mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2024-12-14 00:31:47 +08:00
154 lines
5.5 KiB
C++
154 lines
5.5 KiB
C++
///////////////////////////////////////////////////////////////////////
|
|
// File: input.cpp
|
|
// Description: Input layer class for neural network implementations.
|
|
// Author: Ray Smith
|
|
// Created: Thu Mar 13 09:10:34 PDT 2014
|
|
//
|
|
// (C) Copyright 2014, Google Inc.
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
///////////////////////////////////////////////////////////////////////
|
|
|
|
#include "input.h"
|
|
|
|
#include "allheaders.h"
|
|
#include "imagedata.h"
|
|
#include "pageres.h"
|
|
#include "scrollview.h"
|
|
|
|
namespace tesseract {
|
|
|
|
// Max height for variable height inputs before scaling anyway.
|
|
const int kMaxInputHeight = 48;
|
|
|
|
Input::Input(const STRING& name, int ni, int no)
|
|
: Network(NT_INPUT, name, ni, no), cached_x_scale_(1) {}
|
|
Input::Input(const STRING& name, const StaticShape& shape)
|
|
: Network(NT_INPUT, name, shape.height(), shape.depth()),
|
|
shape_(shape),
|
|
cached_x_scale_(1) {
|
|
if (shape.height() == 1) ni_ = shape.depth();
|
|
}
|
|
|
|
Input::~Input() {
|
|
}
|
|
|
|
// Writes to the given file. Returns false in case of error.
|
|
bool Input::Serialize(TFile* fp) const {
|
|
if (!Network::Serialize(fp)) return false;
|
|
if (fp->FWrite(&shape_, sizeof(shape_), 1) != 1) return false;
|
|
return true;
|
|
}
|
|
|
|
// Reads from the given file. Returns false in case of error.
|
|
bool Input::DeSerialize(TFile* fp) {
|
|
return fp->FReadEndian(&shape_, sizeof(shape_), 1) == 1;
|
|
}
|
|
|
|
// Returns an integer reduction factor that the network applies to the
|
|
// time sequence. Assumes that any 2-d is already eliminated. Used for
|
|
// scaling bounding boxes of truth data.
|
|
int Input::XScaleFactor() const {
|
|
return 1;
|
|
}
|
|
|
|
// Provides the (minimum) x scale factor to the network (of interest only to
|
|
// input units) so they can determine how to scale bounding boxes.
|
|
void Input::CacheXScaleFactor(int factor) {
|
|
cached_x_scale_ = factor;
|
|
}
|
|
|
|
// Runs forward propagation of activations on the input line.
|
|
// See Network for a detailed discussion of the arguments.
|
|
void Input::Forward(bool debug, const NetworkIO& input,
|
|
const TransposedArray* input_transpose,
|
|
NetworkScratch* scratch, NetworkIO* output) {
|
|
*output = input;
|
|
}
|
|
|
|
// Runs backward propagation of errors on the deltas line.
|
|
// See NetworkCpp for a detailed discussion of the arguments.
|
|
bool Input::Backward(bool debug, const NetworkIO& fwd_deltas,
|
|
NetworkScratch* scratch,
|
|
NetworkIO* back_deltas) {
|
|
tprintf("Input::Backward should not be called!!\n");
|
|
return false;
|
|
}
|
|
|
|
// Creates and returns a Pix of appropriate size for the network from the
|
|
// image_data. If non-null, *image_scale returns the image scale factor used.
|
|
// Returns nullptr on error.
|
|
/* static */
|
|
Pix* Input::PrepareLSTMInputs(const ImageData& image_data,
|
|
const Network* network, int min_width,
|
|
TRand* randomizer, float* image_scale) {
|
|
// Note that NumInputs() is defined as input image height.
|
|
int target_height = network->NumInputs();
|
|
int width, height;
|
|
Pix* pix = image_data.PreScale(target_height, kMaxInputHeight, image_scale,
|
|
&width, &height, nullptr);
|
|
if (pix == nullptr) {
|
|
tprintf("Bad pix from ImageData!\n");
|
|
return nullptr;
|
|
}
|
|
if (width <= min_width || height < min_width) {
|
|
tprintf("Image too small to scale!! (%dx%d vs min width of %d)\n", width,
|
|
height, min_width);
|
|
pixDestroy(&pix);
|
|
return nullptr;
|
|
}
|
|
return pix;
|
|
}
|
|
|
|
// Converts the given pix to a NetworkIO of height and depth appropriate to the
|
|
// given StaticShape:
|
|
// If depth == 3, convert to 24 bit color, otherwise normalized grey.
|
|
// Scale to target height, if the shape's height is > 1, or its depth if the
|
|
// height == 1. If height == 0 then no scaling.
|
|
// NOTE: It isn't safe for multiple threads to call this on the same pix.
|
|
/* static */
|
|
void Input::PreparePixInput(const StaticShape& shape, const Pix* pix,
|
|
TRand* randomizer, NetworkIO* input) {
|
|
bool color = shape.depth() == 3;
|
|
Pix* var_pix = const_cast<Pix*>(pix);
|
|
int depth = pixGetDepth(var_pix);
|
|
Pix* normed_pix = nullptr;
|
|
// On input to BaseAPI, an image is forced to be 1, 8 or 24 bit, without
|
|
// colormap, so we just have to deal with depth conversion here.
|
|
if (color) {
|
|
// Force RGB.
|
|
if (depth == 32)
|
|
normed_pix = pixClone(var_pix);
|
|
else
|
|
normed_pix = pixConvertTo32(var_pix);
|
|
} else {
|
|
// Convert non-8-bit images to 8 bit.
|
|
if (depth == 8)
|
|
normed_pix = pixClone(var_pix);
|
|
else
|
|
normed_pix = pixConvertTo8(var_pix, false);
|
|
}
|
|
int height = pixGetHeight(normed_pix);
|
|
int target_height = shape.height();
|
|
if (target_height == 1) target_height = shape.depth();
|
|
if (target_height == 0) target_height = height;
|
|
float im_factor = static_cast<float>(target_height) / height;
|
|
if (im_factor != 1.0f) {
|
|
// Get the scaled image.
|
|
Pix* scaled_pix = pixScale(normed_pix, im_factor, im_factor);
|
|
pixDestroy(&normed_pix);
|
|
normed_pix = scaled_pix;
|
|
}
|
|
input->FromPix(shape, normed_pix, randomizer);
|
|
pixDestroy(&normed_pix);
|
|
}
|
|
|
|
} // namespace tesseract.
|