tesseract/lstm/recodebeam.h
Stefan Weil 0c9235ebc2 Fix typos in new LSTM code
All of them were found and fixed by codespell.

Signed-off-by: Stefan Weil <sw@weilnetz.de>
2016-11-22 08:25:43 +01:00

305 lines
14 KiB
C++

///////////////////////////////////////////////////////////////////////
// File: recodebeam.h
// Description: Beam search to decode from the re-encoded CJK as a sequence of
// smaller numbers in place of a single large code.
// Author: Ray Smith
// Created: Fri Mar 13 09:12:01 PDT 2015
//
// (C) Copyright 2015, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
///////////////////////////////////////////////////////////////////////
#ifndef THIRD_PARTY_TESSERACT_LSTM_RECODEBEAM_H_
#define THIRD_PARTY_TESSERACT_LSTM_RECODEBEAM_H_
#include "dawg.h"
#include "dict.h"
#include "genericheap.h"
#include "kdpair.h"
#include "networkio.h"
#include "ratngs.h"
#include "unicharcompress.h"
namespace tesseract {
// Lattice element for Re-encode beam search.
struct RecodeNode {
RecodeNode()
: code(-1),
unichar_id(INVALID_UNICHAR_ID),
permuter(TOP_CHOICE_PERM),
start_of_dawg(false),
start_of_word(false),
end_of_word(false),
duplicate(false),
certainty(0.0f),
score(0.0f),
prev(NULL),
dawgs(NULL) {}
RecodeNode(int c, int uni_id, PermuterType perm, bool dawg_start,
bool word_start, bool end, bool dup, float cert, float s,
const RecodeNode* p, DawgPositionVector* d)
: code(c),
unichar_id(uni_id),
permuter(perm),
start_of_dawg(dawg_start),
start_of_word(word_start),
end_of_word(end),
duplicate(dup),
certainty(cert),
score(s),
prev(p),
dawgs(d) {}
// NOTE: If we could use C++11, then this would be a move constructor.
// Instead we have copy constructor that does a move!! This is because we
// don't want to copy the whole DawgPositionVector each time, and true
// copying isn't necessary for this struct. It does get moved around a lot
// though inside the heap and during heap push, hence the move semantics.
RecodeNode(RecodeNode& src) : dawgs(NULL) {
*this = src;
ASSERT_HOST(src.dawgs == NULL);
}
RecodeNode& operator=(RecodeNode& src) {
delete dawgs;
memcpy(this, &src, sizeof(src));
src.dawgs = NULL;
return *this;
}
~RecodeNode() { delete dawgs; }
// The re-encoded code here = index to network output.
int code;
// The decoded unichar_id is only valid for the final code of a sequence.
int unichar_id;
// The type of permuter active at this point. Intervals between start_of_word
// and end_of_word make valid words of type given by permuter where
// end_of_word is true. These aren't necessarily delimited by spaces.
PermuterType permuter;
// True if this is the initial dawg state. May be attached to a space or,
// in a non-space-delimited lang, the end of the previous word.
bool start_of_dawg;
// True if this is the first node in a dictionary word.
bool start_of_word;
// True if this represents a valid candidate end of word position. Does not
// necessarily mark the end of a word, since a word can be extended beyond a
// candidate end by a continuation, eg 'the' continues to 'these'.
bool end_of_word;
// True if this is a duplicate of prev in all respects. Some training modes
// allow the network to output duplicate characters and crush them with CTC,
// but that would mess up the decoding, so we just smash them together on the
// fly using the duplicate flag.
bool duplicate;
// Certainty (log prob) of (just) this position.
float certainty;
// Total certainty of the path to this position.
float score;
// The previous node in this chain. Borrowed pointer.
const RecodeNode* prev;
// The currently active dawgs at this position. Owned pointer.
DawgPositionVector* dawgs;
};
typedef KDPairInc<double, RecodeNode> RecodePair;
typedef GenericHeap<RecodePair> RecodeHeap;
// Class that holds the entire beam search for recognition of a text line.
class RecodeBeamSearch {
public:
// Borrows the pointer, which is expected to survive until *this is deleted.
RecodeBeamSearch(const UnicharCompress& recoder, int null_char,
bool simple_text, Dict* dict);
// Decodes the set of network outputs, storing the lattice internally.
