mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2024-12-18 11:28:51 +08:00
38a6b18a5f
git-svn-id: https://tesseract-ocr.googlecode.com/svn/trunk@363 d0cd1f9f-072b-0410-8dd7-cf729c803f20
1536 lines
59 KiB
C++
1536 lines
59 KiB
C++
///////////////////////////////////////////////////////////////////////
|
|
// File: colpartition.cpp
|
|
// Description: Class to hold partitions of the page that correspond
|
|
// roughly to text lines.
|
|
// Author: Ray Smith
|
|
// Created: Thu Aug 14 10:54:01 PDT 2008
|
|
//
|
|
// (C) Copyright 2008, Google Inc.
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////
|
|
|
|
#include "colpartition.h"
|
|
#include "colpartitionset.h"
|
|
#include "workingpartset.h"
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning(disable:4244) // Conversion warnings
|
|
#endif
|
|
|
|
namespace tesseract {
|
|
|
|
ELIST2IZE(ColPartition)
|
|
CLISTIZE(ColPartition)
|
|
|
|
//////////////// ColPartition Implementation ////////////////
|
|
|
|
// If multiple partners survive the partner depth test beyond this level,
|
|
// then arbitrarily pick one.
|
|
const int kMaxPartnerDepth = 4;
|
|
// Maximum change in spacing (in inches) to ignore.
|
|
const double kMaxSpacingDrift = 1.0 / 72; // 1/72 is one point.
|
|
// Maximum fraction of line height used as an additional allowance
|
|
// for top spacing.
|
|
const double kMaxTopSpacingFraction = 0.25;
|
|
// Maximum ratio of sizes for lines to be considered the same size.
|
|
const double kMaxSizeRatio = 1.5;
|
|
|
|
// blob_type is the blob_region_type_ of the blobs in this partition.
|
|
// Vertical is the direction of logical vertical on the possibly skewed image.
|
|
ColPartition::ColPartition(BlobRegionType blob_type, const ICOORD& vertical)
|
|
: left_margin_(MIN_INT32), right_margin_(MAX_INT32),
|
|
median_bottom_(MAX_INT32), median_top_(MIN_INT32), median_size_(0),
|
|
blob_type_(blob_type),
|
|
good_width_(false), good_column_(false),
|
|
left_key_tab_(false), right_key_tab_(false),
|
|
left_key_(0), right_key_(0), type_(PT_UNKNOWN), vertical_(vertical),
|
|
working_set_(NULL), block_owned_(false),
|
|
first_column_(-1), last_column_(-1), column_set_(NULL),
|
|
side_step_(0), top_spacing_(0), bottom_spacing_(0),
|
|
type_before_table_(PT_UNKNOWN), inside_table_column_(false),
|
|
nearest_neighbor_above_(NULL), nearest_neighbor_below_(NULL),
|
|
space_above_(0), space_below_(0), space_to_left_(0), space_to_right_(0) {
|
|
}
|
|
|
|
// Constructs a fake ColPartition with a single fake BLOBNBOX, all made
|
|
// from a single TBOX.
|
|
// WARNING: Despite being on C_LISTs, the BLOBNBOX owns the C_BLOB and
|
|
// the ColPartition owns the BLOBNBOX!!!
|
|
// Call DeleteBoxes before deleting the ColPartition.
|
|
ColPartition* ColPartition::FakePartition(const TBOX& box) {
|
|
ColPartition* part = new ColPartition(BRT_UNKNOWN, ICOORD(0, 1));
|
|
part->AddBox(new BLOBNBOX(C_BLOB::FakeBlob(box)));
|
|
part->set_left_margin(box.left());
|
|
part->set_right_margin(box.right());
|
|
part->ComputeLimits();
|
|
return part;
|
|
}
|
|
|
|
ColPartition::~ColPartition() {
|
|
// Remove this as a partner of all partners, as we don't want them
|
|
// referring to a deleted object.
|
|
ColPartition_C_IT it(&upper_partners_);
|
|
for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
|
|
it.data()->RemovePartner(false, this);
|
|
}
|
|
it.set_to_list(&lower_partners_);
|
|
for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
|
|
it.data()->RemovePartner(true, this);
|
|
}
|
|
}
|
|
|
|
// Constructs a fake ColPartition with no BLOBNBOXes.
