global static GPUEnv with new device
if (selectedDeviceIsOpenCL() ) {
//printf("[DS] InitOpenclRunEnv_DS::Calling populateGPUEnvFromDevice() for selected device\n");
populateGPUEnvFromDevice( &gpuEnv, bestDevice );
gpuEnv.mnFileCount = 0; //argc;
gpuEnv.mnKernelCount = 0UL;
//PERF_COUNT_SUB("populate gpuEnv")
CompileKernelFile(&gpuEnv, "");
//PERF_COUNT_SUB("CompileKernelFile")
} else {
//printf("[DS] InitOpenclRunEnv_DS::Skipping populateGPUEnvFromDevice() b/c native cpu selected\n");
}
isInited = 1;
}
//PERF_COUNT_END
return 0;
}
OpenclDevice::OpenclDevice()
{
//InitEnv();
}
OpenclDevice::~OpenclDevice()
{
//ReleaseOpenclRunEnv();
}
int OpenclDevice::ReleaseOpenclEnv( GPUEnv *gpuInfo )
{
int i = 0;
int clStatus = 0;
if ( !isInited )
{
return 1;
}
for ( i = 0; i < gpuEnv.mnFileCount; i++ )
{
if ( gpuEnv.mpArryPrograms[i] )
{
clStatus = clReleaseProgram( gpuEnv.mpArryPrograms[i] );
CHECK_OPENCL( clStatus, "clReleaseProgram" );
gpuEnv.mpArryPrograms[i] = NULL;
}
}
if ( gpuEnv.mpCmdQueue )
{
clReleaseCommandQueue( gpuEnv.mpCmdQueue );
gpuEnv.mpCmdQueue = NULL;
}
if ( gpuEnv.mpContext )
{
clReleaseContext( gpuEnv.mpContext );
gpuEnv.mpContext = NULL;
}
isInited = 0;
gpuInfo->mnIsUserCreated = 0;
free( gpuInfo->mpArryDevsID );
return 1;
}
int OpenclDevice::BinaryGenerated( const char * clFileName, FILE ** fhandle )
{
unsigned int i = 0;
cl_int clStatus;
int status = 0;
char *str = NULL;
FILE *fd = NULL;
char fileName[256] = { 0 }, cl_name[128] = { 0 };
char deviceName[1024];
clStatus = clGetDeviceInfo( gpuEnv.mpArryDevsID[i], CL_DEVICE_NAME, sizeof(deviceName), deviceName, NULL );
CHECK_OPENCL( clStatus, "clGetDeviceInfo" );
str = (char*) strstr( clFileName, (char*) ".cl" );
memcpy( cl_name, clFileName, str - clFileName );
cl_name[str - clFileName] = '\0';
sprintf( fileName, "%s-%s.bin", cl_name, deviceName );
legalizeFileName(fileName);
fd = fopen( fileName, "rb" );
status = ( fd != NULL ) ? 1 : 0;
if ( fd != NULL )
{
*fhandle = fd;
}
return status;
}
int OpenclDevice::CachedOfKernerPrg( const GPUEnv *gpuEnvCached, const char * clFileName )
{
int i;
for ( i = 0; i < gpuEnvCached->mnFileCount; i++ )
{
if ( strcasecmp( gpuEnvCached->mArryKnelSrcFile[i], clFileName ) == 0 )
{
if ( gpuEnvCached->mpArryPrograms[i] != NULL )
{
return 1;
}
}
}
return 0;
}
int OpenclDevice::WriteBinaryToFile( const char* fileName, const char* birary, size_t numBytes )
{
FILE *output = NULL;
output = fopen( fileName, "wb" );
if ( output == NULL )
{
return 0;
}
fwrite( birary, sizeof(char), numBytes, output );
fclose( output );
return 1;
}
int OpenclDevice::GeneratBinFromKernelSource( cl_program program, const char * clFileName )
{
unsigned int i = 0;
cl_int clStatus;
size_t *binarySizes, numDevices=0;
cl_device_id *mpArryDevsID;
char **binaries, *str = NULL;
clStatus = clGetProgramInfo( program, CL_PROGRAM_NUM_DEVICES,
sizeof(numDevices), &numDevices, NULL );
CHECK_OPENCL( clStatus, "clGetProgramInfo" );
mpArryDevsID = (cl_device_id*) malloc( sizeof(cl_device_id) * numDevices );
if ( mpArryDevsID == NULL )
{
return 0;
}
/* grab the handles to all of the devices in the program. */
clStatus = clGetProgramInfo( program, CL_PROGRAM_DEVICES,
sizeof(cl_device_id) * numDevices, mpArryDevsID, NULL );
CHECK_OPENCL( clStatus, "clGetProgramInfo" );
/* figure out the sizes of each of the binaries. */
binarySizes = (size_t*) malloc( sizeof(size_t) * numDevices );
clStatus = clGetProgramInfo( program, CL_PROGRAM_BINARY_SIZES,
sizeof(size_t) * numDevices, binarySizes, NULL );
CHECK_OPENCL( clStatus, "clGetProgramInfo" );
/* copy over all of the generated binaries. */
binaries = (char**) malloc( sizeof(char *) * numDevices );
if ( binaries == NULL )
{
return 0;
}
for ( i = 0; i < numDevices; i++ )
{
if ( binarySizes[i] != 0 )
{
binaries[i] = (char*) malloc( sizeof(char) * binarySizes[i] );
if ( binaries[i] == NULL )
{
return 0;
}
}
else
{
binaries[i] = NULL;
}
}
clStatus = clGetProgramInfo( program, CL_PROGRAM_BINARIES,
sizeof(char *) * numDevices, binaries, NULL );
CHECK_OPENCL(clStatus,"clGetProgramInfo");
/* dump out each binary into its own separate file. */
for ( i = 0; i < numDevices; i++ )
{
char fileName[256] = { 0 }, cl_name[128] = { 0 };
if ( binarySizes[i] != 0 )
{
char deviceName[1024];
clStatus = clGetDeviceInfo(mpArryDevsID[i], CL_DEVICE_NAME,
sizeof(deviceName), deviceName, NULL);
CHECK_OPENCL( clStatus, "clGetDeviceInfo" );
str = (char*) strstr( clFileName, (char*) ".cl" );
memcpy( cl_name, clFileName, str - clFileName );
cl_name[str - clFileName] = '\0';
sprintf( fileName, "%s-%s.bin", cl_name, deviceName );
legalizeFileName(fileName);
if ( !WriteBinaryToFile( fileName, binaries[i], binarySizes[i] ) )
{
printf("[OD] write binary[%s] failed\n", fileName);
return 0;
} //else
printf("[OD] write binary[%s] successfully\n", fileName);
}
}
// Release all resouces and memory
for ( i = 0; i < numDevices; i++ )
{
if ( binaries[i] != NULL )
{
free( binaries[i] );
binaries[i] = NULL;
}
}
if ( binaries != NULL )
{
free( binaries );
binaries = NULL;
}
if ( binarySizes != NULL )
{
free( binarySizes );
binarySizes = NULL;
}
if ( mpArryDevsID != NULL )
{
free( mpArryDevsID );
mpArryDevsID = NULL;
}
return 1;
}
void copyIntBuffer( KernelEnv rEnv, cl_mem xValues, const l_uint32 *_pValues, size_t nElements, cl_int *pStatus )
{
l_int32 *pValues = (l_int32 *)clEnqueueMapBuffer( rEnv.mpkCmdQueue, xValues, CL_TRUE, CL_MAP_WRITE, 0,
nElements * sizeof(l_int32), 0, NULL, NULL, NULL );
clFinish( rEnv.mpkCmdQueue );
if (_pValues != NULL)
{
for ( int i = 0; i < (int)nElements; i++ )
pValues[i] = (l_int32)_pValues[i];
}
clEnqueueUnmapMemObject(rEnv.mpkCmdQueue,xValues,pValues,0,NULL,NULL);
//clFinish( rEnv.mpkCmdQueue );
return;
}
int OpenclDevice::CompileKernelFile( GPUEnv *gpuInfo, const char *buildOption )
{
//PERF_COUNT_START("CompileKernelFile")
cl_int clStatus = 0;
size_t length;
char *buildLog = NULL, *binary;
const char *source;
size_t source_size[1];
int b_error, binary_status, binaryExisted, idx;
size_t numDevices;
cl_device_id *mpArryDevsID;
FILE *fd, *fd1;
const char* filename = "kernel.cl";
//fprintf(stderr, "[OD] CompileKernelFile ... \n");
if ( CachedOfKernerPrg(gpuInfo, filename) == 1 )
{
return 1;
}
idx = gpuInfo->mnFileCount;
source = kernel_src;
source_size[0] = strlen( source );
binaryExisted = 0;
binaryExisted = BinaryGenerated( filename, &fd ); // don't check for binary during microbenchmark
//PERF_COUNT_SUB("BinaryGenerated")
if ( binaryExisted == 1 )
{
clStatus = clGetContextInfo( gpuInfo->mpContext, CL_CONTEXT_NUM_DEVICES,
sizeof(numDevices), &numDevices, NULL );
CHECK_OPENCL( clStatus, "clGetContextInfo" );
mpArryDevsID = (cl_device_id*) malloc( sizeof(cl_device_id) * numDevices );
if ( mpArryDevsID == NULL )
{
return 0;
}
//PERF_COUNT_SUB("get numDevices")
b_error = 0;
length = 0;
b_error |= fseek( fd, 0, SEEK_END ) < 0;
b_error |= ( length = ftell(fd) ) <= 0;
b_error |= fseek( fd, 0, SEEK_SET ) < 0;
if ( b_error )
{
return 0;
}
binary = (char*) malloc( length + 2 );
if ( !binary )
{
return 0;
}
memset( binary, 0, length + 2 );
b_error |= fread( binary, 1, length, fd ) != length;
fclose( fd );
//PERF_COUNT_SUB("read file")
fd = NULL;
// grab the handles to all of the devices in the context.
clStatus = clGetContextInfo( gpuInfo->mpContext, CL_CONTEXT_DEVICES,
sizeof( cl_device_id ) * numDevices, mpArryDevsID, NULL );
CHECK_OPENCL( clStatus, "clGetContextInfo" );
//PERF_COUNT_SUB("get devices")
//fprintf(stderr, "[OD] Create kernel from binary\n");
gpuInfo->mpArryPrograms[idx] = clCreateProgramWithBinary( gpuInfo->mpContext,numDevices,
mpArryDevsID, &length, (const unsigned char**) &binary,
&binary_status, &clStatus );
CHECK_OPENCL( clStatus, "clCreateProgramWithBinary" );
//PERF_COUNT_SUB("clCreateProgramWithBinary")
free( binary );
free( mpArryDevsID );
mpArryDevsID = NULL;
//PERF_COUNT_SUB("binaryExisted")
}
else
{
// create a CL program using the kernel source
//fprintf(stderr, "[OD] Create kernel from source\n");
gpuInfo->mpArryPrograms[idx] = clCreateProgramWithSource( gpuInfo->mpContext, 1, &source,
source_size, &clStatus);
CHECK_OPENCL( clStatus, "clCreateProgramWithSource" );
//PERF_COUNT_SUB("!binaryExisted")
}
if ( gpuInfo->mpArryPrograms[idx] == (cl_program) NULL )
{
return 0;
}
//char options[512];
// create a cl program executable for all the devices specified
//printf("[OD] BuildProgram.\n");
PERF_COUNT_START("OD::CompileKernel::clBuildProgram")
if (!gpuInfo->mnIsUserCreated)
{
clStatus = clBuildProgram(gpuInfo->mpArryPrograms[idx], 1, gpuInfo->mpArryDevsID,
buildOption, NULL, NULL);
//PERF_COUNT_SUB("clBuildProgram notUserCreated")
}
else
{
clStatus = clBuildProgram(gpuInfo->mpArryPrograms[idx], 1, &(gpuInfo->mpDevID),
buildOption, NULL, NULL);
//PERF_COUNT_SUB("clBuildProgram isUserCreated")
}
PERF_COUNT_END
if ( clStatus != CL_SUCCESS )
{
printf ("BuildProgram error!\n");
if ( !gpuInfo->mnIsUserCreated )
{
clStatus = clGetProgramBuildInfo( gpuInfo->mpArryPrograms[idx], gpuInfo->mpArryDevsID[0],
CL_PROGRAM_BUILD_LOG, 0, NULL, &length );
}
else
{
clStatus = clGetProgramBuildInfo( gpuInfo->mpArryPrograms[idx], gpuInfo->mpDevID,
CL_PROGRAM_BUILD_LOG, 0, NULL, &length);
}
if ( clStatus != CL_SUCCESS )
{
printf("opencl create build log fail\n");
return 0;
}
buildLog = (char*) malloc( length );
if ( buildLog == (char*) NULL )
{
return 0;
}
if ( !gpuInfo->mnIsUserCreated )
{
clStatus = clGetProgramBuildInfo( gpuInfo->mpArryPrograms[idx], gpuInfo->mpArryDevsID[0],
CL_PROGRAM_BUILD_LOG, length, buildLog, &length );
}
else
{
clStatus = clGetProgramBuildInfo( gpuInfo->mpArryPrograms[idx], gpuInfo->mpDevID,
CL_PROGRAM_BUILD_LOG, length, buildLog, &length );
}
if ( clStatus != CL_SUCCESS )
{
printf("opencl program build info fail\n");
return 0;
}
fd1 = fopen( "kernel-build.log", "w+" );
if ( fd1 != NULL )
{
fwrite( buildLog, sizeof(char), length, fd1 );
fclose( fd1 );
}
free( buildLog );
//PERF_COUNT_SUB("build error log")
return 0;
}
strcpy( gpuInfo->mArryKnelSrcFile[idx], filename );
//PERF_COUNT_SUB("strcpy")
if ( binaryExisted == 0 ) {
GeneratBinFromKernelSource( gpuInfo->mpArryPrograms[idx], filename );
PERF_COUNT_SUB("GenerateBinFromKernelSource")
}
gpuInfo->mnFileCount += 1;
//PERF_COUNT_END
return 1;
}
l_uint32* OpenclDevice::pixReadFromTiffKernel(l_uint32 *tiffdata,l_int32 w,l_int32 h,l_int32 wpl,l_uint32 *line)
{
PERF_COUNT_START("pixReadFromTiffKernel")
cl_int clStatus;
KernelEnv rEnv;
size_t globalThreads[2];
size_t localThreads[2];
int gsize;
cl_mem valuesCl;
cl_mem outputCl;
//global and local work dimensions for Horizontal pass
gsize = (w + GROUPSIZE_X - 1)/ GROUPSIZE_X * GROUPSIZE_X;
globalThreads[0] = gsize;
gsize = (h + GROUPSIZE_Y - 1)/ GROUPSIZE_Y * GROUPSIZE_Y;
globalThreads[1] = gsize;
localThreads[0] = GROUPSIZE_X;
localThreads[1] = GROUPSIZE_Y;
SetKernelEnv( &rEnv );
l_uint32 *pResult = (l_uint32 *)malloc(w*h * sizeof(l_uint32));
rEnv.mpkKernel = clCreateKernel( rEnv.mpkProgram, "composeRGBPixel", &clStatus );
CHECK_OPENCL( clStatus, "clCreateKernel");
//Allocate input and output OCL buffers
valuesCl = allocateZeroCopyBuffer(rEnv, tiffdata, w*h, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR, &clStatus);
outputCl = allocateZeroCopyBuffer(rEnv, pResult, w*h, CL_MEM_WRITE_ONLY | CL_MEM_USE_HOST_PTR, &clStatus);
//Kernel arguments
clStatus = clSetKernelArg( rEnv.mpkKernel, 0, sizeof(cl_mem), (void *)&valuesCl );