// If charset is not null, it enables detailed debugging of the beam search.
void Decode(const NetworkIO& output, double dict_ratio, double cert_offset,
double worst_dict_cert, const UNICHARSET* charset);
void Decode(const GENERIC_2D_ARRAY<float>& output, double dict_ratio,
double cert_offset, double worst_dict_cert,
const UNICHARSET* charset);
// Returns the best path as labels/scores/xcoords similar to simple CTC.
void ExtractBestPathAsLabels(GenericVector<int>* labels,
GenericVector<int>* xcoords) const;
// Returns the best path as unichar-ids/certs/ratings/xcoords skipping
// duplicates, nulls and intermediate parts.
void ExtractBestPathAsUnicharIds(bool debug, const UNICHARSET* unicharset,
GenericVector<int>* unichar_ids,
GenericVector<float>* certs,
GenericVector<float>* ratings,
GenericVector<int>* xcoords) const;
// Returns the best path as a set of WERD_RES.
void ExtractBestPathAsWords(const TBOX& line_box, float scale_factor,
bool debug, const UNICHARSET* unicharset,
PointerVector<WERD_RES>* words);
// Generates debug output of the content of the beams after a Decode.
void DebugBeams(const UNICHARSET& unicharset) const;
// Clipping value for certainty inside Tesseract. Reflects the minimum value
// of certainty that will be returned by ExtractBestPathAsUnicharIds.
// Supposedly on a uniform scale that can be compared across languages and
// engines.
static const float kMinCertainty;
private:
// Struct for the Re-encode beam search. This struct holds the data for
// a single time-step position of the output. Use a PointerVector<RecodeBeam>
// to hold all the timesteps and prevent reallocation of the individual heaps.
struct RecodeBeam {
// Resets to the initial state without deleting all the memory.
void Clear() {
for (int i = 0; i <= RecodedCharID::kMaxCodeLen; ++i) {
beams_[i].clear();
dawg_beams_[i].clear();
}
RecodeNode empty;
best_initial_dawg_ = empty;
}
// A separate beam for each code position. Since there aren't that many
// code positions, this allows the beam to be quite narrow, and yet still
// have a low chance of losing the best path.
// Each heap is stored with the WORST result at the top, so we can quickly
// get the top-n values.
RecodeHeap beams_[RecodedCharID::kMaxCodeLen + 1];
// Although, we can only use complete codes in the dawg, we have to separate
// partial code paths that lead back to a mid-dawg word from paths that are
// not part of a dawg word, as they have a different score. Since a dawg
// word can dead-end at any point, we need to keep the non dawg path going
// so the dawg beams_ are totally separate set with a heap for each length
// just like the non-dawg beams.
RecodeHeap dawg_beams_[RecodedCharID::kMaxCodeLen + 1];
// While the language model is only a single word dictionary, we can use
// word starts as a choke point in the beam, and keep only a single dict
// start node at each step, so we find the best one here and push it on
// the heap, if it qualifies, after processing all of the step.
RecodeNode best_initial_dawg_;
};
typedef KDPairInc<float, int> TopPair;
// Generates debug output of the content of a single beam position.
void DebugBeamPos(const UNICHARSET& unicharset, const RecodeHeap& heap) const;
// Returns the given best_nodes as unichar-ids/certs/ratings/xcoords skipping
// duplicates, nulls and intermediate parts.
static void ExtractPathAsUnicharIds(
const GenericVector<const RecodeNode*>& best_nodes,
GenericVector<int>* unichar_ids, GenericVector<float>* certs,
GenericVector<float>* ratings, GenericVector<int>* xcoords);
// Sets up a word with the ratings matrix and fake blobs with boxes in the
// right places.