|
|
// Used for making horizontal line ColPartitions and types it accordingly.
|
|
ColPartition::ColPartition(const ICOORD& vertical,
|
|
int left, int bottom, int right, int top)
|
|
: left_margin_(MIN_INT32), right_margin_(MAX_INT32),
|
|
bounding_box_(left, bottom, right, top),
|
|
median_bottom_(bottom), median_top_(top), median_size_(top - bottom),
|
|
blob_type_(BRT_HLINE),
|
|
good_width_(false), good_column_(false),
|
|
left_key_tab_(false), right_key_tab_(false),
|
|
type_(PT_UNKNOWN), vertical_(vertical),
|
|
working_set_(NULL), block_owned_(false),
|
|
first_column_(-1), last_column_(-1), column_set_(NULL),
|
|
side_step_(0), top_spacing_(0), bottom_spacing_(0),
|
|
type_before_table_(PT_UNKNOWN), inside_table_column_(false),
|
|
nearest_neighbor_above_(NULL), nearest_neighbor_below_(NULL),
|
|
space_above_(0), space_below_(0), space_to_left_(0), space_to_right_(0) {
|
|
left_key_ = BoxLeftKey();
|
|
right_key_ = BoxRightKey();
|
|
}
|
|
|
|
|
|
// Adds the given box to the partition, updating the partition bounds.
|
|
// The list of boxes in the partition is updated, ensuring that no box is
|
|
// recorded twice, and the boxes are kept in increasing left position.
|
|
void ColPartition::AddBox(BLOBNBOX* bbox) {
|
|
boxes_.add_sorted(SortByBoxLeft<BLOBNBOX>, true, bbox);
|
|
TBOX box = bbox->bounding_box();
|
|
// Update the partition limits.
|
|
bounding_box_ += box;
|
|
if (!left_key_tab_)
|
|
left_key_ = BoxLeftKey();
|
|
if (!right_key_tab_)
|
|
right_key_ = BoxRightKey();
|
|
if (TabFind::WithinTestRegion(2, box.left(), box.bottom()))
|
|
tprintf("Added box (%d,%d)->(%d,%d) left_blob_x_=%d, right_blob_x_ = %d\n",
|
|
box.left(), box.bottom(), box.right(), box.top(),
|
|
bounding_box_.left(), bounding_box_.right());
|
|
}
|
|
|
|
// Claims the boxes in the boxes_list by marking them with a this owner
|
|
// pointer. If a box is already owned, then run Unique on it.
|
|
void ColPartition::ClaimBoxes(WidthCallback* cb) {
|
|
bool completed = true;
|
|
do {
|
|
completed = true;
|
|
BLOBNBOX_C_IT bb_it(&boxes_);
|
|
for (bb_it.mark_cycle_pt(); !bb_it.cycled_list(); bb_it.forward()) {
|
|
BLOBNBOX* bblob = bb_it.data();
|
|
ColPartition* other = bblob->owner();
|
|
if (other == NULL) {
|
|
// Normal case: ownership is available.
|
|
bblob->set_owner(this);
|
|
} else if (other != this) {
|
|
// bblob already has an owner, so resolve the dispute with Unique.
|
|
// Null everything owned by this upto, but not including bblob, as
|
|
// they will all be up for grabs in Unique.
|
|
for (bb_it.move_to_first(); bb_it.data() != bblob; bb_it.forward()) {
|
|
ASSERT_HOST(bb_it.data()->owner() == this);
|
|
bb_it.data()->set_owner(NULL);
|
|
}
|
|
// Null the owners of all other's blobs. They should all be
|
|
// still owned by other.
|
|
BLOBNBOX_C_IT other_it(&other->boxes_);
|
|
for (other_it.mark_cycle_pt(); !other_it.cycled_list();
|
|
other_it.forward()) {
|
|
ASSERT_HOST(other_it.data()->owner() == other);
|
|
other_it.data()->set_owner(NULL);
|
|
}
|
|
Unique(other, cb);
|
|
// Now we need to run ClaimBoxes on other, as it may have obtained
|
|
// a box from this (beyond bbox) that is owned by a third party.