CHECK_OPENCL( clStatus, "clSetKernelArg");
clStatus = clSetKernelArg( rEnv.mpkKernel, 1, sizeof(w), (void *)&w );
CHECK_OPENCL( clStatus, "clSetKernelArg" );
clStatus = clSetKernelArg( rEnv.mpkKernel, 2, sizeof(h), (void *)&h );
CHECK_OPENCL( clStatus, "clSetKernelArg" );
clStatus = clSetKernelArg( rEnv.mpkKernel, 3, sizeof(wpl), (void *)&wpl );
CHECK_OPENCL( clStatus, "clSetKernelArg" );
clStatus = clSetKernelArg( rEnv.mpkKernel, 4, sizeof(cl_mem), (void *)&outputCl );
CHECK_OPENCL( clStatus, "clSetKernelArg");
//Kernel enqueue
PERF_COUNT_SUB("before")
clStatus = clEnqueueNDRangeKernel( rEnv.mpkCmdQueue, rEnv.mpkKernel, 2, NULL, globalThreads, localThreads, 0, NULL, NULL );
CHECK_OPENCL( clStatus, "clEnqueueNDRangeKernel" );
/* map results back from gpu */
void *ptr = clEnqueueMapBuffer(rEnv.mpkCmdQueue, outputCl, CL_TRUE, CL_MAP_READ, 0, w*h * sizeof(l_uint32), 0, NULL, NULL, &clStatus);
CHECK_OPENCL( clStatus, "clEnqueueMapBuffer outputCl");
clEnqueueUnmapMemObject(rEnv.mpkCmdQueue, outputCl, ptr, 0, NULL, NULL);
//Sync
clFinish( rEnv.mpkCmdQueue );
PERF_COUNT_SUB("kernel & map")
PERF_COUNT_END
return pResult;
}
PIX * OpenclDevice::pixReadTiffCl ( const char *filename, l_int32 n )
{
PERF_COUNT_START("pixReadTiffCL")
FILE *fp;
PIX *pix;
//printf("pixReadTiffCl file");
PROCNAME("pixReadTiff");
if (!filename)
return (PIX *)ERROR_PTR("filename not defined", procName, NULL);
if ((fp = fopenReadStream(filename)) == NULL)
return (PIX *)ERROR_PTR("image file not found", procName, NULL);
if ((pix = pixReadStreamTiffCl(fp, n)) == NULL) {
fclose(fp);
return (PIX *)ERROR_PTR("pix not read", procName, NULL);
}
fclose(fp);
PERF_COUNT_END
return pix;
}
TIFF *
OpenclDevice::fopenTiffCl(FILE *fp,
const char *modestring)
{
l_int32 fd;
PROCNAME("fopenTiff");
if (!fp)
return (TIFF *)ERROR_PTR("stream not opened", procName, NULL);
if (!modestring)
return (TIFF *)ERROR_PTR("modestring not defined", procName, NULL);
if ((fd = fileno(fp)) < 0)
return (TIFF *)ERROR_PTR("invalid file descriptor", procName, NULL);
lseek(fd, 0, SEEK_SET);
return TIFFFdOpen(fd, "TIFFstream", modestring);
}
l_int32 OpenclDevice::getTiffStreamResolutionCl(TIFF *tif,
l_int32 *pxres,
l_int32 *pyres)
{
l_uint16 resunit;
l_int32 foundxres, foundyres;
l_float32 fxres, fyres;
PROCNAME("getTiffStreamResolution");
if (!tif)
return ERROR_INT("tif not opened", procName, 1);
if (!pxres || !pyres)
return ERROR_INT("&xres and &yres not both defined", procName, 1);
*pxres = *pyres = 0;
TIFFGetFieldDefaulted(tif, TIFFTAG_RESOLUTIONUNIT, &resunit);
foundxres = TIFFGetField(tif, TIFFTAG_XRESOLUTION, &fxres);
foundyres = TIFFGetField(tif, TIFFTAG_YRESOLUTION, &fyres);
if (!foundxres && !foundyres) return 1;
if (!foundxres && foundyres)
fxres = fyres;
else if (foundxres && !foundyres)
fyres = fxres;
if (resunit == RESUNIT_CENTIMETER) { /* convert to ppi */
*pxres = (l_int32)(2.54 * fxres + 0.5);
*pyres = (l_int32)(2.54 * fyres + 0.5);
}
else {
*pxres = (l_int32)fxres;
*pyres = (l_int32)fyres;
}
return 0;
}
struct L_Memstream
{
l_uint8 *buffer; /* expands to hold data when written to; */
/* fixed size when read from. */
size_t bufsize; /* current size allocated when written to; */
/* fixed size of input data when read from. */
size_t offset; /* byte offset from beginning of buffer. */
size_t hw; /* high-water mark; max bytes in buffer. */
l_uint8 **poutdata; /* input param for writing; data goes here. */
size_t *poutsize; /* input param for writing; data size goes here. */
};
typedef struct L_Memstream L_MEMSTREAM;
/* These are static functions for memory I/O */
static L_MEMSTREAM *memstreamCreateForRead(l_uint8 *indata, size_t pinsize);
static L_MEMSTREAM *memstreamCreateForWrite(l_uint8 **poutdata,
size_t *poutsize);
static tsize_t tiffReadCallback(thandle_t handle, tdata_t data, tsize_t length);
static tsize_t tiffWriteCallback(thandle_t handle, tdata_t data,
tsize_t length);
static toff_t tiffSeekCallback(thandle_t handle, toff_t offset, l_int32 whence);
static l_int32 tiffCloseCallback(thandle_t handle);
static toff_t tiffSizeCallback(thandle_t handle);
static l_int32 tiffMapCallback(thandle_t handle, tdata_t *data, toff_t *length);
static void tiffUnmapCallback(thandle_t handle, tdata_t data, toff_t length);
static L_MEMSTREAM *
memstreamCreateForRead(l_uint8 *indata,
size_t insize)
{
L_MEMSTREAM *mstream;
mstream = (L_MEMSTREAM *)CALLOC(1, sizeof(L_MEMSTREAM));
mstream->buffer = indata; /* handle to input data array */
mstream->bufsize = insize; /* amount of input data */
mstream->hw = insize; /* high-water mark fixed at input data size */
mstream->offset = 0; /* offset always starts at 0 */
return mstream;
}
static L_MEMSTREAM *
memstreamCreateForWrite(l_uint8 **poutdata,
size_t *poutsize)
{
L_MEMSTREAM *mstream;
mstream = (L_MEMSTREAM *)CALLOC(1, sizeof(L_MEMSTREAM));
mstream->buffer = (l_uint8 *)CALLOC(8 * 1024, 1);
mstream->bufsize = 8 * 1024;
mstream->poutdata = poutdata; /* used only at end of write */
mstream->poutsize = poutsize; /* ditto */
mstream->hw = mstream->offset = 0;
return mstream;
}
static tsize_t
tiffReadCallback(thandle_t handle,
tdata_t data,
tsize_t length)
{
L_MEMSTREAM *mstream;
size_t amount;
mstream = (L_MEMSTREAM *)handle;
amount = L_MIN((size_t)length, mstream->hw - mstream->offset);
memcpy(data, mstream->buffer + mstream->offset, amount);
mstream->offset += amount;
return amount;
}
static tsize_t
tiffWriteCallback(thandle_t handle,
tdata_t data,
tsize_t length)
{
L_MEMSTREAM *mstream;
size_t newsize;
/* reallocNew() uses calloc to initialize the array.
* If malloc is used instead, for some of the encoding methods,
* not all the data in 'bufsize' bytes in the buffer will
* have been initialized by the end of the compression. */
mstream = (L_MEMSTREAM *)handle;
if (mstream->offset + length > mstream->bufsize) {
newsize = 2 * (mstream->offset + length);
mstream->buffer = (l_uint8 *)reallocNew((void **)&mstream->buffer,
mstream->offset, newsize);
mstream->bufsize = newsize;
}
memcpy(mstream->buffer + mstream->offset, data, length);
mstream->offset += length;
mstream->hw = L_MAX(mstream->offset, mstream->hw);
return length;
}
static toff_t
tiffSeekCallback(thandle_t handle,
toff_t offset,
l_int32 whence)
{
L_MEMSTREAM *mstream;
PROCNAME("tiffSeekCallback");
mstream = (L_MEMSTREAM *)handle;
switch (whence) {
case SEEK_SET:
/* fprintf(stderr, "seek_set: offset = %d\n", offset); */
mstream->offset = offset;
break;
case SEEK_CUR:
/* fprintf(stderr, "seek_cur: offset = %d\n", offset); */
mstream->offset += offset;
break;
case SEEK_END:
/* fprintf(stderr, "seek end: hw = %d, offset = %d\n",
mstream->hw, offset); */
mstream->offset = mstream->hw - offset; /* offset >= 0 */
break;
default:
return (toff_t)ERROR_INT("bad whence value", procName,
mstream->offset);
}
return mstream->offset;
}
static l_int32
tiffCloseCallback(thandle_t handle)
{
L_MEMSTREAM *mstream;
mstream = (L_MEMSTREAM *)handle;
if (mstream->poutdata) { /* writing: save the output data */
*mstream->poutdata = mstream->buffer;
*mstream->poutsize = mstream->hw;
}
FREE(mstream); /* never free the buffer! */
return 0;
}
static toff_t
tiffSizeCallback(thandle_t handle)
{
L_MEMSTREAM *mstream;
mstream = (L_MEMSTREAM *)handle;
return mstream->hw;
}
static l_int32
tiffMapCallback(thandle_t handle,
tdata_t *data,
toff_t *length)
{
L_MEMSTREAM *mstream;
mstream = (L_MEMSTREAM *)handle;
*data = mstream->buffer;
*length = mstream->hw;
return 0;
}
static void
tiffUnmapCallback(thandle_t handle,
tdata_t data,
toff_t length)
{
return;
}
/*!
* fopenTiffMemstream()
*
* Input: filename (for error output; can be "")
* operation ("w" for write, "r" for read)
* &data (<return> written data)
* &datasize (<return> size of written data)
* Return: tiff (data structure, opened for write to memory)
*
* Notes:
* (1) This wraps up a number of callbacks for either:
* * reading from tiff in memory buffer --> pix
* * writing from pix --> tiff in memory buffer
* (2) After use, the memstream is automatically destroyed when
* TIFFClose() is called. TIFFCleanup() doesn't free the memstream.
*/
static TIFF *
fopenTiffMemstream(const char *filename,
const char *operation,
l_uint8 **pdata,
size_t *pdatasize)
{
L_MEMSTREAM *mstream;
PROCNAME("fopenTiffMemstream");
if (!filename)
return (TIFF *)ERROR_PTR("filename not defined", procName, NULL);
if (!operation)
return (TIFF *)ERROR_PTR("operation not defined", procName, NULL);
if (!pdata)
return (TIFF *)ERROR_PTR("&data not defined", procName, NULL);
if (!pdatasize)
return (TIFF *)ERROR_PTR("&datasize not defined", procName, NULL);
if (!strcmp(operation, "r") && !strcmp(operation, "w"))
return (TIFF *)ERROR_PTR("operation not 'r' or 'w'}", procName, NULL);
if (!strcmp(operation, "r"))
mstream = memstreamCreateForRead(*pdata, *pdatasize);
else
mstream = memstreamCreateForWrite(pdata, pdatasize);
return TIFFClientOpen(filename, operation, mstream,
tiffReadCallback, tiffWriteCallback,
tiffSeekCallback, tiffCloseCallback,
tiffSizeCallback, tiffMapCallback,
tiffUnmapCallback);
}
PIX *
OpenclDevice::pixReadMemTiffCl(const l_uint8 *data,size_t size,l_int32 n)
{
l_int32 i, pagefound;
PIX *pix;
TIFF *tif;
//L_MEMSTREAM *memStream;
PROCNAME("pixReadMemTiffCl");
if (!data)
return (PIX *)ERROR_PTR("data pointer is NULL", procName, NULL);
if ((tif = fopenTiffMemstream("", "r", (l_uint8 **)&data, &size)) == NULL)
return (PIX *)ERROR_PTR("tif not opened", procName, NULL);
pagefound = FALSE;
pix = NULL;
for (i = 0; i < MAX_PAGES_IN_TIFF_FILE; i++) {
if (i == n) {
pagefound = TRUE;
if ((pix = pixReadFromTiffStreamCl(tif)) == NULL) {
TIFFCleanup(tif);
return (PIX *)ERROR_PTR("pix not read", procName, NULL);
}
break;
}
if (TIFFReadDirectory(tif) == 0)
break;
}
if (pagefound == FALSE) {
L_WARNING("tiff page %d not found", procName);
TIFFCleanup(tif);
return NULL;
}
TIFFCleanup(tif);
return pix;
}
PIX *
OpenclDevice::pixReadStreamTiffCl(FILE *fp,
l_int32 n)
{
l_int32 i, pagefound;
PIX *pix;
TIFF *tif;
PROCNAME("pixReadStreamTiff");
if (!fp)
return (PIX *)ERROR_PTR("stream not defined", procName, NULL);
if ((tif = fopenTiffCl(fp, "rb")) == NULL)
return (PIX *)ERROR_PTR("tif not opened", procName, NULL);
pagefound = FALSE;
pix = NULL;
for (i = 0; i < MAX_PAGES_IN_TIFF_FILE; i++) {
if (i == n) {
pagefound = TRUE;
if ((pix = pixReadFromTiffStreamCl(tif)) == NULL) {
TIFFCleanup(tif);
return (PIX *)ERROR_PTR("pix not read", procName, NULL);
}
break;
}
if (TIFFReadDirectory(tif) == 0)
break;
}
if (pagefound == FALSE) {
L_WARNING("tiff page %d not found", procName, n);
TIFFCleanup(tif);
return NULL;
}
TIFFCleanup(tif);
return pix;
}
static l_int32
getTiffCompressedFormat(l_uint16 tiffcomp)
{
l_int32 comptype;
switch (tiffcomp)
{
case COMPRESSION_CCITTFAX4:
comptype = IFF_TIFF_G4;
break;
case COMPRESSION_CCITTFAX3:
comptype = IFF_TIFF_G3;
break;
case COMPRESSION_CCITTRLE:
comptype = IFF_TIFF_RLE;
break;
case COMPRESSION_PACKBITS:
comptype = IFF_TIFF_PACKBITS;
break;
case COMPRESSION_LZW:
comptype = IFF_TIFF_LZW;
break;
case COMPRESSION_ADOBE_DEFLATE:
comptype = IFF_TIFF_ZIP;
break;
default:
comptype = IFF_TIFF;
break;
}
return comptype;
}
void compare(l_uint32 *cpu, l_uint32 *gpu,int size)
{
for(int i=0;i<size;i++)
{
if(cpu[i]!=gpu[i])
{
printf("\ndoesnot match\n");
return;
}
}
printf("\nit matches\n");
}
//OpenCL implementation of pixReadFromTiffStream.