WERD_RES* InitializeWord(bool leading_space, const TBOX& line_box,
int word_start, int word_end, float space_certainty,
const UNICHARSET* unicharset,
const GenericVector<int>& xcoords,
float scale_factor);
// Fills top_n_flags_ with bools that are true iff the corresponding output
// is one of the top_n.
void ComputeTopN(const float* outputs, int num_outputs, int top_n);
// Adds the computation for the current time-step to the beam. Call at each
// time-step in sequence from left to right. outputs is the activation vector
// for the current timestep.
void DecodeStep(const float* outputs, int t, double dict_ratio,
double cert_offset, double worst_dict_cert,
const UNICHARSET* charset);
// Adds to the appropriate beams the legal (according to recoder)
// continuations of context prev, which is of the given length, using the
// given network outputs to provide scores to the choices. Uses only those
// choices for which top_n_flags[index] == top_n_flag.
void ContinueContext(const RecodeNode* prev, int length, const float* outputs,
bool use_dawgs, bool top_n_flag, double dict_ratio,
double cert_offset, double worst_dict_cert,
RecodeBeam* step);
// Adds a RecodeNode composed of the tuple (code, unichar_id, cert, prev,
// appropriate-dawg-args, cert) to the given heap (dawg_beam_) if unichar_id
// is a valid continuation of whatever is in prev.
void ContinueDawg(int max_size, int code, int unichar_id, float cert,
const RecodeNode* prev, RecodeHeap* heap, RecodeBeam* step);
// Adds a RecodeNode composed of the tuple (code, unichar_id,
// initial-dawg-state, prev, cert) to the given heap if/ there is room or if
// better than the current worst element if already full.
void PushInitialDawgIfBetter(int code, int unichar_id, PermuterType permuter,
bool start, bool end, float cert,
const RecodeNode* prev,
RecodeNode* best_initial_dawg);
// Adds a copy of the given prev as a duplicate of and successor to prev, if
// there is room or if better than the current worst element if already full.
static void PushDupIfBetter(int max_size, float cert, const RecodeNode* prev,
RecodeHeap* heap);
// Adds a RecodeNode composed of the tuple (code, unichar_id, permuter,
// false, false, false, false, cert, prev, NULL) to heap if there is room
// or if better than the current worst element if already full.
static void PushNoDawgIfBetter(int max_size, int code, int unichar_id,
PermuterType permuter, float cert,
const RecodeNode* prev, RecodeHeap* heap);
// Adds a RecodeNode composed of the tuple (code, unichar_id, permuter,
// dawg_start, word_start, end, dup, cert, prev, d) to heap if there is room
// or if better than the current worst element if already full.
static void PushHeapIfBetter(int max_size, int code, int unichar_id,
PermuterType permuter, bool dawg_start,
bool word_start, bool end, bool dup, float cert,
const RecodeNode* prev, DawgPositionVector* d,
RecodeHeap* heap);
// Backtracks to extract the best path through the lattice that was built
// during Decode. On return the best_nodes vector essentially contains the set
// of code, score pairs that make the optimal path with the constraint that
// the recoder can decode the code sequence back to a sequence of unichar-ids.
void ExtractBestPaths(GenericVector<const RecodeNode*>* best_nodes,
GenericVector<const RecodeNode*>* second_nodes) const;
// Helper backtracks through the lattice from the given node, storing the
// path and reversing it.
void ExtractPath(const RecodeNode* node,
GenericVector<const RecodeNode*>* path) const;
// Helper prints debug information on the given lattice path.
void DebugPath(const UNICHARSET* unicharset,
const GenericVector<const RecodeNode*>& path) const;
// Helper prints debug information on the given unichar path.
void DebugUnicharPath(const UNICHARSET* unicharset,
const GenericVector<const RecodeNode*>& path,
const GenericVector<int>& unichar_ids,
const GenericVector<float>& certs,
const GenericVector<float>& ratings,
const GenericVector<int>& xcoords) const;
static const int kBeamWidths[RecodedCharID::kMaxCodeLen + 1];
// The encoder/decoder that we will be using.
const UnicharCompress& recoder_;
// The beam for each timestep in the output.
PointerVector<RecodeBeam> beam_;
// The number of timesteps valid in beam_;
int beam_size_;
// A flag to indicate which outputs are the top-n choices. Current timestep
// only.
GenericVector<bool> top_n_flags_;
// Heap used to compute the top_n_flags_.
GenericHeap<TopPair> top_heap_;
// Borrowed pointer to the dictionary to use in the search.
Dict* dict_;
// True if the language is space-delimited, which is true for most languages
// except chi*, jpn, tha.
bool space_delimited_;
// True if the input is simple text, ie adjacent equal chars are not to be
// eliminated.
bool is_simple_text_;
// The encoded (class label) of the null/reject character.
int null_char_;
};
} // namespace tesseract.
#endif // THIRD_PARTY_TESSERACT_LSTM_RECODEBEAM_H_