tesseract/ccutil/elst.cpp

458 lines
16 KiB
C++

/**********************************************************************
* File: elst.c (Formerly elist.c)
* Description: Embedded list handling code which is not in the include file.
* Author: Phil Cheatle
* Created: Fri Jan 04 13:55:49 GMT 1991
*
* (C) Copyright 1991, Hewlett-Packard Ltd.
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
** http://www.apache.org/licenses/LICENSE-2.0
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*
**********************************************************************/
#include <stdlib.h>
#include "elst.h"
/***********************************************************************
* MEMBER FUNCTIONS OF CLASS: ELIST
* ================================
**********************************************************************/
/***********************************************************************
* ELIST::internal_clear
*
* Used by the destructor and the "clear" member function of derived list
* classes to destroy all the elements on the list.
* The calling function passes a "zapper" function which can be called to
* delete each element of the list, regardless of its derived type. This
* technique permits a generic clear function to destroy elements of
* different derived types correctly, without requiring virtual functions and
* the consequential memory overhead.
**********************************************************************/
void
ELIST::internal_clear ( //destroy all links
void (*zapper) (ELIST_LINK *)) {
//ptr to zapper functn
ELIST_LINK *ptr;
ELIST_LINK *next;
if (!empty ()) {
ptr = last->next; //set to first
last->next = NULL; //break circle
last = NULL; //set list empty
while (ptr) {
next = ptr->next;
zapper(ptr);
ptr = next;
}
}
}
/***********************************************************************
* ELIST::assign_to_sublist
*
* The list is set to a sublist of another list. "This" list must be empty
* before this function is invoked. The two iterators passed must refer to
* the same list, different from "this" one. The sublist removed is the
* inclusive list from start_it's current position to end_it's current
* position. If this range passes over the end of the source list then the
* source list has its end set to the previous element of start_it. The
* extracted sublist is unaffected by the end point of the source list, its
* end point is always the end_it position.
**********************************************************************/
void ELIST::assign_to_sublist( //to this list
ELIST_ITERATOR *start_it, //from list start
ELIST_ITERATOR *end_it) { //from list end
const ERRCODE LIST_NOT_EMPTY =
"Destination list must be empty before extracting a sublist";
if (!empty ())
LIST_NOT_EMPTY.error ("ELIST.assign_to_sublist", ABORT, NULL);
last = start_it->extract_sublist (end_it);
}
/***********************************************************************
* ELIST::length
*
* Return count of elements on list
**********************************************************************/
inT32 ELIST::length() const { // count elements
ELIST_ITERATOR it(const_cast<ELIST*>(this));
inT32 count = 0;
for (it.mark_cycle_pt (); !it.cycled_list (); it.forward ())
count++;
return count;
}
/***********************************************************************
* ELIST::sort
*
* Sort elements on list
* NB If you don't like the const declarations in the comparator, coerce yours:
* ( int (*)(const void *, const void *)
**********************************************************************/
void
ELIST::sort ( //sort elements
int comparator ( //comparison routine
const void *, const void *)) {
ELIST_ITERATOR it(this);
inT32 count;
ELIST_LINK **base; //ptr array to sort
ELIST_LINK **current;
inT32 i;
/* Allocate an array of pointers, one per list element */
count = length ();
base = (ELIST_LINK **) malloc (count * sizeof (ELIST_LINK *));
/* Extract all elements, putting the pointers in the array */
current = base;
for (it.mark_cycle_pt (); !it.cycled_list (); it.forward ()) {
*current = it.extract ();
current++;
}
/* Sort the pointer array */
qsort ((char *) base, count, sizeof (*base), comparator);
/* Rebuild the list from the sorted pointers */
current = base;
for (i = 0; i < count; i++) {
it.add_to_end (*current);
current++;
}
free(base);
}
// Assuming list has been sorted already, insert new_link to
// keep the list sorted according to the same comparison function.
// Comparison function is the same as used by sort, i.e. uses double
// indirection. Time is O(1) to add to beginning or end.
// Time is linear to add pre-sorted items to an empty list.
// If unique is set to true and comparator() returns 0 (an entry with the
// same information as the one contained in new_link is already in the
// list) - new_link is not added to the list and the function returns the
// pointer to the identical entry that already exists in the list
// (otherwise the function returns new_link).
ELIST_LINK *ELIST::add_sorted_and_find(
int comparator(const void*, const void*),
bool unique, ELIST_LINK* new_link) {
// Check for adding at the end.
if (last == NULL || comparator(&last, &new_link) < 0) {
if (last == NULL) {
new_link->next = new_link;
} else {
new_link->next = last->next;
last->next = new_link;
}
last = new_link;
} else {
// Need to use an iterator.