//Similar to the CPU implentation of pixReadFromTiffStream
PIX *
OpenclDevice::pixReadFromTiffStreamCl(TIFF *tif)
{
l_uint8 *linebuf, *data;
l_uint16 spp, bps, bpp, tiffbpl, photometry, tiffcomp, orientation;
l_uint16 *redmap, *greenmap, *bluemap;
l_int32 d, wpl, bpl, comptype, i, ncolors;
l_int32 xres, yres;
l_uint32 w, h;
l_uint32 *line, *tiffdata;
PIX *pix;
PIXCMAP *cmap;
PROCNAME("pixReadFromTiffStream");
if (!tif)
return (PIX *)ERROR_PTR("tif not defined", procName, NULL);
TIFFGetFieldDefaulted(tif, TIFFTAG_BITSPERSAMPLE, &bps);
TIFFGetFieldDefaulted(tif, TIFFTAG_SAMPLESPERPIXEL, &spp);
bpp = bps * spp;
if (bpp > 32)
return (PIX *)ERROR_PTR("can't handle bpp > 32", procName, NULL);
if (spp == 1)
d = bps;
else if (spp == 3 || spp == 4)
d = 32;
else
return (PIX *)ERROR_PTR("spp not in set {1,3,4}", procName, NULL);
TIFFGetField(tif, TIFFTAG_IMAGEWIDTH, &w);
TIFFGetField(tif, TIFFTAG_IMAGELENGTH, &h);
tiffbpl = TIFFScanlineSize(tif);
if ((pix = pixCreate(w, h, d)) == NULL)
return (PIX *)ERROR_PTR("pix not made", procName, NULL);
data = (l_uint8 *)pixGetData(pix);
wpl = pixGetWpl(pix);
bpl = 4 * wpl;
if (spp == 1) {
if ((linebuf = (l_uint8 *)CALLOC(tiffbpl + 1, sizeof(l_uint8))) == NULL)
return (PIX *)ERROR_PTR("calloc fail for linebuf", procName, NULL);
for (i = 0 ; i < h ; i++) {
if (TIFFReadScanline(tif, linebuf, i, 0) < 0) {
FREE(linebuf);
pixDestroy(&pix);
return (PIX *)ERROR_PTR("line read fail", procName, NULL);
}
memcpy((char *)data, (char *)linebuf, tiffbpl);
data += bpl;
}
if (bps <= 8)
pixEndianByteSwap(pix);
else
pixEndianTwoByteSwap(pix);
FREE(linebuf);
}
else {
if ((tiffdata = (l_uint32 *)CALLOC(w * h, sizeof(l_uint32))) == NULL) {
pixDestroy(&pix);
return (PIX *)ERROR_PTR("calloc fail for tiffdata", procName, NULL);
}
if (!TIFFReadRGBAImageOriented(tif, w, h, (uint32 *)tiffdata,
ORIENTATION_TOPLEFT, 0)) {
FREE(tiffdata);
pixDestroy(&pix);
return (PIX *)ERROR_PTR("failed to read tiffdata", procName, NULL);
}
line = pixGetData(pix);
//Invoke the OpenCL kernel for pixReadFromTiff
l_uint32* output_gpu=pixReadFromTiffKernel(tiffdata,w,h,wpl,line);
pixSetData(pix, output_gpu);
// pix already has data allocated, it now points to output_gpu?
FREE(tiffdata);
FREE(line);
//FREE(output_gpu);
}
if (getTiffStreamResolutionCl(tif, &xres, &yres) == 0) {
pixSetXRes(pix, xres);
pixSetYRes(pix, yres);
}
TIFFGetFieldDefaulted(tif, TIFFTAG_COMPRESSION, &tiffcomp);
comptype = getTiffCompressedFormat(tiffcomp);
pixSetInputFormat(pix, comptype);
if (TIFFGetField(tif, TIFFTAG_COLORMAP, &redmap, &greenmap, &bluemap)) {
if ((cmap = pixcmapCreate(bps)) == NULL) {
pixDestroy(&pix);
return (PIX *)ERROR_PTR("cmap not made", procName, NULL);
}
ncolors = 1 << bps;
for (i = 0; i < ncolors; i++)
pixcmapAddColor(cmap, redmap[i] >> 8, greenmap[i] >> 8,
bluemap[i] >> 8);
pixSetColormap(pix, cmap);
}
else {
if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &photometry)) {
if (tiffcomp == COMPRESSION_CCITTFAX3 ||
tiffcomp == COMPRESSION_CCITTFAX4 ||
tiffcomp == COMPRESSION_CCITTRLE ||
tiffcomp == COMPRESSION_CCITTRLEW) {
photometry = PHOTOMETRIC_MINISWHITE;
}
else
photometry = PHOTOMETRIC_MINISBLACK;
}
if ((d == 1 && photometry == PHOTOMETRIC_MINISBLACK) ||
(d == 8 && photometry == PHOTOMETRIC_MINISWHITE))
pixInvert(pix, pix);
}
if (TIFFGetField(tif, TIFFTAG_ORIENTATION, &orientation)) {
if (orientation >= 1 && orientation <= 8) {
struct tiff_transform *transform =
&tiff_orientation_transforms[orientation - 1];
if (transform->vflip) pixFlipTB(pix, pix);
if (transform->hflip) pixFlipLR(pix, pix);
if (transform->rotate) {
PIX *oldpix = pix;
pix = pixRotate90(oldpix, transform->rotate);
pixDestroy(&oldpix);
}
}
}
return pix;
}
//Morphology Dilate operation for 5x5 structuring element. Invokes the relevant OpenCL kernels
cl_int
pixDilateCL_55(l_int32 wpl, l_int32 h)
{
size_t globalThreads[2];
cl_mem pixtemp;
cl_int status;
int gsize;
size_t localThreads[2];
//Horizontal pass
gsize = (wpl*h + GROUPSIZE_HMORX - 1)/ GROUPSIZE_HMORX * GROUPSIZE_HMORX;
globalThreads[0] = gsize;
globalThreads[1] = GROUPSIZE_HMORY;
localThreads[0] = GROUPSIZE_HMORX;
localThreads[1] = GROUPSIZE_HMORY;
rEnv.mpkKernel = clCreateKernel( rEnv.mpkProgram, "morphoDilateHor_5x5", &status );
status = clSetKernelArg(rEnv.mpkKernel,
0,
sizeof(cl_mem),
&pixsCLBuffer);
status = clSetKernelArg(rEnv.mpkKernel,
1,
sizeof(cl_mem),
&pixdCLBuffer);
status = clSetKernelArg(rEnv.mpkKernel,
2,
sizeof(wpl),
(const void *)&wpl);
status = clSetKernelArg(rEnv.mpkKernel,
3,
sizeof(h),
(const void *)&h);
status = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue,
rEnv.mpkKernel,
2,
NULL,
globalThreads,
localThreads,
0,
NULL,
NULL);
//Swap source and dest buffers
pixtemp = pixsCLBuffer;
pixsCLBuffer = pixdCLBuffer;
pixdCLBuffer = pixtemp;
//Vertical
gsize = (wpl + GROUPSIZE_X - 1)/ GROUPSIZE_X * GROUPSIZE_X;
globalThreads[0] = gsize;
gsize = (h + GROUPSIZE_Y - 1)/ GROUPSIZE_Y * GROUPSIZE_Y;
globalThreads[1] = gsize;
localThreads[0] = GROUPSIZE_X;
localThreads[1] = GROUPSIZE_Y;
rEnv.mpkKernel = clCreateKernel( rEnv.mpkProgram, "morphoDilateVer_5x5", &status );
status = clSetKernelArg(rEnv.mpkKernel,
0,
sizeof(cl_mem),
&pixsCLBuffer);
status = clSetKernelArg(rEnv.mpkKernel,
1,
sizeof(cl_mem),
&pixdCLBuffer);
status = clSetKernelArg(rEnv.mpkKernel,
2,
sizeof(wpl),
(const void *)&wpl);
status = clSetKernelArg(rEnv.mpkKernel,
3,
sizeof(h),
(const void *)&h);
status = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue,
rEnv.mpkKernel,
2,
NULL,
globalThreads,
localThreads,
0,
NULL,
NULL);
return status;
}
//Morphology Erode operation for 5x5 structuring element. Invokes the relevant OpenCL kernels
cl_int
pixErodeCL_55(l_int32 wpl, l_int32 h)
{
size_t globalThreads[2];
cl_mem pixtemp;
cl_int status;
int gsize;
l_uint32 fwmask, lwmask;
size_t localThreads[2];
lwmask = lmask32[32 - 2];
fwmask = rmask32[32 - 2];
//Horizontal pass
gsize = (wpl*h + GROUPSIZE_HMORX - 1)/ GROUPSIZE_HMORX * GROUPSIZE_HMORX;
globalThreads[0] = gsize;
globalThreads[1] = GROUPSIZE_HMORY;
localThreads[0] = GROUPSIZE_HMORX;
localThreads[1] = GROUPSIZE_HMORY;
rEnv.mpkKernel = clCreateKernel( rEnv.mpkProgram, "morphoErodeHor_5x5", &status );
status = clSetKernelArg(rEnv.mpkKernel,
0,
sizeof(cl_mem),
&pixsCLBuffer);
status = clSetKernelArg(rEnv.mpkKernel,
1,
sizeof(cl_mem),
&pixdCLBuffer);
status = clSetKernelArg(rEnv.mpkKernel,
2,
sizeof(wpl),
(const void *)&wpl);
status = clSetKernelArg(rEnv.mpkKernel,
3,
sizeof(h),
(const void *)&h);
status = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue,
rEnv.mpkKernel,
2,
NULL,
globalThreads,
localThreads,
0,
NULL,
NULL);
//Swap source and dest buffers
pixtemp = pixsCLBuffer;
pixsCLBuffer = pixdCLBuffer;
pixdCLBuffer = pixtemp;
//Vertical
gsize = (wpl + GROUPSIZE_X - 1)/ GROUPSIZE_X * GROUPSIZE_X;
globalThreads[0] = gsize;
gsize = (h + GROUPSIZE_Y - 1)/ GROUPSIZE_Y * GROUPSIZE_Y;
globalThreads[1] = gsize;
localThreads[0] = GROUPSIZE_X;
localThreads[1] = GROUPSIZE_Y;
rEnv.mpkKernel = clCreateKernel( rEnv.mpkProgram, "morphoErodeVer_5x5", &status );
status = clSetKernelArg(rEnv.mpkKernel,
0,
sizeof(cl_mem),
&pixsCLBuffer);
status = clSetKernelArg(rEnv.mpkKernel,
1,
sizeof(cl_mem),
&pixdCLBuffer);
status = clSetKernelArg(rEnv.mpkKernel,
2,
sizeof(wpl),
(const void *)&wpl);
status = clSetKernelArg(rEnv.mpkKernel,
3,
sizeof(h),
(const void *)&h);
status = clSetKernelArg(rEnv.mpkKernel,
4,
sizeof(fwmask),
(const void *)&fwmask);
status = clSetKernelArg(rEnv.mpkKernel,
5,
sizeof(lwmask),
(const void *)&lwmask);
status = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue,
rEnv.mpkKernel,
2,
NULL,
globalThreads,
localThreads,
0,
NULL,
NULL);
return status;
}
//Morphology Dilate operation. Invokes the relevant OpenCL kernels
cl_int
pixDilateCL(l_int32 hsize, l_int32 vsize, l_int32 wpl, l_int32 h)
{
l_int32 xp, yp, xn, yn;
SEL* sel;
size_t globalThreads[2];
cl_mem pixtemp;
cl_int status;
int gsize;
size_t localThreads[2];
char isEven;
OpenclDevice::SetKernelEnv( &rEnv );
if (hsize == 5 && vsize == 5)
{
//Specific case for 5x5
status = pixDilateCL_55(wpl, h);
return status;
}
sel = selCreateBrick(vsize, hsize, vsize / 2, hsize / 2, SEL_HIT);
selFindMaxTranslations(sel, &xp, &yp, &xn, &yn);
selDestroy(&sel);
//global and local work dimensions for Horizontal pass
gsize = (wpl + GROUPSIZE_X - 1)/ GROUPSIZE_X * GROUPSIZE_X;
globalThreads[0] = gsize;
gsize = (h + GROUPSIZE_Y - 1)/ GROUPSIZE_Y * GROUPSIZE_Y;
globalThreads[1] = gsize;
localThreads[0] = GROUPSIZE_X;
localThreads[1] = GROUPSIZE_Y;
if (xp > 31 || xn > 31)
{
//Generic case.