|
|
other->ClaimBoxes(cb);
|
|
// Scan our own list for bblob. If bblob is still in it and owned by
|
|
// other, there is trouble. Otherwise we can just restart to finish
|
|
// the blob list.
|
|
bb_it.set_to_list(&boxes_);
|
|
for (bb_it.mark_cycle_pt();
|
|
!bb_it.cycled_list() && bb_it.data() != bblob;
|
|
bb_it.forward());
|
|
ASSERT_HOST(bb_it.cycled_list() || bblob->owner() == NULL);
|
|
completed = false;
|
|
break;
|
|
}
|
|
}
|
|
} while (!completed);
|
|
}
|
|
|
|
// Delete the boxes that this partition owns.
|
|
void ColPartition::DeleteBoxes() {
|
|
// Although the boxes_ list is a C_LIST, in some cases it owns the
|
|
// BLOBNBOXes, as the ColPartition takes ownership from the grid,
|
|
// and the BLOBNBOXes own the underlying C_BLOBs.
|
|
for (BLOBNBOX_C_IT bb_it(&boxes_); !bb_it.empty(); bb_it.forward()) {
|
|
BLOBNBOX* bblob = bb_it.extract();
|
|
delete bblob->cblob();
|
|
delete bblob;
|
|
}
|
|
}
|
|
|
|
// Returns true if this is a legal partition - meaning that the conditions
|
|
// left_margin <= bounding_box left
|
|
// left_key <= bounding box left key
|
|
// bounding box left <= bounding box right
|
|
// and likewise for right margin and key
|
|
// are all met.
|
|
bool ColPartition::IsLegal() {
|
|
if (bounding_box_.left() > bounding_box_.right()) {
|
|
if (textord_debug_bugs) {
|
|
tprintf("Bounding box invalid\n");
|
|
Print();
|
|
}
|
|
return false; // Bounding box invalid.
|
|
}
|
|
if (left_margin_ > bounding_box_.left() ||
|
|
right_margin_ < bounding_box_.right()) {
|
|
if (textord_debug_bugs) {
|
|
tprintf("Margins invalid\n");
|
|
Print();
|
|
}
|
|
return false; // Margins invalid.
|
|
}
|
|
if (left_key_ > BoxLeftKey() || right_key_ < BoxRightKey()) {
|
|
if (textord_debug_bugs) {
|
|
tprintf("Key inside box: %d v %d or %d v %d\n",
|
|
left_key_, BoxLeftKey(), right_key_, BoxRightKey());
|
|
Print();
|
|
}
|
|
return false; // Keys inside the box.
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Returns true if the left and right edges are approximately equal.
|
|
bool ColPartition::MatchingColumns(const ColPartition& other) const {
|
|
int y = (MidY() + other.MidY()) / 2;
|
|
if (!NearlyEqual(other.LeftAtY(y) / kColumnWidthFactor,
|
|
LeftAtY(y) / kColumnWidthFactor, 1))
|
|
return false;
|
|
if (!NearlyEqual(other.RightAtY(y) / kColumnWidthFactor,
|
|
RightAtY(y) / kColumnWidthFactor, 1))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
// Sets the sort key using either the tab vector, or the bounding box if
|
|
// the tab vector is NULL. If the tab_vector lies inside the bounding_box,
|
|
// use the edge of the box as a key any way.
|
|
void ColPartition::SetLeftTab(const TabVector* tab_vector) {
|
|
if (tab_vector != NULL) {
|
|
left_key_ = tab_vector->sort_key();
|
|
left_key_tab_ = left_key_ <= BoxLeftKey();
|
|
} else {
|
|
left_key_tab_ = false;
|
|
}
|
|
if (!left_key_tab_)
|
|
left_key_ = BoxLeftKey();
|
|
}
|
|
|
|
// As SetLeftTab, but with the right.
|
|
void ColPartition::SetRightTab(const TabVector* tab_vector) {
|
|
if (tab_vector != NULL) {
|
|
right_key_ = tab_vector->sort_key();
|
|
right_key_tab_ = right_key_ >= BoxRightKey();
|
|
} else {
|
|
right_key_tab_ = false;
|
|
}
|
|
if (!right_key_tab_)
|
|
right_key_ = BoxRightKey();
|
|
}
|
|
|
|
// Copies the left/right tab from the src partition, but if take_box is
|
|
// true, copies the box instead and uses that as a key.
