tesseract/classify/trainingsample.h

251 lines
8.4 KiB
C++

// Copyright 2010 Google Inc. All Rights Reserved.
// Author: rays@google.com (Ray Smith)
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
///////////////////////////////////////////////////////////////////////
#ifndef TESSERACT_TRAINING_TRAININGSAMPLE_H__
#define TESSERACT_TRAINING_TRAININGSAMPLE_H__
#include "elst.h"
#include "featdefs.h"
#include "intfx.h"
#include "intmatcher.h"
#include "matrix.h"
#include "mf.h"
#include "picofeat.h"
#include "shapetable.h"
#include "unicharset.h"
struct Pix;
namespace tesseract {
class IntFeatureMap;
class IntFeatureSpace;
class ShapeTable;
// Number of elements of cn_feature_.
static const int kNumCNParams = 4;
// Number of ways to shift the features when randomizing.
static const int kSampleYShiftSize = 5;
// Number of ways to scale the features when randomizing.
static const int kSampleScaleSize = 3;
// Total number of different ways to manipulate the features when randomizing.
// The first and last combinations are removed to avoid an excessive
// top movement (first) and an identity transformation (last).
// WARNING: To avoid patterned duplication of samples, be sure to keep
// kSampleRandomSize prime!
// Eg with current values (kSampleYShiftSize = 5 and TkSampleScaleSize = 3)
// kSampleRandomSize is 13, which is prime.
static const int kSampleRandomSize = kSampleYShiftSize * kSampleScaleSize - 2;
// ASSERT_IS_PRIME(kSampleRandomSize) !!
class TrainingSample : public ELIST_LINK {
public:
TrainingSample()
: class_id_(INVALID_UNICHAR_ID), font_id_(0), page_num_(0),
num_features_(0), num_micro_features_(0), outline_length_(0),
features_(NULL), micro_features_(NULL), weight_(1.0),
max_dist_(0.0), sample_index_(0),
features_are_indexed_(false), features_are_mapped_(false),
is_error_(false) {
}
~TrainingSample();
// Saves the given features into a TrainingSample. The features are copied,
// so may be deleted afterwards. Delete the return value after use.
static TrainingSample* CopyFromFeatures(const INT_FX_RESULT_STRUCT& fx_info,
const TBOX& bounding_box,
const INT_FEATURE_STRUCT* features,
int num_features);
// Returns the cn_feature as a FEATURE_STRUCT* needed by cntraining.
FEATURE_STRUCT* GetCNFeature() const;
// Constructs and returns a copy "randomized" by the method given by
// the randomizer index. If index is out of [0, kSampleRandomSize) then
// an exact copy is returned.
TrainingSample* RandomizedCopy(int index) const;
// Constructs and returns an exact copy.
TrainingSample* Copy() const;
// WARNING! Serialize/DeSerialize do not save/restore the "cache" data
// members, which is mostly the mapped features, and the weight.
// It is assumed these can all be reconstructed from what is saved.
// Writes to the given file. Returns false in case of error.
bool Serialize(FILE* fp) const;
// Creates from the given file. Returns NULL in case of error.
// If swap is true, assumes a big/little-endian swap is needed.
static TrainingSample* DeSerializeCreate(bool swap, FILE* fp);
// Reads from the given file. Returns false in case of error.
// If swap is true, assumes a big/little-endian swap is needed.
bool DeSerialize(bool swap, FILE* fp);
// Extracts the needed information from the CHAR_DESC_STRUCT.
void ExtractCharDesc(int feature_type, int micro_type,
int cn_type, int geo_type,
CHAR_DESC_STRUCT* char_desc);
// Sets the mapped_features_ from the features_ using the provided
// feature_space to the indexed versions of the features.
void IndexFeatures(const IntFeatureSpace& feature_space);
// Sets the mapped_features_ from the features_ using the provided
// feature_map.
void MapFeatures(const IntFeatureMap& feature_map);
// Returns a pix representing the sample. (Int features only.)