rEnv.mpkKernel = clCreateKernel( rEnv.mpkProgram, "morphoDilateHor", &status );
status = clSetKernelArg(rEnv.mpkKernel,
0,
sizeof(cl_mem),
&pixsCLBuffer);
status = clSetKernelArg(rEnv.mpkKernel,
1,
sizeof(cl_mem),
&pixdCLBuffer);
status = clSetKernelArg(rEnv.mpkKernel,
2,
sizeof(xp),
(const void *)&xp);
status = clSetKernelArg(rEnv.mpkKernel,
3,
sizeof(xn),
(const void *)&xn);
status = clSetKernelArg(rEnv.mpkKernel,
4,
sizeof(wpl),
(const void *)&wpl);
status = clSetKernelArg(rEnv.mpkKernel,
5,
sizeof(h),
(const void *)&h);
status = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue,
rEnv.mpkKernel,
2,
NULL,
globalThreads,
localThreads,
0,
NULL,
NULL);
if (yp > 0 || yn > 0)
{
pixtemp = pixsCLBuffer;
pixsCLBuffer = pixdCLBuffer;
pixdCLBuffer = pixtemp;
}
}
else if (xp > 0 || xn > 0 )
{
//Specific Horizontal pass kernel for half width < 32
rEnv.mpkKernel = clCreateKernel( rEnv.mpkProgram, "morphoDilateHor_32word", &status );
isEven = (xp != xn);
status = clSetKernelArg(rEnv.mpkKernel,
0,
sizeof(cl_mem),
&pixsCLBuffer);
status = clSetKernelArg(rEnv.mpkKernel,
1,
sizeof(cl_mem),
&pixdCLBuffer);
status = clSetKernelArg(rEnv.mpkKernel,
2,
sizeof(xp),
(const void *)&xp);
status = clSetKernelArg(rEnv.mpkKernel,
3,
sizeof(wpl),
(const void *)&wpl);
status = clSetKernelArg(rEnv.mpkKernel,
4,
sizeof(h),
(const void *)&h);
status = clSetKernelArg(rEnv.mpkKernel,
5,
sizeof(isEven),
(const void *)&isEven);
status = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue,
rEnv.mpkKernel,
2,
NULL,
globalThreads,
localThreads,
0,
NULL,
NULL);
if (yp > 0 || yn > 0)
{
pixtemp = pixsCLBuffer;
pixsCLBuffer = pixdCLBuffer;
pixdCLBuffer = pixtemp;
}
}
if (yp > 0 || yn > 0)
{
rEnv.mpkKernel = clCreateKernel( rEnv.mpkProgram, "morphoDilateVer", &status );
status = clSetKernelArg(rEnv.mpkKernel,
0,
sizeof(cl_mem),
&pixsCLBuffer);
status = clSetKernelArg(rEnv.mpkKernel,
1,
sizeof(cl_mem),
&pixdCLBuffer);
status = clSetKernelArg(rEnv.mpkKernel,
2,
sizeof(yp),
(const void *)&yp);
status = clSetKernelArg(rEnv.mpkKernel,
3,
sizeof(wpl),
(const void *)&wpl);
status = clSetKernelArg(rEnv.mpkKernel,
4,
sizeof(h),
(const void *)&h);
status = clSetKernelArg(rEnv.mpkKernel,
5,
sizeof(yn),
(const void *)&yn);
status = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue,
rEnv.mpkKernel,
2,
NULL,
globalThreads,
localThreads,
0,
NULL,
NULL);
}
return status;
}
//Morphology Erode operation. Invokes the relevant OpenCL kernels
cl_int
pixErodeCL(l_int32 hsize, l_int32 vsize, l_uint32 wpl, l_uint32 h)
{
l_int32 xp, yp, xn, yn;
SEL* sel;
size_t globalThreads[2];
size_t localThreads[2];
cl_mem pixtemp;
cl_int status;
int gsize;
char isAsymmetric = (MORPH_BC == ASYMMETRIC_MORPH_BC);
l_uint32 rwmask, lwmask;
char isEven;
sel = selCreateBrick(vsize, hsize, vsize / 2, hsize / 2, SEL_HIT);
selFindMaxTranslations(sel, &xp, &yp, &xn, &yn);
selDestroy(&sel);
OpenclDevice::SetKernelEnv( &rEnv );
if (hsize == 5 && vsize == 5 && isAsymmetric)
{
//Specific kernel for 5x5
status = pixErodeCL_55(wpl, h);
return status;
}
rwmask = rmask32[32 - (xp & 31)];
lwmask = lmask32[32 - (xn & 31)];
//global and local work dimensions for Horizontal pass
gsize = (wpl + GROUPSIZE_X - 1)/ GROUPSIZE_X * GROUPSIZE_X;
globalThreads[0] = gsize;
gsize = (h + GROUPSIZE_Y - 1)/ GROUPSIZE_Y * GROUPSIZE_Y;
globalThreads[1] = gsize;
localThreads[0] = GROUPSIZE_X;
localThreads[1] = GROUPSIZE_Y;
//Horizontal Pass
if (xp > 31 || xn > 31 )
{
//Generic case.
rEnv.mpkKernel = clCreateKernel( rEnv.mpkProgram, "morphoErodeHor", &status );
status = clSetKernelArg(rEnv.mpkKernel,
0,
sizeof(cl_mem),
&pixsCLBuffer);
status = clSetKernelArg(rEnv.mpkKernel,
1,
sizeof(cl_mem),
&pixdCLBuffer);
status = clSetKernelArg(rEnv.mpkKernel,
2,
sizeof(xp),
(const void *)&xp);
status = clSetKernelArg(rEnv.mpkKernel,
3,
sizeof(xn),
(const void *)&xn);
status = clSetKernelArg(rEnv.mpkKernel,
4,
sizeof(wpl),
(const void *)&wpl);
status = clSetKernelArg(rEnv.mpkKernel,
5,
sizeof(h),
(const void *)&h);
status = clSetKernelArg(rEnv.mpkKernel,
6,
sizeof(isAsymmetric),
(const void *)&isAsymmetric);
status = clSetKernelArg(rEnv.mpkKernel,
7,
sizeof(rwmask),
(const void *)&rwmask);
status = clSetKernelArg(rEnv.mpkKernel,
8,
sizeof(lwmask),
(const void *)&lwmask);
status = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue,
rEnv.mpkKernel,
2,
NULL,
globalThreads,
localThreads,
0,
NULL,
NULL);
if (yp > 0 || yn > 0)
{
pixtemp = pixsCLBuffer;
pixsCLBuffer = pixdCLBuffer;
pixdCLBuffer = pixtemp;
}
}
else if (xp > 0 || xn > 0)
{
rEnv.mpkKernel = clCreateKernel( rEnv.mpkProgram, "morphoErodeHor_32word", &status );
isEven = (xp != xn);
status = clSetKernelArg(rEnv.mpkKernel,
0,
sizeof(cl_mem),
&pixsCLBuffer);
status = clSetKernelArg(rEnv.mpkKernel,
1,
sizeof(cl_mem),
&pixdCLBuffer);
status = clSetKernelArg(rEnv.mpkKernel,
2,
sizeof(xp),
(const void *)&xp);
status = clSetKernelArg(rEnv.mpkKernel,
3,
sizeof(wpl),
(const void *)&wpl);
status = clSetKernelArg(rEnv.mpkKernel,
4,
sizeof(h),
(const void *)&h);
status = clSetKernelArg(rEnv.mpkKernel,
5,
sizeof(isAsymmetric),
(const void *)&isAsymmetric);
status = clSetKernelArg(rEnv.mpkKernel,
6,
sizeof(rwmask),
(const void *)&rwmask);
status = clSetKernelArg(rEnv.mpkKernel,
7,
sizeof(lwmask),
(const void *)&lwmask);
status = clSetKernelArg(rEnv.mpkKernel,
8,
sizeof(isEven),
(const void *)&isEven);
status = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue,
rEnv.mpkKernel,
2,
NULL,
globalThreads,
localThreads,
0,
NULL,
NULL);
if (yp > 0 || yn > 0)
{
pixtemp = pixsCLBuffer;
pixsCLBuffer = pixdCLBuffer;
pixdCLBuffer = pixtemp;
}
}
//Vertical Pass
if (yp > 0 || yn > 0)
{
rEnv.mpkKernel = clCreateKernel( rEnv.mpkProgram, "morphoErodeVer", &status );
status = clSetKernelArg(rEnv.mpkKernel,
0,
sizeof(cl_mem),
&pixsCLBuffer);
status = clSetKernelArg(rEnv.mpkKernel,
1,
sizeof(cl_mem),
&pixdCLBuffer);
status = clSetKernelArg(rEnv.mpkKernel,
2,
sizeof(yp),
(const void *)&yp);
status = clSetKernelArg(rEnv.mpkKernel,
3,
sizeof(wpl),
(const void *)&wpl);
status = clSetKernelArg(rEnv.mpkKernel,
4,
sizeof(h),
(const void *)&h);
status = clSetKernelArg(rEnv.mpkKernel,
5,
sizeof(isAsymmetric),
(const void *)&isAsymmetric);
status = clSetKernelArg(rEnv.mpkKernel,
6,
sizeof(yn),
(const void *)&yn);
status = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue,
rEnv.mpkKernel,
2,
NULL,
globalThreads,
localThreads,
0,
NULL,
NULL);
}
return status;
}
// OpenCL implementation of Morphology Dilate
//Note: Assumes the source and dest opencl buffer are initialized. No check done
PIX*
OpenclDevice::pixDilateBrickCL(PIX *pixd, PIX *pixs, l_int32 hsize, l_int32 vsize, bool reqDataCopy = false)
{
l_uint32 wpl, h;
wpl = pixGetWpl(pixs);
h = pixGetHeight(pixs);
clStatus = pixDilateCL(hsize, vsize, wpl, h);
if (reqDataCopy)
{
pixd = mapOutputCLBuffer(rEnv, pixdCLBuffer, pixd, pixs, wpl*h, CL_MAP_READ, false);
}
return pixd;
}
// OpenCL implementation of Morphology Erode
//Note: Assumes the source and dest opencl buffer are initialized. No check done
PIX*
OpenclDevice::pixErodeBrickCL(PIX *pixd, PIX *pixs, l_int32 hsize, l_int32 vsize, bool reqDataCopy = false)
{
l_uint32 wpl, h;
wpl = pixGetWpl(pixs);
h = pixGetHeight(pixs);
clStatus = pixErodeCL(hsize, vsize, wpl, h);
if (reqDataCopy)
{
pixd = mapOutputCLBuffer(rEnv, pixdCLBuffer, pixd, pixs, wpl*h, CL_MAP_READ);
}
return pixd;
}
//Morphology Open operation. Invokes the relevant OpenCL kernels
cl_int
pixOpenCL(l_int32 hsize, l_int32 vsize, l_int32 wpl, l_int32 h)
{
cl_int status;
cl_mem pixtemp;
//Erode followed by Dilate
status = pixErodeCL(hsize, vsize, wpl, h);
pixtemp = pixsCLBuffer;
pixsCLBuffer = pixdCLBuffer;
pixdCLBuffer = pixtemp;
status = pixDilateCL(hsize, vsize, wpl, h);
return status;
}
//Morphology Close operation. Invokes the relevant OpenCL kernels
cl_int
pixCloseCL(l_int32 hsize, l_int32 vsize, l_int32 wpl, l_int32 h)
{
cl_int status;
cl_mem pixtemp;
//Dilate followed by Erode
status = pixDilateCL(hsize, vsize, wpl, h);
pixtemp = pixsCLBuffer;
pixsCLBuffer = pixdCLBuffer;
pixdCLBuffer = pixtemp;
status = pixErodeCL(hsize, vsize, wpl, h);
return status;
}
// OpenCL implementation of Morphology Close
//Note: Assumes the source and dest opencl buffer are initialized. No check done
PIX*
OpenclDevice::pixCloseBrickCL(PIX *pixd,
PIX *pixs,
l_int32 hsize,
l_int32 vsize,
bool reqDataCopy = false)
{
l_uint32 wpl, h;
wpl = pixGetWpl(pixs);
h = pixGetHeight(pixs);
clStatus = pixCloseCL(hsize, vsize, wpl, h);
if (reqDataCopy)
{
pixd = mapOutputCLBuffer(rEnv, pixdCLBuffer, pixd, pixs, wpl*h, CL_MAP_READ);
}
return pixd;
}
// OpenCL implementation of Morphology Open
//Note: Assumes the source and dest opencl buffer are initialized. No check done
PIX*
OpenclDevice::pixOpenBrickCL(PIX *pixd,
PIX *pixs,
l_int32 hsize,
l_int32 vsize,
bool reqDataCopy = false)
{
l_uint32 wpl, h;
wpl = pixGetWpl(pixs);
h = pixGetHeight(pixs);
clStatus = pixOpenCL(hsize, vsize, wpl, h);
if (reqDataCopy)
{
pixd = mapOutputCLBuffer(rEnv, pixdCLBuffer, pixd, pixs, wpl*h, CL_MAP_READ);
}
return pixd;
}
//pix OR operation: outbuffer = buffer1 | buffer2
cl_int
pixORCL_work(l_uint32 wpl, l_uint32 h, cl_mem buffer1, cl_mem buffer2, cl_mem outbuffer)
{
cl_int status;
size_t globalThreads[2];
int gsize;
size_t localThreads[] = {GROUPSIZE_X, GROUPSIZE_Y};
gsize = (wpl + GROUPSIZE_X - 1)/ GROUPSIZE_X * GROUPSIZE_X;
globalThreads[0] = gsize;
gsize = (h + GROUPSIZE_Y - 1)/ GROUPSIZE_Y * GROUPSIZE_Y;
globalThreads[1] = gsize;
rEnv.mpkKernel = clCreateKernel( rEnv.mpkProgram, "pixOR", &status );
status = clSetKernelArg(rEnv.mpkKernel,
0,
sizeof(cl_mem),
&buffer1);
status = clSetKernelArg(rEnv.mpkKernel,
1,
sizeof(cl_mem),
&buffer2);
status = clSetKernelArg(rEnv.mpkKernel,
2,
sizeof(cl_mem),
&outbuffer);
status = clSetKernelArg(rEnv.mpkKernel,
3,
sizeof(wpl),
(const void *)&wpl);
status = clSetKernelArg(rEnv.mpkKernel,
4,
sizeof(h),
(const void *)&h);
status = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue,
rEnv.mpkKernel,
2,
NULL,
globalThreads,
localThreads,
0,
NULL,
NULL);
return status;
}
//pix AND operation: outbuffer = buffer1 & buffer2
cl_int
pixANDCL_work(l_uint32 wpl, l_uint32 h, cl_mem buffer1, cl_mem buffer2, cl_mem outbuffer)
{
cl_int status;
size_t globalThreads[2];
int gsize;
size_t localThreads[] = {GROUPSIZE_X, GROUPSIZE_Y};
gsize = (wpl + GROUPSIZE_X - 1)/ GROUPSIZE_X * GROUPSIZE_X;
globalThreads[0] = gsize;
gsize = (h + GROUPSIZE_Y - 1)/ GROUPSIZE_Y * GROUPSIZE_Y;
globalThreads[1] = gsize;
rEnv.mpkKernel = clCreateKernel( rEnv.mpkProgram, "pixAND", &status );
// Enqueue a kernel run call.