ELIST_ITERATOR it(this);
for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
ELIST_LINK* link = it.data();
int compare = comparator(&link, &new_link);
if (compare > 0) {
break;
} else if (unique && compare == 0) {
return link;
}
}
if (it.cycled_list())
it.add_to_end(new_link);
else
it.add_before_then_move(new_link);
}
return new_link;
}
/***********************************************************************
* MEMBER FUNCTIONS OF CLASS: ELIST_ITERATOR
* =========================================
**********************************************************************/
/***********************************************************************
* ELIST_ITERATOR::forward
*
* Move the iterator to the next element of the list.
* REMEMBER: ALL LISTS ARE CIRCULAR.
**********************************************************************/
ELIST_LINK *ELIST_ITERATOR::forward() {
#ifndef NDEBUG
if (!list)
NO_LIST.error ("ELIST_ITERATOR::forward", ABORT, NULL);
#endif
if (list->empty ())
return NULL;
if (current) { //not removed so
//set previous
prev = current;
started_cycling = TRUE;
// In case next is deleted by another iterator, get next from current.
current = current->next;
} else {
if (ex_current_was_cycle_pt)
cycle_pt = next;
current = next;
}
next = current->next;
#ifndef NDEBUG
if (!current)
NULL_DATA.error ("ELIST_ITERATOR::forward", ABORT, NULL);
if (!next)
NULL_NEXT.error ("ELIST_ITERATOR::forward", ABORT,
"This is: %p Current is: %p", this, current);
#endif
return current;
}
/***********************************************************************
* ELIST_ITERATOR::data_relative
*
* Return the data pointer to the element "offset" elements from current.
* "offset" must not be less than -1.
* (This function can't be INLINEd because it contains a loop)
**********************************************************************/
ELIST_LINK *ELIST_ITERATOR::data_relative( //get data + or - ...
inT8 offset) { //offset from current
ELIST_LINK *ptr;
#ifndef NDEBUG
if (!list)
NO_LIST.error ("ELIST_ITERATOR::data_relative", ABORT, NULL);
if (list->empty ())
EMPTY_LIST.error ("ELIST_ITERATOR::data_relative", ABORT, NULL);
if (offset < -1)
BAD_PARAMETER.error ("ELIST_ITERATOR::data_relative", ABORT,
"offset < -l");
#endif
if (offset == -1)
ptr = prev;
else
for (ptr = current ? current : prev; offset-- > 0; ptr = ptr->next);
#ifndef NDEBUG
if (!ptr)
NULL_DATA.error ("ELIST_ITERATOR::data_relative", ABORT, NULL);
#endif
return ptr;
}
/***********************************************************************
* ELIST_ITERATOR::move_to_last()
*
* Move current so that it is set to the end of the list.
* Return data just in case anyone wants it.
* (This function can't be INLINEd because it contains a loop)
**********************************************************************/
ELIST_LINK *ELIST_ITERATOR::move_to_last() {
#ifndef NDEBUG
if (!list)
NO_LIST.error ("ELIST_ITERATOR::move_to_last", ABORT, NULL);
#endif
while (current != list->last)
forward();
return current;
}
/***********************************************************************
* ELIST_ITERATOR::exchange()
*
* Given another iterator, whose current element is a different element on
* the same list list OR an element of another list, exchange the two current
* elements. On return, each iterator points to the element which was the
* other iterators current on entry.
* (This function hasn't been in-lined because its a bit big!)