Pix* RenderToPix(const UNICHARSET* unicharset) const;
// Displays the features in the given window with the given color.
void DisplayFeatures(ScrollView::Color color, ScrollView* window) const;
// Returns a pix of the original sample image. The pix is padded all round
// by padding wherever possible.
// The returned Pix must be pixDestroyed after use.
// If the input page_pix is NULL, NULL is returned.
Pix* GetSamplePix(int padding, Pix* page_pix) const;
// Accessors.
UNICHAR_ID class_id() const {
return class_id_;
}
void set_class_id(int id) {
class_id_ = id;
}
int font_id() const {
return font_id_;
}
void set_font_id(int id) {
font_id_ = id;
}
int page_num() const {
return page_num_;
}
void set_page_num(int page) {
page_num_ = page;
}
const TBOX& bounding_box() const {
return bounding_box_;
}
void set_bounding_box(const TBOX& box) {
bounding_box_ = box;
}
int num_features() const {
return num_features_;
}
const INT_FEATURE_STRUCT* features() const {
return features_;
}
int num_micro_features() const {
return num_micro_features_;
}
const MicroFeature* micro_features() const {
return micro_features_;
}
int outline_length() const {
return outline_length_;
}
float cn_feature(int index) const {
return cn_feature_[index];
}
int geo_feature(int index) const {
return geo_feature_[index];
}
double weight() const {
return weight_;
}
void set_weight(double value) {
weight_ = value;
}
double max_dist() const {
return max_dist_;
}
void set_max_dist(double value) {
max_dist_ = value;
}
int sample_index() const {
return sample_index_;
}
void set_sample_index(int value) {
sample_index_ = value;
}
bool features_are_mapped() const {
return features_are_mapped_;
}
const GenericVector<int>& mapped_features() const {
ASSERT_HOST(features_are_mapped_);
return mapped_features_;
}
const GenericVector<int>& indexed_features() const {
ASSERT_HOST(features_are_indexed_);
return mapped_features_;
}
bool is_error() const {
return is_error_;
}
void set_is_error(bool value) {
is_error_ = value;
}
private:
// Unichar id that this sample represents. There obviously must be a
// reference UNICHARSET somewhere. Usually in TrainingSampleSet.
UNICHAR_ID class_id_;
// Font id in which this sample was printed. Refers to a fontinfo_table_ in
// MasterTrainer.
int font_id_;
// Number of page that the sample came from.
int page_num_;
// Bounding box of sample in original image.
TBOX bounding_box_;
// Number of INT_FEATURE_STRUCT in features_ array.
int num_features_;
// Number of MicroFeature in micro_features_ array.
int num_micro_features_;
// Total length of outline in the baseline normalized coordinate space.
// See comment in WERD_RES class definition for a discussion of coordinate
// spaces.
int outline_length_;
// Array of features.
INT_FEATURE_STRUCT* features_;
// Array of features.
MicroFeature* micro_features_;
// The one and only CN feature. Indexed by NORM_PARAM_NAME enum.
float cn_feature_[kNumCNParams];
// The one and only geometric feature. (Aims at replacing cn_feature_).
// Indexed by GeoParams enum in picofeat.h
int geo_feature_[GeoCount];
// Non-serialized cache data.
// Weight used for boosting training.
double weight_;
// Maximum distance to other samples of same class/font used in computing
// the canonical sample.
double max_dist_;
// Global index of this sample.
int sample_index_;
// Indexed/mapped features, as indicated by the bools below.
GenericVector<int> mapped_features_;
bool features_are_indexed_;
bool features_are_mapped_;
// True if the last classification was an error by the current definition.
bool is_error_;
// Randomizing factors.
static const int kYShiftValues[kSampleYShiftSize];
static const double kScaleValues[kSampleScaleSize];
};
ELISTIZEH(TrainingSample)
} // namespace tesseract
#endif // TESSERACT_TRAINING_TRAININGSAMPLE_H__