status = clSetKernelArg(rEnv.mpkKernel,
0,
sizeof(cl_mem),
&buffer1);
status = clSetKernelArg(rEnv.mpkKernel,
1,
sizeof(cl_mem),
&buffer2);
status = clSetKernelArg(rEnv.mpkKernel,
2,
sizeof(cl_mem),
&outbuffer);
status = clSetKernelArg(rEnv.mpkKernel,
3,
sizeof(wpl),
(const void *)&wpl);
status = clSetKernelArg(rEnv.mpkKernel,
4,
sizeof(h),
(const void *)&h);
status = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue,
rEnv.mpkKernel,
2,
NULL,
globalThreads,
localThreads,
0,
NULL,
NULL);
return status;
}
//output = buffer1 & ~(buffer2)
cl_int
pixSubtractCL_work(l_uint32 wpl, l_uint32 h, cl_mem buffer1, cl_mem buffer2, cl_mem outBuffer = NULL)
{
cl_int status;
size_t globalThreads[2];
int gsize;
size_t localThreads[] = {GROUPSIZE_X, GROUPSIZE_Y};
gsize = (wpl + GROUPSIZE_X - 1)/ GROUPSIZE_X * GROUPSIZE_X;
globalThreads[0] = gsize;
gsize = (h + GROUPSIZE_Y - 1)/ GROUPSIZE_Y * GROUPSIZE_Y;
globalThreads[1] = gsize;
if (outBuffer != NULL)
{
rEnv.mpkKernel = clCreateKernel( rEnv.mpkProgram, "pixSubtract", &status );
}
else
{
rEnv.mpkKernel = clCreateKernel( rEnv.mpkProgram, "pixSubtract_inplace", &status );
}
// Enqueue a kernel run call.
status = clSetKernelArg(rEnv.mpkKernel,
0,
sizeof(cl_mem),
&buffer1);
status = clSetKernelArg(rEnv.mpkKernel,
1,
sizeof(cl_mem),
&buffer2);
status = clSetKernelArg(rEnv.mpkKernel,
2,
sizeof(wpl),
(const void *)&wpl);
status = clSetKernelArg(rEnv.mpkKernel,
3,
sizeof(h),
(const void *)&h);
if (outBuffer != NULL)
{
status = clSetKernelArg(rEnv.mpkKernel,
4,
sizeof(cl_mem),
(const void *)&outBuffer);
}
status = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue,
rEnv.mpkKernel,
2,
NULL,
globalThreads,
localThreads,
0,
NULL,
NULL);
return status;
}
// OpenCL implementation of Subtract pix
//Note: Assumes the source and dest opencl buffer are initialized. No check done
PIX*
OpenclDevice::pixSubtractCL(PIX *pixd, PIX *pixs1, PIX *pixs2, bool reqDataCopy = false)
{
l_uint32 wpl, h;
PROCNAME("pixSubtractCL");
if (!pixs1)
return (PIX *)ERROR_PTR("pixs1 not defined", procName, pixd);
if (!pixs2)
return (PIX *)ERROR_PTR("pixs2 not defined", procName, pixd);
if (pixGetDepth(pixs1) != pixGetDepth(pixs2))
return (PIX *)ERROR_PTR("depths of pixs* unequal", procName, pixd);
#if EQUAL_SIZE_WARNING
if (!pixSizesEqual(pixs1, pixs2))
L_WARNING("pixs1 and pixs2 not equal sizes", procName);
#endif /* EQUAL_SIZE_WARNING */
wpl = pixGetWpl(pixs1);
h = pixGetHeight(pixs1);
clStatus = pixSubtractCL_work(wpl, h, pixdCLBuffer, pixsCLBuffer);
if (reqDataCopy)
{
//Read back output data from OCL buffer to cpu
pixd = mapOutputCLBuffer(rEnv, pixdCLBuffer, pixd, pixs1, wpl*h, CL_MAP_READ);
}
return pixd;
}
// OpenCL implementation of Hollow pix
//Note: Assumes the source and dest opencl buffer are initialized. No check done
PIX*
OpenclDevice::pixHollowCL(PIX *pixd,
PIX *pixs,
l_int32 close_hsize,
l_int32 close_vsize,
l_int32 open_hsize,
l_int32 open_vsize,
bool reqDataCopy = false)
{
l_uint32 wpl, h;
cl_mem pixtemp;
wpl = pixGetWpl(pixs);
h = pixGetHeight(pixs);
//First step : Close Morph operation: Dilate followed by Erode
clStatus = pixCloseCL(close_hsize, close_vsize, wpl, h);
//Store the output of close operation in an intermediate buffer
//this will be later used for pixsubtract
clStatus = clEnqueueCopyBuffer(rEnv.mpkCmdQueue, pixdCLBuffer, pixdCLIntermediate, 0, 0, sizeof(int) * wpl*h, 0, NULL, NULL);
//Second step: Open Operation - Erode followed by Dilate
pixtemp = pixsCLBuffer;
pixsCLBuffer = pixdCLBuffer;
pixdCLBuffer = pixtemp;
clStatus = pixOpenCL(open_hsize, open_vsize, wpl, h);
//Third step: Subtract : (Close - Open)
pixtemp = pixsCLBuffer;
pixsCLBuffer = pixdCLBuffer;
pixdCLBuffer = pixdCLIntermediate;
pixdCLIntermediate = pixtemp;
clStatus = pixSubtractCL_work(wpl, h, pixdCLBuffer, pixsCLBuffer);
if (reqDataCopy)
{
//Read back output data from OCL buffer to cpu
pixd = mapOutputCLBuffer(rEnv, pixdCLBuffer, pixd, pixs, wpl*h, CL_MAP_READ);
}
return pixd;
}
// OpenCL implementation of Get Lines from pix function
//Note: Assumes the source and dest opencl buffer are initialized. No check done
void
OpenclDevice::pixGetLinesCL(PIX *pixd,
PIX *pixs,
PIX** pix_vline,
PIX** pix_hline,
PIX** pixClosed,
bool getpixClosed,
l_int32 close_hsize, l_int32 close_vsize,
l_int32 open_hsize, l_int32 open_vsize,
l_int32 line_hsize, l_int32 line_vsize)
{
l_uint32 wpl, h;
cl_mem pixtemp;
wpl = pixGetWpl(pixs);
h = pixGetHeight(pixs);
//First step : Close Morph operation: Dilate followed by Erode
clStatus = pixCloseCL(close_hsize, close_vsize, wpl, h);
//Copy the Close output to CPU buffer
if (getpixClosed)
{
*pixClosed = mapOutputCLBuffer(rEnv, pixdCLBuffer, *pixClosed, pixs, wpl*h, CL_MAP_READ, true, false);
}
//Store the output of close operation in an intermediate buffer
//this will be later used for pixsubtract
clStatus = clEnqueueCopyBuffer(rEnv.mpkCmdQueue, pixdCLBuffer, pixdCLIntermediate, 0, 0, sizeof(int) * wpl*h, 0, NULL, NULL);
//Second step: Open Operation - Erode followed by Dilate
pixtemp = pixsCLBuffer;
pixsCLBuffer = pixdCLBuffer;
pixdCLBuffer = pixtemp;
clStatus = pixOpenCL(open_hsize, open_vsize, wpl, h);
//Third step: Subtract : (Close - Open)
pixtemp = pixsCLBuffer;
pixsCLBuffer = pixdCLBuffer;
pixdCLBuffer = pixdCLIntermediate;
pixdCLIntermediate = pixtemp;
clStatus = pixSubtractCL_work(wpl, h, pixdCLBuffer, pixsCLBuffer);
//Store the output of Hollow operation in an intermediate buffer
//this will be later used
clStatus = clEnqueueCopyBuffer(rEnv.mpkCmdQueue, pixdCLBuffer, pixdCLIntermediate, 0, 0, sizeof(int) * wpl*h, 0, NULL, NULL);
pixtemp = pixsCLBuffer;
pixsCLBuffer = pixdCLBuffer;
pixdCLBuffer = pixtemp;
//Fourth step: Get vertical line
//pixOpenBrick(NULL, pix_hollow, 1, min_line_length);
clStatus = pixOpenCL(1, line_vsize, wpl, h);
//Copy the vertical line output to CPU buffer
*pix_vline = mapOutputCLBuffer(rEnv, pixdCLBuffer, *pix_vline, pixs, wpl*h, CL_MAP_READ, true, false);
pixtemp = pixsCLBuffer;
pixsCLBuffer = pixdCLIntermediate;
pixdCLIntermediate = pixtemp;
//Fifth step: Get horizontal line
//pixOpenBrick(NULL, pix_hollow, min_line_length, 1);
clStatus = pixOpenCL(line_hsize, 1, wpl, h);
//Copy the horizontal line output to CPU buffer
*pix_hline = mapOutputCLBuffer(rEnv, pixdCLBuffer, *pix_hline, pixs, wpl*h, CL_MAP_READ, true, true);
return;
}
/*************************************************************************
* HistogramRect
* Otsu Thresholding Operations
* histogramAllChannels is laid out as all channel 0, then all channel 1...
* only supports 1 or 4 channels (bytes_per_pixel)
************************************************************************/
int OpenclDevice::HistogramRectOCL(
const unsigned char* imageData,
int bytes_per_pixel,
int bytes_per_line,
int left, // always 0
int top, // always 0
int width,
int height,
int kHistogramSize,
int* histogramAllChannels)
{
PERF_COUNT_START("HistogramRectOCL")
cl_int clStatus;
int retVal= 0;
KernelEnv histKern;
SetKernelEnv( &histKern );
KernelEnv histRedKern;
SetKernelEnv( &histRedKern );
/* map imagedata to device as read only */
// USE_HOST_PTR uses onion+ bus which is slowest option; also happens to be coherent which we don't need.
// faster option would be to allocate initial image buffer
// using a garlic bus memory type
cl_mem imageBuffer = clCreateBuffer( histKern.mpkContext, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR, width*height*bytes_per_pixel*sizeof(char), (void *)imageData, &clStatus );
CHECK_OPENCL( clStatus, "clCreateBuffer imageBuffer");
/* setup work group size parameters */
int block_size = 256;
cl_uint numCUs;
clStatus = clGetDeviceInfo( gpuEnv.mpDevID, CL_DEVICE_MAX_COMPUTE_UNITS, sizeof(numCUs), &numCUs, NULL);
CHECK_OPENCL( clStatus, "clCreateBuffer imageBuffer");
int requestedOccupancy = 10;
int numWorkGroups = numCUs * requestedOccupancy;
int numThreads = block_size*numWorkGroups;
size_t local_work_size[] = {static_cast<size_t>(block_size)};
size_t global_work_size[] = {static_cast<size_t>(numThreads)};
size_t red_global_work_size[] = {static_cast<size_t>(block_size*kHistogramSize*bytes_per_pixel)};
/* map histogramAllChannels as write only */
int numBins = kHistogramSize*bytes_per_pixel*numWorkGroups;
cl_mem histogramBuffer = clCreateBuffer( histKern.mpkContext, CL_MEM_READ_WRITE | CL_MEM_USE_HOST_PTR, kHistogramSize*bytes_per_pixel*sizeof(int), (void *)histogramAllChannels, &clStatus );
CHECK_OPENCL( clStatus, "clCreateBuffer histogramBuffer");
/* intermediate histogram buffer */
int histRed = 256;
int tmpHistogramBins = kHistogramSize*bytes_per_pixel*histRed;
cl_mem tmpHistogramBuffer = clCreateBuffer( histKern.mpkContext, CL_MEM_READ_WRITE, tmpHistogramBins*sizeof(cl_uint), NULL, &clStatus );
CHECK_OPENCL( clStatus, "clCreateBuffer tmpHistogramBuffer");
/* atomic sync buffer */
int *zeroBuffer = new int[1];
zeroBuffer[0] = 0;
cl_mem atomicSyncBuffer = clCreateBuffer( histKern.mpkContext, CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR, sizeof(cl_int), (void *)zeroBuffer, &clStatus );
CHECK_OPENCL( clStatus, "clCreateBuffer atomicSyncBuffer");
delete[] zeroBuffer;
//Create kernel objects based on bytes_per_pixel
if (bytes_per_pixel == 1)
{
histKern.mpkKernel = clCreateKernel( histKern.mpkProgram, "kernel_HistogramRectOneChannel", &clStatus );
CHECK_OPENCL( clStatus, "clCreateKernel kernel_HistogramRectOneChannel");
histRedKern.mpkKernel = clCreateKernel( histRedKern.mpkProgram, "kernel_HistogramRectOneChannelReduction", &clStatus );
CHECK_OPENCL( clStatus, "clCreateKernel kernel_HistogramRectOneChannelReduction");
} else {
histKern.mpkKernel = clCreateKernel( histKern.mpkProgram, "kernel_HistogramRectAllChannels", &clStatus );
CHECK_OPENCL( clStatus, "clCreateKernel kernel_HistogramRectAllChannels");
histRedKern.mpkKernel = clCreateKernel( histRedKern.mpkProgram, "kernel_HistogramRectAllChannelsReduction", &clStatus );
CHECK_OPENCL( clStatus, "clCreateKernel kernel_HistogramRectAllChannelsReduction");
}
void *ptr;
//Initialize tmpHistogramBuffer buffer
ptr = clEnqueueMapBuffer(histKern.mpkCmdQueue, tmpHistogramBuffer, CL_TRUE, CL_MAP_WRITE, 0, tmpHistogramBins*sizeof(cl_uint), 0, NULL, NULL, &clStatus);
CHECK_OPENCL( clStatus, "clEnqueueMapBuffer tmpHistogramBuffer");
memset(ptr, 0, tmpHistogramBins*sizeof(cl_uint));
clEnqueueUnmapMemObject(histKern.mpkCmdQueue, tmpHistogramBuffer, ptr, 0, NULL, NULL);
/* set kernel 1 arguments */
clStatus = clSetKernelArg( histKern.mpkKernel, 0, sizeof(cl_mem), (void *)&imageBuffer );
CHECK_OPENCL( clStatus, "clSetKernelArg imageBuffer");
cl_uint numPixels = width*height;
clStatus = clSetKernelArg( histKern.mpkKernel, 1, sizeof(cl_uint), (void *)&numPixels );
CHECK_OPENCL( clStatus, "clSetKernelArg numPixels" );
clStatus = clSetKernelArg( histKern.mpkKernel, 2, sizeof(cl_mem), (void *)&tmpHistogramBuffer );
CHECK_OPENCL( clStatus, "clSetKernelArg tmpHistogramBuffer");
/* set kernel 2 arguments */
int n = numThreads/bytes_per_pixel;
clStatus = clSetKernelArg( histRedKern.mpkKernel, 0, sizeof(cl_int), (void *)&n );
CHECK_OPENCL( clStatus, "clSetKernelArg imageBuffer");
clStatus = clSetKernelArg( histRedKern.mpkKernel, 1, sizeof(cl_mem), (void *)&tmpHistogramBuffer );
CHECK_OPENCL( clStatus, "clSetKernelArg tmpHistogramBuffer");
clStatus = clSetKernelArg( histRedKern.mpkKernel, 2, sizeof(cl_mem), (void *)&histogramBuffer );
CHECK_OPENCL( clStatus, "clSetKernelArg histogramBuffer");
/* launch histogram */
PERF_COUNT_SUB("before")
clStatus = clEnqueueNDRangeKernel(
histKern.mpkCmdQueue,
histKern.mpkKernel,
1, NULL, global_work_size, local_work_size,
0, NULL, NULL );
CHECK_OPENCL( clStatus, "clEnqueueNDRangeKernel kernel_HistogramRectAllChannels" );
clFinish( histKern.mpkCmdQueue );
if(clStatus !=0)
{
retVal = -1;
}
/* launch histogram */
clStatus = clEnqueueNDRangeKernel(
histRedKern.mpkCmdQueue,
histRedKern.mpkKernel,
1, NULL, red_global_work_size, local_work_size,
0, NULL, NULL );
CHECK_OPENCL( clStatus, "clEnqueueNDRangeKernel kernel_HistogramRectAllChannelsReduction" );
clFinish( histRedKern.mpkCmdQueue );
if(clStatus !=0)
{
retVal = -1;
}
PERF_COUNT_SUB("redKernel")
/* map results back from gpu */
ptr = clEnqueueMapBuffer(histRedKern.mpkCmdQueue, histogramBuffer, CL_TRUE, CL_MAP_READ, 0, kHistogramSize*bytes_per_pixel*sizeof(int), 0, NULL, NULL, &clStatus);
CHECK_OPENCL( clStatus, "clEnqueueMapBuffer histogramBuffer");
if(clStatus !=0)
{
retVal = -1;
}
clEnqueueUnmapMemObject(histRedKern.mpkCmdQueue, histogramBuffer, ptr, 0, NULL, NULL);
clReleaseMemObject(histogramBuffer);
clReleaseMemObject(imageBuffer);
PERF_COUNT_SUB("after")
PERF_COUNT_END
return retVal;
}
/*************************************************************************
* Threshold the rectangle, taking everything except the image buffer pointer
* from the class, using thresholds/hi_values to the output IMAGE.