|
|
void ColPartition::CopyLeftTab(const ColPartition& src, bool take_box) {
|
|
left_key_tab_ = take_box ? false : src.left_key_tab_;
|
|
if (left_key_tab_) {
|
|
left_key_ = src.left_key_;
|
|
} else {
|
|
bounding_box_.set_left(XAtY(src.BoxLeftKey(), MidY()));
|
|
left_key_ = BoxLeftKey();
|
|
}
|
|
if (left_margin_ > bounding_box_.left())
|
|
left_margin_ = src.left_margin_;
|
|
}
|
|
|
|
// As CopyLeftTab, but with the right.
|
|
void ColPartition::CopyRightTab(const ColPartition& src, bool take_box) {
|
|
right_key_tab_ = take_box ? false : src.right_key_tab_;
|
|
if (right_key_tab_) {
|
|
right_key_ = src.right_key_;
|
|
} else {
|
|
bounding_box_.set_right(XAtY(src.BoxRightKey(), MidY()));
|
|
right_key_ = BoxRightKey();
|
|
}
|
|
if (right_margin_ < bounding_box_.right())
|
|
right_margin_ = src.right_margin_;
|
|
}
|
|
|
|
// Add a partner above if upper, otherwise below.
|
|
// Add them uniquely and keep the list sorted by box left.
|
|
// Partnerships are added symmetrically to partner and this.
|
|
void ColPartition::AddPartner(bool upper, ColPartition* partner) {
|
|
if (upper) {
|
|
partner->lower_partners_.add_sorted(SortByBoxLeft<ColPartition>,
|
|
true, this);
|
|
upper_partners_.add_sorted(SortByBoxLeft<ColPartition>, true, partner);
|
|
} else {
|
|
partner->upper_partners_.add_sorted(SortByBoxLeft<ColPartition>,
|
|
true, this);
|
|
lower_partners_.add_sorted(SortByBoxLeft<ColPartition>, true, partner);
|
|
}
|
|
}
|
|
|
|
// Removes the partner from this, but does not remove this from partner.
|
|
// This asymmetric removal is so as not to mess up the iterator that is
|
|
// working on partner's partner list.
|
|
void ColPartition::RemovePartner(bool upper, ColPartition* partner) {
|
|
ColPartition_C_IT it(upper ? &upper_partners_ : &lower_partners_);
|
|
for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
|
|
if (it.data() == partner) {
|
|
it.extract();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Returns the partner if the given partner is a singleton, otherwise NULL.
|
|
ColPartition* ColPartition::SingletonPartner(bool upper) {
|
|
ColPartition_CLIST* partners = upper ? &upper_partners_ : &lower_partners_;
|
|
if (!partners->singleton())
|
|
return NULL;
|
|
ColPartition_C_IT it(partners);
|
|
return it.data();
|
|
}
|
|
|
|
// Merge with the other partition and delete it.
|
|
void ColPartition::Absorb(ColPartition* other, WidthCallback* cb) {
|
|
if (TabFind::WithinTestRegion(2, bounding_box_.left(),
|
|
bounding_box_.bottom()) ||
|
|
TabFind::WithinTestRegion(2, other->bounding_box_.left(),
|
|
other->bounding_box_.bottom())) {
|
|
tprintf("Merging:");
|
|
Print();
|
|
other->Print();
|
|
}
|
|
// Merge the two sorted lists.