**********************************************************************/
void ELIST_ITERATOR::exchange( //positions of 2 links
ELIST_ITERATOR *other_it) { //other iterator
const ERRCODE DONT_EXCHANGE_DELETED =
"Can't exchange deleted elements of lists";
ELIST_LINK *old_current;
#ifndef NDEBUG
if (!list)
NO_LIST.error ("ELIST_ITERATOR::exchange", ABORT, NULL);
if (!other_it)
BAD_PARAMETER.error ("ELIST_ITERATOR::exchange", ABORT, "other_it NULL");
if (!(other_it->list))
NO_LIST.error ("ELIST_ITERATOR::exchange", ABORT, "other_it");
#endif
/* Do nothing if either list is empty or if both iterators reference the same
link */
if ((list->empty ()) ||
(other_it->list->empty ()) || (current == other_it->current))
return;
/* Error if either current element is deleted */
if (!current || !other_it->current)
DONT_EXCHANGE_DELETED.error ("ELIST_ITERATOR.exchange", ABORT, NULL);
/* Now handle the 4 cases: doubleton list; non-doubleton adjacent elements
(other before this); non-doubleton adjacent elements (this before other);
non-adjacent elements. */
//adjacent links
if ((next == other_it->current) ||
(other_it->next == current)) {
//doubleton list
if ((next == other_it->current) &&
(other_it->next == current)) {
prev = next = current;
other_it->prev = other_it->next = other_it->current;
}
else { //non-doubleton with
//adjacent links
//other before this
if (other_it->next == current) {
other_it->prev->next = current;
other_it->current->next = next;
current->next = other_it->current;
other_it->next = other_it->current;
prev = current;
}
else { //this before other
prev->next = other_it->current;
current->next = other_it->next;
other_it->current->next = current;
next = current;
other_it->prev = other_it->current;
}
}
}
else { //no overlap
prev->next = other_it->current;
current->next = other_it->next;
other_it->prev->next = current;
other_it->current->next = next;
}
/* update end of list pointer when necessary (remember that the 2 iterators
may iterate over different lists!) */
if (list->last == current)
list->last = other_it->current;
if (other_it->list->last == other_it->current)
other_it->list->last = current;
if (current == cycle_pt)
cycle_pt = other_it->cycle_pt;
if (other_it->current == other_it->cycle_pt)
other_it->cycle_pt = cycle_pt;
/* The actual exchange - in all cases*/
old_current = current;
current = other_it->current;
other_it->current = old_current;
}
/***********************************************************************
* ELIST_ITERATOR::extract_sublist()
*
* This is a private member, used only by ELIST::assign_to_sublist.
* Given another iterator for the same list, extract the links from THIS to
* OTHER inclusive, link them into a new circular list, and return a
* pointer to the last element.
* (Can't inline this function because it contains a loop)
**********************************************************************/
ELIST_LINK *ELIST_ITERATOR::extract_sublist( //from this current
ELIST_ITERATOR *other_it) { //to other current
#ifndef NDEBUG
const ERRCODE BAD_EXTRACTION_PTS =
"Can't extract sublist from points on different lists";
const ERRCODE DONT_EXTRACT_DELETED =
"Can't extract a sublist marked by deleted points";
#endif
const ERRCODE BAD_SUBLIST = "Can't find sublist end point in original list";
ELIST_ITERATOR temp_it = *this;
ELIST_LINK *end_of_new_list;
#ifndef NDEBUG
if (!other_it)
BAD_PARAMETER.error ("ELIST_ITERATOR::extract_sublist", ABORT,
"other_it NULL");
if (!list)
NO_LIST.error ("ELIST_ITERATOR::extract_sublist", ABORT, NULL);
if (list != other_it->list)
BAD_EXTRACTION_PTS.error ("ELIST_ITERATOR.extract_sublist", ABORT, NULL);
if (list->empty ())
EMPTY_LIST.error ("ELIST_ITERATOR::extract_sublist", ABORT, NULL);
if (!current || !other_it->current)
DONT_EXTRACT_DELETED.error ("ELIST_ITERATOR.extract_sublist", ABORT,
NULL);
#endif
ex_current_was_last = other_it->ex_current_was_last = FALSE;
ex_current_was_cycle_pt = FALSE;
other_it->ex_current_was_cycle_pt = FALSE;
temp_it.mark_cycle_pt ();
do { //walk sublist
if (temp_it.cycled_list()) // can't find end pt
BAD_SUBLIST.error ("ELIST_ITERATOR.extract_sublist", ABORT, NULL);
if (temp_it.at_last ()) {
list->last = prev;
ex_current_was_last = other_it->ex_current_was_last = TRUE;
}
if (temp_it.current == cycle_pt)
ex_current_was_cycle_pt = TRUE;
if (temp_it.current == other_it->cycle_pt)
other_it->ex_current_was_cycle_pt = TRUE;
temp_it.forward ();
}
while (temp_it.prev != other_it->current);
//circularise sublist
other_it->current->next = current;
end_of_new_list = other_it->current;
//sublist = whole list
if (prev == other_it->current) {
list->last = NULL;
prev = current = next = NULL;
other_it->prev = other_it->current = other_it->next = NULL;
}
else {
prev->next = other_it->next;
current = other_it->current = NULL;
next = other_it->next;
other_it->prev = prev;
}
return end_of_new_list;
}