* only supports 1 or 4 channels
************************************************************************/
int OpenclDevice::ThresholdRectToPixOCL(
const unsigned char* imageData,
int bytes_per_pixel,
int bytes_per_line,
const int* thresholds,
const int* hi_values,
Pix** pix,
int height,
int width,
int top,
int left) {
PERF_COUNT_START("ThresholdRectToPixOCL")
int retVal =0;
/* create pix result buffer */
*pix = pixCreate(width, height, 1);
uinT32* pixData = pixGetData(*pix);
int wpl = pixGetWpl(*pix);
int pixSize = wpl*height*sizeof(uinT32); // number of pixels
cl_int clStatus;
KernelEnv rEnv;
SetKernelEnv( &rEnv );
/* setup work group size parameters */
int block_size = 256;
cl_uint numCUs = 6;
clStatus = clGetDeviceInfo( gpuEnv.mpDevID, CL_DEVICE_MAX_COMPUTE_UNITS, sizeof(numCUs), &numCUs, NULL);
CHECK_OPENCL( clStatus, "clCreateBuffer imageBuffer");
int requestedOccupancy = 10;
int numWorkGroups = numCUs * requestedOccupancy;
int numThreads = block_size*numWorkGroups;
size_t local_work_size[] = {(size_t) block_size};
size_t global_work_size[] = {(size_t) numThreads};
/* map imagedata to device as read only */
// USE_HOST_PTR uses onion+ bus which is slowest option; also happens to be coherent which we don't need.
// faster option would be to allocate initial image buffer
// using a garlic bus memory type
cl_mem imageBuffer = clCreateBuffer( rEnv.mpkContext, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR, width*height*bytes_per_pixel*sizeof(char), (void *)imageData, &clStatus );
CHECK_OPENCL( clStatus, "clCreateBuffer imageBuffer");
/* map pix as write only */
pixThBuffer = clCreateBuffer( rEnv.mpkContext, CL_MEM_READ_WRITE | CL_MEM_USE_HOST_PTR, pixSize, (void *)pixData, &clStatus );
CHECK_OPENCL( clStatus, "clCreateBuffer pix");
/* map thresholds and hi_values */
cl_mem thresholdsBuffer = clCreateBuffer( rEnv.mpkContext, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR, bytes_per_pixel*sizeof(int), (void *)thresholds, &clStatus );
CHECK_OPENCL( clStatus, "clCreateBuffer thresholdBuffer");
cl_mem hiValuesBuffer = clCreateBuffer( rEnv.mpkContext, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR, bytes_per_pixel*sizeof(int), (void *)hi_values, &clStatus );
CHECK_OPENCL( clStatus, "clCreateBuffer hiValuesBuffer");
/* compile kernel */
if (bytes_per_pixel == 4) {
rEnv.mpkKernel = clCreateKernel( rEnv.mpkProgram, "kernel_ThresholdRectToPix", &clStatus );
CHECK_OPENCL( clStatus, "clCreateKernel kernel_ThresholdRectToPix");
} else {
rEnv.mpkKernel = clCreateKernel( rEnv.mpkProgram, "kernel_ThresholdRectToPix_OneChan", &clStatus );
CHECK_OPENCL( clStatus, "clCreateKernel kernel_ThresholdRectToPix_OneChan");
}
/* set kernel arguments */
clStatus = clSetKernelArg( rEnv.mpkKernel, 0, sizeof(cl_mem), (void *)&imageBuffer );
CHECK_OPENCL( clStatus, "clSetKernelArg imageBuffer");
cl_uint numPixels = width*height;
clStatus = clSetKernelArg( rEnv.mpkKernel, 1, sizeof(int), (void *)&height );
CHECK_OPENCL( clStatus, "clSetKernelArg height" );
clStatus = clSetKernelArg( rEnv.mpkKernel, 2, sizeof(int), (void *)&width );
CHECK_OPENCL( clStatus, "clSetKernelArg width" );
clStatus = clSetKernelArg( rEnv.mpkKernel, 3, sizeof(int), (void *)&wpl );
CHECK_OPENCL( clStatus, "clSetKernelArg wpl" );
clStatus = clSetKernelArg( rEnv.mpkKernel, 4, sizeof(cl_mem), (void *)&thresholdsBuffer );
CHECK_OPENCL( clStatus, "clSetKernelArg thresholdsBuffer" );
clStatus = clSetKernelArg( rEnv.mpkKernel, 5, sizeof(cl_mem), (void *)&hiValuesBuffer );
CHECK_OPENCL( clStatus, "clSetKernelArg hiValuesBuffer" );
clStatus = clSetKernelArg( rEnv.mpkKernel, 6, sizeof(cl_mem), (void *)&pixThBuffer );
CHECK_OPENCL( clStatus, "clSetKernelArg pixThBuffer");
/* launch kernel & wait */
PERF_COUNT_SUB("before")
clStatus = clEnqueueNDRangeKernel(
rEnv.mpkCmdQueue,
rEnv.mpkKernel,
1, NULL, global_work_size, local_work_size,
0, NULL, NULL );
CHECK_OPENCL( clStatus, "clEnqueueNDRangeKernel kernel_ThresholdRectToPix" );
clFinish( rEnv.mpkCmdQueue );
PERF_COUNT_SUB("kernel")
if(clStatus !=0)
{
printf("Setting return value to -1\n");
retVal = -1;
}
/* map results back from gpu */
void *ptr = clEnqueueMapBuffer(rEnv.mpkCmdQueue, pixThBuffer, CL_TRUE, CL_MAP_READ, 0, pixSize, 0, NULL, NULL, &clStatus);
CHECK_OPENCL( clStatus, "clEnqueueMapBuffer histogramBuffer");
clEnqueueUnmapMemObject(rEnv.mpkCmdQueue, pixThBuffer, ptr, 0, NULL, NULL);
clReleaseMemObject(imageBuffer);
clReleaseMemObject(thresholdsBuffer);
clReleaseMemObject(hiValuesBuffer);
PERF_COUNT_SUB("after")
PERF_COUNT_END
return retVal;
}
/******************************************************************************
* Data Types for Device Selection
*****************************************************************************/
typedef struct _TessScoreEvaluationInputData {
int height;
int width;
int numChannels;
unsigned char *imageData;
Pix *pix;
} TessScoreEvaluationInputData;
void populateTessScoreEvaluationInputData( TessScoreEvaluationInputData *input ) {
srand(1);
// 8.5x11 inches @ 300dpi rounded to clean multiples
int height = 3328; // %256
int width = 2560; // %512
int numChannels = 4;
input->height = height;
input->width = width;
input->numChannels = numChannels;
unsigned char (*imageData4)[4] = (unsigned char (*)[4]) malloc(height*width*numChannels*sizeof(unsigned char)); // new unsigned char[4][height*width];
input->imageData = (unsigned char *) &imageData4[0];
// zero out image
unsigned char pixelWhite[4] = { 0, 0, 0, 255};
unsigned char pixelBlack[4] = {255, 255, 255, 255};
for (int p = 0; p < height*width; p++) {
//unsigned char tmp[4] = imageData4[0];
imageData4[p][0] = pixelWhite[0];
imageData4[p][1] = pixelWhite[1];
imageData4[p][2] = pixelWhite[2];
imageData4[p][3] = pixelWhite[3];
}
// random lines to be eliminated
int maxLineWidth = 64; // pixels wide
int numLines = 10;
// vertical lines
for (int i = 0; i < numLines; i++) {
int lineWidth = rand()%maxLineWidth;
int vertLinePos = lineWidth + rand()%(width-2*lineWidth);
//printf("[PI] VerticalLine @ %i (w=%i)\n", vertLinePos, lineWidth);
for (int row = vertLinePos-lineWidth/2; row < vertLinePos+lineWidth/2; row++) {
for (int col = 0; col < height; col++) {
//imageData4[row*width+col] = pixelBlack;
imageData4[row*width+col][0] = pixelBlack[0];
imageData4[row*width+col][1] = pixelBlack[1];
imageData4[row*width+col][2] = pixelBlack[2];
imageData4[row*width+col][3] = pixelBlack[3];
}
}
}
// horizontal lines
for (int i = 0; i < numLines; i++) {
int lineWidth = rand()%maxLineWidth;
int horLinePos = lineWidth + rand()%(height-2*lineWidth);
//printf("[PI] HorizontalLine @ %i (w=%i)\n", horLinePos, lineWidth);
for (int row = 0; row < width; row++) {
for (int col = horLinePos-lineWidth/2; col < horLinePos+lineWidth/2; col++) { // for (int row = vertLinePos-lineWidth/2; row < vertLinePos+lineWidth/2; row++) {
//printf("[PI] HoizLine pix @ (%3i, %3i)\n", row, col);
//imageData4[row*width+col] = pixelBlack;
imageData4[row*width+col][0] = pixelBlack[0];
imageData4[row*width+col][1] = pixelBlack[1];
imageData4[row*width+col][2] = pixelBlack[2];
imageData4[row*width+col][3] = pixelBlack[3];
}
}
}
// spots (noise, squares)
float fractionBlack = 0.1; // how much of the image should be blackened
int numSpots = (height*width)*fractionBlack/(maxLineWidth*maxLineWidth/2/2);
for (int i = 0; i < numSpots; i++) {
int lineWidth = rand()%maxLineWidth;
int col = lineWidth + rand()%(width-2*lineWidth);
int row = lineWidth + rand()%(height-2*lineWidth);
//printf("[PI] Spot[%i/%i] @ (%3i, %3i)\n", i, numSpots, row, col );
for (int r = row-lineWidth/2; r < row+lineWidth/2; r++) {
for (int c = col-lineWidth/2; c < col+lineWidth/2; c++) {
//printf("[PI] \tSpot[%i/%i] @ (%3i, %3i)\n", i, numSpots, r, c );
//imageData4[row*width+col] = pixelBlack;
imageData4[r*width+c][0] = pixelBlack[0];
imageData4[r*width+c][1] = pixelBlack[1];
imageData4[r*width+c][2] = pixelBlack[2];
imageData4[r*width+c][3] = pixelBlack[3];
}
}
}
input->pix = pixCreate(input->width, input->height, 1);
}
typedef struct _TessDeviceScore {
float time; // small time means faster device
bool clError; // were there any opencl errors
bool valid; // was the correct response generated
} TessDeviceScore;
/******************************************************************************
* Micro Benchmarks for Device Selection
*****************************************************************************/
double composeRGBPixelMicroBench( GPUEnv *env, TessScoreEvaluationInputData input, ds_device_type type ) {
double time = 0;
#if ON_WINDOWS
LARGE_INTEGER freq, time_funct_start, time_funct_end;
QueryPerformanceFrequency(&freq);
#elif ON_APPLE
mach_timebase_info_data_t info = { 0, 0 };
mach_timebase_info(&info);
long long start,stop;
#else
timespec time_funct_start, time_funct_end;
#endif
// input data
l_uint32 *tiffdata = (l_uint32 *)input.imageData;// same size and random data; data doesn't change workload
// function call
if (type == DS_DEVICE_OPENCL_DEVICE) {
#if ON_WINDOWS
QueryPerformanceCounter(&time_funct_start);
#elif ON_APPLE
start = mach_absolute_time();
#else
clock_gettime( CLOCK_MONOTONIC, &time_funct_start );
#endif
OpenclDevice::gpuEnv = *env;
int wpl = pixGetWpl(input.pix);
OpenclDevice::pixReadFromTiffKernel(tiffdata, input.width, input.height, wpl, NULL);
#if ON_WINDOWS
QueryPerformanceCounter(&time_funct_end);
time = (time_funct_end.QuadPart-time_funct_start.QuadPart)/(double)(freq.QuadPart);
#elif ON_APPLE
stop = mach_absolute_time();
time = ((stop - start) * (double) info.numer / info.denom) / 1.0E9;
#else
clock_gettime( CLOCK_MONOTONIC, &time_funct_end );
time = (time_funct_end.tv_sec - time_funct_start.tv_sec)*1.0 + (time_funct_end.tv_nsec - time_funct_start.tv_nsec)/1000000000.0;
#endif
} else {
#if ON_WINDOWS
QueryPerformanceCounter(&time_funct_start);
#elif ON_APPLE
start = mach_absolute_time();
#else
clock_gettime( CLOCK_MONOTONIC, &time_funct_start );
#endif
Pix *pix = pixCreate(input.width, input.height, 32);
l_uint32 *pixData = pixGetData(pix);
int wpl = pixGetWpl(pix);
//l_uint32* output_gpu=pixReadFromTiffKernel(tiffdata,w,h,wpl,line);
//pixSetData(pix, output_gpu);
int i, j;
int idx = 0;
for (i = 0; i < input.height ; i++) {
for (j = 0; j < input.width; j++) {
l_uint32 tiffword = tiffdata[i * input.width + j];
l_int32 rval = ((tiffword) & 0xff);
l_int32 gval = (((tiffword) >> 8) & 0xff);
l_int32 bval = (((tiffword) >> 16) & 0xff);
l_uint32 value = (rval << 24) | (gval << 16) | (bval << 8);
pixData[idx] = value;
idx++;
}
}
#if ON_WINDOWS
QueryPerformanceCounter(&time_funct_end);
time = (time_funct_end.QuadPart-time_funct_start.QuadPart)/(double)(freq.QuadPart);
#elif ON_APPLE
stop = mach_absolute_time();
time = ((stop - start) * (double) info.numer / info.denom) / 1.0E9;
#else
clock_gettime( CLOCK_MONOTONIC, &time_funct_end );
time = (time_funct_end.tv_sec - time_funct_start.tv_sec)*1.0 + (time_funct_end.tv_nsec - time_funct_start.tv_nsec)/1000000000.0;
#endif
pixDestroy(&pix);
}
// cleanup
return time;
}
double histogramRectMicroBench( GPUEnv *env, TessScoreEvaluationInputData input, ds_device_type type ) {
double time;
#if ON_WINDOWS
LARGE_INTEGER freq, time_funct_start, time_funct_end;
QueryPerformanceFrequency(&freq);
#elif ON_APPLE
mach_timebase_info_data_t info = { 0, 0 };
mach_timebase_info(&info);
long long start,stop;
#else
timespec time_funct_start, time_funct_end;
#endif
unsigned char pixelHi = (unsigned char)255;
int left = 0;
int top = 0;
int kHistogramSize = 256;
int bytes_per_line = input.width*input.numChannels;
int *histogramAllChannels = new int[kHistogramSize*input.numChannels];
int retVal= 0;
// function call
if (type == DS_DEVICE_OPENCL_DEVICE) {
#if ON_WINDOWS
QueryPerformanceCounter(&time_funct_start);
#elif ON_APPLE
start = mach_absolute_time();
#else
clock_gettime( CLOCK_MONOTONIC, &time_funct_start );
#endif
OpenclDevice::gpuEnv = *env;
int wpl = pixGetWpl(input.pix);
retVal= OpenclDevice::HistogramRectOCL(input.imageData, input.numChannels, bytes_per_line, top, left, input.width, input.height, kHistogramSize, histogramAllChannels);
#if ON_WINDOWS
QueryPerformanceCounter(&time_funct_end);
time = (time_funct_end.QuadPart-time_funct_start.QuadPart)/(double)(freq.QuadPart);
#elif ON_APPLE
stop = mach_absolute_time();
if(retVal ==0)
{
time = ((stop - start) * (double) info.numer / info.denom) / 1.0E9;
}
else
{
time= FLT_MAX;
}
#else
clock_gettime( CLOCK_MONOTONIC, &time_funct_end );
time = (time_funct_end.tv_sec - time_funct_start.tv_sec)*1.0 + (time_funct_end.tv_nsec - time_funct_start.tv_nsec)/1000000000.0;
#endif
} else {
int *histogram = new int[kHistogramSize];
#if ON_WINDOWS
QueryPerformanceCounter(&time_funct_start);
#elif ON_APPLE
start = mach_absolute_time();
#else
clock_gettime( CLOCK_MONOTONIC, &time_funct_start );
#endif
for (int ch = 0; ch < input.numChannels; ++ch) {
tesseract::HistogramRect(input.pix, input.numChannels,
left, top, input.width, input.height, histogram);
}
#if ON_WINDOWS
QueryPerformanceCounter(&time_funct_end);
time = (time_funct_end.QuadPart-time_funct_start.QuadPart)/(double)(freq.QuadPart);
#elif ON_APPLE
stop = mach_absolute_time();
time = ((stop - start) * (double) info.numer / info.denom) / 1.0E9;
#else
clock_gettime( CLOCK_MONOTONIC, &time_funct_end );
time = (time_funct_end.tv_sec - time_funct_start.tv_sec)*1.0 + (time_funct_end.tv_nsec - time_funct_start.tv_nsec)/1000000000.0;
#endif
delete[] histogram;
}
// cleanup
delete[] histogramAllChannels;
return time;
}
//Reproducing the ThresholdRectToPix native version
void ThresholdRectToPix_Native(const unsigned char* imagedata,
int bytes_per_pixel,
int bytes_per_line,
const int* thresholds,
const int* hi_values,
Pix** pix) {
int top = 0;
int left = 0;
int width = pixGetWidth(*pix);
int height = pixGetHeight(*pix);
*pix = pixCreate(width, height, 1);
uinT32* pixdata = pixGetData(*pix);
int wpl = pixGetWpl(*pix);
const unsigned char* srcdata = imagedata + top * bytes_per_line +
left * bytes_per_pixel;
for (int y = 0; y < height; ++y) {
const uinT8* linedata = srcdata;
uinT32* pixline = pixdata + y * wpl;
for (int x = 0; x < width; ++x, linedata += bytes_per_pixel) {
bool white_result = true;
for (int ch = 0; ch < bytes_per_pixel; ++ch) {
if (hi_values[ch] >= 0 &&
(linedata[ch] > thresholds[ch]) == (hi_values[ch] == 0)) {
white_result = false;
break;
}
}
if (white_result)
CLEAR_DATA_BIT(pixline, x);
else
SET_DATA_BIT(pixline, x);
}
srcdata += bytes_per_line;
}
}
double thresholdRectToPixMicroBench( GPUEnv *env, TessScoreEvaluationInputData input, ds_device_type type ) {
double time;
int retVal =0;
#if ON_WINDOWS
LARGE_INTEGER freq, time_funct_start, time_funct_end;
QueryPerformanceFrequency(&freq);
#elif ON_APPLE
mach_timebase_info_data_t info = { 0, 0 };
mach_timebase_info(&info);
long long start,stop;
#else
timespec time_funct_start, time_funct_end;
#endif
// input data
unsigned char pixelHi = (unsigned char)255;
int* thresholds = new int[4];
thresholds[0] = pixelHi/2;
thresholds[1] = pixelHi/2;
thresholds[2] = pixelHi/2;
thresholds[3] = pixelHi/2;
int *hi_values = new int[4];
thresholds[0] = pixelHi;
thresholds[1] = pixelHi;
thresholds[2] = pixelHi;
thresholds[3] = pixelHi;
//Pix* pix = pixCreate(width, height, 1);
int top = 0;
int left = 0;
int bytes_per_line = input.width*input.numChannels;
// function call
if (type == DS_DEVICE_OPENCL_DEVICE) {
#if ON_WINDOWS
QueryPerformanceCounter(&time_funct_start);
#elif ON_APPLE
start = mach_absolute_time();
#else
clock_gettime( CLOCK_MONOTONIC, &time_funct_start );
#endif
OpenclDevice::gpuEnv = *env;
int wpl = pixGetWpl(input.pix);
retVal= OpenclDevice::ThresholdRectToPixOCL(input.imageData, input.numChannels, bytes_per_line, thresholds, hi_values, &input.pix, input.height, input.width, top, left);
#if ON_WINDOWS
QueryPerformanceCounter(&time_funct_end);
time = (time_funct_end.QuadPart-time_funct_start.QuadPart)/(double)(freq.QuadPart);
#elif ON_APPLE
stop = mach_absolute_time();
if(retVal ==0)
{
time = ((stop - start) * (double) info.numer / info.denom) / 1.0E9;;
}
else
{
time= FLT_MAX;
}
#else
clock_gettime( CLOCK_MONOTONIC, &time_funct_end );
time = (time_funct_end.tv_sec - time_funct_start.tv_sec)*1.0 + (time_funct_end.tv_nsec - time_funct_start.tv_nsec)/1000000000.0;
#endif
} else {
tesseract::ImageThresholder thresholder;
thresholder.SetImage( input.pix );
#if ON_WINDOWS
QueryPerformanceCounter(&time_funct_start);
#elif ON_APPLE
start = mach_absolute_time();
#else
clock_gettime( CLOCK_MONOTONIC, &time_funct_start );
#endif
ThresholdRectToPix_Native( input.imageData, input.numChannels, bytes_per_line,
thresholds, hi_values, &input.pix );
#if ON_WINDOWS
QueryPerformanceCounter(&time_funct_end);
time = (time_funct_end.QuadPart-time_funct_start.QuadPart)/(double)(freq.QuadPart);
#elif ON_APPLE
stop = mach_absolute_time();
time = ((stop - start) * (double) info.numer / info.denom) / 1.0E9;
#else
clock_gettime( CLOCK_MONOTONIC, &time_funct_end );
time = (time_funct_end.tv_sec - time_funct_start.tv_sec)*1.0 + (time_funct_end.tv_nsec - time_funct_start.tv_nsec)/1000000000.0;
#endif
}
// cleanup
delete[] thresholds;
delete[] hi_values;
return time;
}
double getLineMasksMorphMicroBench( GPUEnv *env, TessScoreEvaluationInputData input, ds_device_type type ) {
double time = 0;
#if ON_WINDOWS
LARGE_INTEGER freq, time_funct_start, time_funct_end;
QueryPerformanceFrequency(&freq);
#elif ON_APPLE
mach_timebase_info_data_t info = { 0, 0 };
mach_timebase_info(&info);
long long start,stop;
#else
timespec time_funct_start, time_funct_end;
#endif
// input data
int resolution = 300;
int wpl = pixGetWpl(input.pix);
int kThinLineFraction = 20; // tess constant
int kMinLineLengthFraction = 4; // tess constant
int max_line_width = resolution / kThinLineFraction;
int min_line_length = resolution / kMinLineLengthFraction;
int closing_brick = max_line_width / 3;
// function call
if (type == DS_DEVICE_OPENCL_DEVICE) {
#if ON_WINDOWS
QueryPerformanceCounter(&time_funct_start);
#elif ON_APPLE
start = mach_absolute_time();
#else
clock_gettime( CLOCK_MONOTONIC, &time_funct_start );
#endif
Pix *src_pix = input.pix;
OpenclDevice::gpuEnv = *env;
OpenclDevice::initMorphCLAllocations(wpl, input.height, input.pix);
Pix *pix_vline = NULL, *pix_hline = NULL, *pix_closed = NULL;
OpenclDevice::pixGetLinesCL(NULL, input.pix, &pix_vline, &pix_hline, &pix_closed, true, closing_brick, closing_brick, max_line_width, max_line_width, min_line_length, min_line_length);
OpenclDevice::releaseMorphCLBuffers();
#if ON_WINDOWS
QueryPerformanceCounter(&time_funct_end);
time = (time_funct_end.QuadPart-time_funct_start.QuadPart)/(double)(freq.QuadPart);
#elif ON_APPLE
stop = mach_absolute_time();
time = ((stop - start) * (double) info.numer / info.denom) / 1.0E9;
#else
clock_gettime( CLOCK_MONOTONIC, &time_funct_end );
time = (time_funct_end.tv_sec - time_funct_start.tv_sec)*1.0 + (time_funct_end.tv_nsec - time_funct_start.tv_nsec)/1000000000.0;
#endif
} else {
#if ON_WINDOWS
QueryPerformanceCounter(&time_funct_start);
#elif ON_APPLE
start = mach_absolute_time();
#else
clock_gettime( CLOCK_MONOTONIC, &time_funct_start );
#endif
// native serial code
Pix *src_pix = input.pix;
Pix *pix_closed = pixCloseBrick(NULL, src_pix, closing_brick, closing_brick);
Pix *pix_solid = pixOpenBrick(NULL, pix_closed, max_line_width, max_line_width);
Pix *pix_hollow = pixSubtract(NULL, pix_closed, pix_solid);
pixDestroy(&pix_solid);
Pix *pix_vline = pixOpenBrick(NULL, pix_hollow, 1, min_line_length);
Pix *pix_hline = pixOpenBrick(NULL, pix_hollow, min_line_length, 1);
pixDestroy(&pix_hollow);
#if ON_WINDOWS
QueryPerformanceCounter(&time_funct_end);
time = (time_funct_end.QuadPart-time_funct_start.QuadPart)/(double)(freq.QuadPart);
#elif ON_APPLE
stop = mach_absolute_time();
time = ((stop - start) * (double) info.numer / info.denom) / 1.0E9;
#else
clock_gettime( CLOCK_MONOTONIC, &time_funct_end );
time = (time_funct_end.tv_sec - time_funct_start.tv_sec)*1.0 + (time_funct_end.tv_nsec - time_funct_start.tv_nsec)/1000000000.0;
#endif
}
return time;
}
/******************************************************************************
* Device Selection
*****************************************************************************/
#include "stdlib.h"
// encode score object as byte string
ds_status serializeScore( ds_device* device, void **serializedScore, unsigned int* serializedScoreSize ) {
*serializedScoreSize = sizeof(TessDeviceScore);
*serializedScore = (void *) new unsigned char[*serializedScoreSize];
memcpy(*serializedScore, device->score, *serializedScoreSize);
return DS_SUCCESS;
}
// parses byte string and stores in score object
ds_status deserializeScore( ds_device* device, const unsigned char* serializedScore, unsigned int serializedScoreSize ) {
// check that serializedScoreSize == sizeof(TessDeviceScore);
device->score = new TessDeviceScore;
memcpy(device->score, serializedScore, serializedScoreSize);
return DS_SUCCESS;
}
ds_status releaseScore( void* score ) {
delete[] score;
return DS_SUCCESS;
}
// evaluate devices
ds_status evaluateScoreForDevice( ds_device *device, void *inputData) {
// overwrite statuc gpuEnv w/ current device
// so native opencl calls can be used; they use static gpuEnv
printf("\n[DS] Device: \"%s\" (%s) evaluation...\n", device->oclDeviceName, device->type==DS_DEVICE_OPENCL_DEVICE ? "OpenCL" : "Native" );
GPUEnv *env = NULL;
if (device->type == DS_DEVICE_OPENCL_DEVICE) {
env = new GPUEnv;
//printf("[DS] populating tmp GPUEnv from device\n");
populateGPUEnvFromDevice( env, device->oclDeviceID);
env->mnFileCount = 0; //argc;
env->mnKernelCount = 0UL;
//printf("[DS] compiling kernels for tmp GPUEnv\n");
OpenclDevice::gpuEnv = *env;
OpenclDevice::CompileKernelFile(env, "");
}
TessScoreEvaluationInputData *input = (TessScoreEvaluationInputData *)inputData;
// pixReadTiff
double composeRGBPixelTime = composeRGBPixelMicroBench( env, *input, device->type );
// HistogramRect
double histogramRectTime = histogramRectMicroBench( env, *input, device->type );
// ThresholdRectToPix
double thresholdRectToPixTime = thresholdRectToPixMicroBench( env, *input, device->type );
// getLineMasks
double getLineMasksMorphTime = getLineMasksMorphMicroBench( env, *input, device->type );
// weigh times (% of cpu time)
// these weights should be the % execution time that the native cpu code took
float composeRGBPixelWeight = 1.2f;
float histogramRectWeight = 2.4f;
float thresholdRectToPixWeight = 4.5f;
float getLineMasksMorphWeight = 5.0f;
float weightedTime =
composeRGBPixelWeight * composeRGBPixelTime +
histogramRectWeight * histogramRectTime +
thresholdRectToPixWeight * thresholdRectToPixTime +
getLineMasksMorphWeight * getLineMasksMorphTime
;
device->score = (void *)new TessDeviceScore;
((TessDeviceScore *)device->score)->time = weightedTime;
printf("[DS] Device: \"%s\" (%s) evaluated\n", device->oclDeviceName, device->type==DS_DEVICE_OPENCL_DEVICE ? "OpenCL" : "Native" );
printf("[DS]%25s: %f (w=%.1f)\n", "composeRGBPixel", composeRGBPixelTime, composeRGBPixelWeight );
printf("[DS]%25s: %f (w=%.1f)\n", "HistogramRect", histogramRectTime, histogramRectWeight );
printf("[DS]%25s: %f (w=%.1f)\n", "ThresholdRectToPix", thresholdRectToPixTime, thresholdRectToPixWeight );
printf("[DS]%25s: %f (w=%.1f)\n", "getLineMasksMorph", getLineMasksMorphTime, getLineMasksMorphWeight );
printf("[DS]%25s: %f\n", "Score", ((TessDeviceScore *)device->score)->time );
return DS_SUCCESS;
}
// initial call to select device
ds_device OpenclDevice::getDeviceSelection( ) {
if (!deviceIsSelected) {
PERF_COUNT_START("getDeviceSelection")
// check if opencl is available at runtime
if( 1 == LoadOpencl() ) {
// opencl is available
//PERF_COUNT_SUB("LoadOpencl")
// setup devices
ds_status status;
ds_profile *profile;
status = initDSProfile( &profile, "v0.1" );
PERF_COUNT_SUB("initDSProfile")
// try reading scores from file
char *fileName = "tesseract_opencl_profile_devices.dat";
status = readProfileFromFile( profile, deserializeScore, fileName);
if (status != DS_SUCCESS) {
// need to run evaluation
printf("[DS] Profile file not available (%s); performing profiling.\n", fileName);
// create input data
TessScoreEvaluationInputData input;
populateTessScoreEvaluationInputData( &input );
//PERF_COUNT_SUB("populateTessScoreEvaluationInputData")
// perform evaluations
unsigned int numUpdates;
status = profileDevices( profile, DS_EVALUATE_ALL, evaluateScoreForDevice, (void *)&input, &numUpdates );
PERF_COUNT_SUB("profileDevices")
// write scores to file
if ( status == DS_SUCCESS ) {
status = writeProfileToFile( profile, serializeScore, fileName);
PERF_COUNT_SUB("writeProfileToFile")
if ( status == DS_SUCCESS ) {
printf("[DS] Scores written to file (%s).\n", fileName);
} else {
printf("[DS] Error saving scores to file (%s); scores not written to file.\n", fileName);
}
} else {
printf("[DS] Unable to evaluate performance; scores not written to file.\n");
}
} else {
PERF_COUNT_SUB("readProfileFromFile")
printf("[DS] Profile read from file (%s).\n", fileName);
}
// we now have device scores either from file or evaluation
// select fastest using custom Tesseract selection algorithm
float bestTime = FLT_MAX; // begin search with worst possible time
int bestDeviceIdx = -1;
for (int d = 0; d < profile->numDevices; d++) {
ds_device device = profile->devices[d];
TessDeviceScore score = *(TessDeviceScore *)device.score;
float time = score.time;
printf("[DS] Device[%i] %i:%s score is %f\n", d+1, device.type, device.oclDeviceName, time);
if (time < bestTime) {
bestTime = time;
bestDeviceIdx = d;
}
}
printf("[DS] Selected Device[%i]: \"%s\" (%s)\n", bestDeviceIdx+1, profile->devices[bestDeviceIdx].oclDeviceName, profile->devices[bestDeviceIdx].type==DS_DEVICE_OPENCL_DEVICE ? "OpenCL" : "Native");
// cleanup
// TODO: call destructor for profile object?
bool overrided = false;
char *overrideDeviceStr = getenv("TESSERACT_OPENCL_DEVICE");
if (overrideDeviceStr != NULL) {
int overrideDeviceIdx = atoi(overrideDeviceStr);
if (overrideDeviceIdx > 0 && overrideDeviceIdx <= profile->numDevices ) {
printf("[DS] Overriding Device Selection (TESSERACT_OPENCL_DEVICE=%s, %i)\n", overrideDeviceStr, overrideDeviceIdx);
bestDeviceIdx = overrideDeviceIdx - 1;
overrided = true;
} else {
printf("[DS] Ignoring invalid TESSERACT_OPENCL_DEVICE=%s ([1,%i] are valid devices).\n", overrideDeviceStr, profile->numDevices);
}
}
if (overrided) {
printf("[DS] Overridden Device[%i]: \"%s\" (%s)\n", bestDeviceIdx+1, profile->devices[bestDeviceIdx].oclDeviceName, profile->devices[bestDeviceIdx].type==DS_DEVICE_OPENCL_DEVICE ? "OpenCL" : "Native");
}
selectedDevice = profile->devices[bestDeviceIdx];
// cleanup
releaseDSProfile(profile, releaseScore);
} else {
// opencl isn't available at runtime, select native cpu device
printf("[DS] OpenCL runtime not available.\n");
selectedDevice.type = DS_DEVICE_NATIVE_CPU;
selectedDevice.oclDeviceName = "(null)";
selectedDevice.score = NULL;
selectedDevice.oclDeviceID = NULL;
selectedDevice.oclDriverVersion = NULL;
}
deviceIsSelected = true;
PERF_COUNT_SUB("select from Profile")
PERF_COUNT_END
}
//PERF_COUNT_END
return selectedDevice;
}
bool OpenclDevice::selectedDeviceIsOpenCL() {
ds_device device = getDeviceSelection();
return (device.type == DS_DEVICE_OPENCL_DEVICE);
}
bool OpenclDevice::selectedDeviceIsNativeCPU() {
ds_device device = getDeviceSelection();
return (device.type == DS_DEVICE_NATIVE_CPU);
}
/*!
* pixConvertRGBToGray() from leptonica, converted to opencl kernel
*
* Input: pix (32 bpp RGB)
* rwt, gwt, bwt (non-negative; these should add to 1.0,
* or use 0.0 for default)
* Return: 8 bpp pix, or null on error
*
* Notes:
* (1) Use a weighted average of the RGB values.
*/
#define SET_DATA_BYTE( pdata, n, val ) (*(l_uint8 *)((l_uintptr_t)((l_uint8 *)(pdata) + (n)) ^ 3) = (val))
Pix * OpenclDevice::pixConvertRGBToGrayOCL(
Pix *srcPix, // 32-bit source
float rwt,
float gwt,
float bwt )
{
PERF_COUNT_START("pixConvertRGBToGrayOCL")
Pix *dstPix; // 8-bit destination
if (rwt < 0.0 || gwt < 0.0 || bwt < 0.0) return NULL;
if (rwt == 0.0 && gwt == 0.0 && bwt == 0.0) {
// magic numbers from leptonica
rwt = 0.3;
gwt = 0.5;
bwt = 0.2;
}
// normalize
float sum = rwt + gwt + bwt;
rwt /= sum;
gwt /= sum;
bwt /= sum;
// source pix
int w, h;
pixGetDimensions(srcPix, &w, &h, NULL);
//printf("Image is %i x %i\n", w, h);
unsigned int *srcData = pixGetData(srcPix);
int srcWPL = pixGetWpl(srcPix);
int srcSize = srcWPL * h * sizeof(unsigned int);
// destination pix
if ((dstPix = pixCreate(w, h, 8)) == NULL)
return NULL;
pixCopyResolution(dstPix, srcPix);
unsigned int *dstData = pixGetData(dstPix);
int dstWPL = pixGetWpl(dstPix);
int dstWords = dstWPL * h;
int dstSize = dstWords * sizeof(unsigned int);
//printf("dstSize = %i\n", dstSize);
PERF_COUNT_SUB("pix setup")
// opencl objects
cl_int clStatus;
KernelEnv kEnv;
SetKernelEnv( &kEnv );
// source buffer
cl_mem srcBuffer = clCreateBuffer( kEnv.mpkContext, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR, srcSize, (void *)srcData, &clStatus );
CHECK_OPENCL( clStatus, "clCreateBuffer srcBuffer");
// destination buffer
cl_mem dstBuffer = clCreateBuffer( kEnv.mpkContext, CL_MEM_WRITE_ONLY | CL_MEM_USE_HOST_PTR, dstSize, (void *)dstData, &clStatus );
CHECK_OPENCL( clStatus, "clCreateBuffer dstBuffer");
// setup work group size parameters
int block_size = 256;
int numWorkGroups = ((h*w+block_size-1) / block_size );
int numThreads = block_size*numWorkGroups;
size_t local_work_size[] = {static_cast<size_t>(block_size)};
size_t global_work_size[] = {static_cast<size_t>(numThreads)};
//printf("Enqueueing %i threads for %i output pixels\n", numThreads, w*h);
/* compile kernel */
kEnv.mpkKernel = clCreateKernel( kEnv.mpkProgram, "kernel_RGBToGray", &clStatus );
CHECK_OPENCL( clStatus, "clCreateKernel kernel_RGBToGray");
/* set kernel arguments */
clStatus = clSetKernelArg( kEnv.mpkKernel, 0, sizeof(cl_mem), (void *)&srcBuffer );
CHECK_OPENCL( clStatus, "clSetKernelArg srcBuffer");
clStatus = clSetKernelArg( kEnv.mpkKernel, 1, sizeof(cl_mem), (void *)&dstBuffer );
CHECK_OPENCL( clStatus, "clSetKernelArg dstBuffer");
clStatus = clSetKernelArg( kEnv.mpkKernel, 2, sizeof(int), (void *)&srcWPL );
CHECK_OPENCL( clStatus, "clSetKernelArg srcWPL" );
clStatus = clSetKernelArg( kEnv.mpkKernel, 3, sizeof(int), (void *)&dstWPL );
CHECK_OPENCL( clStatus, "clSetKernelArg dstWPL" );
clStatus = clSetKernelArg( kEnv.mpkKernel, 4, sizeof(int), (void *)&h );
CHECK_OPENCL( clStatus, "clSetKernelArg height" );
clStatus = clSetKernelArg( kEnv.mpkKernel, 5, sizeof(int), (void *)&w );
CHECK_OPENCL( clStatus, "clSetKernelArg width" );
clStatus = clSetKernelArg( kEnv.mpkKernel, 6, sizeof(float), (void *)&rwt );
CHECK_OPENCL( clStatus, "clSetKernelArg rwt" );
clStatus = clSetKernelArg( kEnv.mpkKernel, 7, sizeof(float), (void *)&gwt );
CHECK_OPENCL( clStatus, "clSetKernelArg gwt");
clStatus = clSetKernelArg( kEnv.mpkKernel, 8, sizeof(float), (void *)&bwt );
CHECK_OPENCL( clStatus, "clSetKernelArg bwt");
/* launch kernel & wait */
PERF_COUNT_SUB("before")
clStatus = clEnqueueNDRangeKernel(
kEnv.mpkCmdQueue,
kEnv.mpkKernel,
1, NULL, global_work_size, local_work_size,
0, NULL, NULL );
CHECK_OPENCL( clStatus, "clEnqueueNDRangeKernel kernel_RGBToGray" );
clFinish( kEnv.mpkCmdQueue );
PERF_COUNT_SUB("kernel")
/* map results back from gpu */
void *ptr = clEnqueueMapBuffer(kEnv.mpkCmdQueue, dstBuffer, CL_TRUE, CL_MAP_READ, 0, dstSize, 0, NULL, NULL, &clStatus);
CHECK_OPENCL( clStatus, "clEnqueueMapBuffer dstBuffer");
clEnqueueUnmapMemObject(rEnv.mpkCmdQueue, dstBuffer, ptr, 0, NULL, NULL);
#if 0
// validate: compute on cpu
Pix *cpuPix = pixCreate(w, h, 8);
pixCopyResolution(cpuPix, srcPix);
unsigned int *cpuData = pixGetData(cpuPix);
int cpuWPL = pixGetWpl(cpuPix);
unsigned int *cpuLine, *srcLine;
int i, j;
for (i = 0, srcLine = srcData, cpuLine = cpuData; i < h; i++) {
for (j = 0; j < w; j++) {
unsigned int word = *(srcLine + j);
int val = (l_int32)(rwt * ((word >> L_RED_SHIFT) & 0xff) +
gwt * ((word >> L_GREEN_SHIFT) & 0xff) +
bwt * ((word >> L_BLUE_SHIFT) & 0xff) + 0.5);
SET_DATA_BYTE(cpuLine, j, val);
}
srcLine += srcWPL;
cpuLine += cpuWPL;
}
// validate: compare
printf("converted 32-bit -> 8-bit image\n");
for (int row = 0; row < h; row++) {
for (int col = 0; col < w; col++) {
int idx = row*w + col;
unsigned int srcVal = srcData[idx];
unsigned char cpuVal = ((unsigned char *)cpuData)[idx];
unsigned char oclVal = ((unsigned char *)dstData)[idx];
if (srcVal > 0) {
printf("%4i,%4i: %u, %u, %u\n", row, col, srcVal, cpuVal, oclVal);
}
}
//printf("\n");
}
#endif
// release opencl objects
clReleaseMemObject(srcBuffer);
clReleaseMemObject(dstBuffer);
PERF_COUNT_END
// success
return dstPix;
}
#endif