|
|
BLOBNBOX_C_IT it(&boxes_);
|
|
BLOBNBOX_C_IT it2(&other->boxes_);
|
|
for (; !it2.empty(); it2.forward()) {
|
|
BLOBNBOX* bbox2 = it2.extract();
|
|
ColPartition* prev_owner = bbox2->owner();
|
|
ASSERT_HOST(prev_owner == other || prev_owner == NULL);
|
|
if (prev_owner == other)
|
|
bbox2->set_owner(this);
|
|
bbox2->set_region_type(blob_type_);
|
|
TBOX box2 = bbox2->bounding_box();
|
|
int left2 = box2.left();
|
|
while (!it.at_last() && it.data()->bounding_box().left() <= left2) {
|
|
if (it.data() == bbox2)
|
|
break;
|
|
it.forward();
|
|
}
|
|
if (!it.empty() && it.data() == bbox2)
|
|
continue;
|
|
if (it.empty() || (it.at_last() &&
|
|
it.data()->bounding_box().left() <= left2)) {
|
|
it.add_after_then_move(bbox2);
|
|
} else {
|
|
it.add_before_then_move(bbox2);
|
|
}
|
|
}
|
|
left_margin_ = MIN(left_margin_, other->left_margin_);
|
|
right_margin_ = MAX(right_margin_, other->right_margin_);
|
|
if (other->left_key_ < left_key_) {
|
|
left_key_ = other->left_key_;
|
|
left_key_tab_ = other->left_key_tab_;
|
|
}
|
|
if (other->right_key_ > right_key_) {
|
|
right_key_ = other->right_key_;
|
|
right_key_tab_ = other->right_key_tab_;
|
|
}
|
|
delete other;
|
|
ComputeLimits();
|
|
if (cb != NULL) {
|
|
SetColumnGoodness(cb);
|
|
}
|
|
}
|
|
|
|
// Shares out any common boxes amongst the partitions, ensuring that no
|
|
// box stays in both. Returns true if anything was done.
|
|
bool ColPartition::Unique(ColPartition* other, WidthCallback* cb) {
|
|
bool debug = TabFind::WithinTestRegion(2, bounding_box_.left(),
|
|
bounding_box_.bottom()) ||
|
|
TabFind::WithinTestRegion(2, other->bounding_box_.left(),
|
|
other->bounding_box_.bottom());
|
|
if (debug) {
|
|
tprintf("Running Unique:");
|
|
Print();
|
|
other->Print();
|
|
}
|
|
BLOBNBOX_C_IT it(&boxes_);
|
|
BLOBNBOX_C_IT it2(&other->boxes_);
|
|
it.mark_cycle_pt();
|
|
it2.mark_cycle_pt();
|
|
bool any_moved = false;
|
|
while (!it.cycled_list() && !it2.cycled_list()) {
|
|
BLOBNBOX* bbox = it.data();
|
|
BLOBNBOX* bbox2 = it2.data();
|
|
TBOX box = bbox->bounding_box();
|
|
TBOX box2 = bbox2->bounding_box();
|
|
if (box.left() < box2.left()) {
|
|
it.forward();
|
|
} else if (box.left() > box2.left()) {
|
|
it2.forward();
|
|
} else if (bbox == bbox2) {
|
|
// Separate out most frequent case for efficiency.
|
|
if (debug) {
|
|
tprintf("Keeping box (%d,%d)->(%d,%d) only in %s\n",
|
|
box.left(), box.bottom(), box.right(), box.top(),
|
|
ThisPartitionBetter(bbox, *other) ? "This" : "Other");
|
|
}
|
|
if (ThisPartitionBetter(bbox, *other))
|
|
it2.extract();
|
|
else
|
|
it.extract();
|
|
it.forward();
|
|
it2.forward();
|
|
any_moved = true;
|
|
} else {
|
|
// Lefts are equal, but boxes may be in any order.
|
|
BLOBNBOX_C_IT search_it(it2);
|
|
for (search_it.forward(); !search_it.at_first() &&
|
|
search_it.data() != bbox &&
|
|
search_it.data()->bounding_box().left() == box.left();
|
|
search_it.forward());
|
|
if (search_it.data() == bbox) {
|
|
// Found a match.
|
|
if (ThisPartitionBetter(bbox, *other)) {
|
|
search_it.extract();
|
|
// We just (potentially) invalidated it2, so reposition at bbox2.
|
|
it2.move_to_first();
|
|
for (it2.mark_cycle_pt(); it2.data() != bbox2; it2.forward());
|
|
} else {
|
|
it.extract();
|
|
}
|
|
it.forward();
|
|
any_moved = true;
|
|
} else {
|
|
// No match to bbox in list2. Just move first it forward.
|
|
it.forward();
|
|
}
|
|
}
|
|
}
|
|
// Now check to see if there are any in either list that would be better
|
|
// off in the other.
|
|
if (!it.empty()) {
|
|
it.move_to_first();
|
|
for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
|
|
BLOBNBOX* bbox = it.data();
|
|
if (!ThisPartitionBetter(bbox, *other)) {
|
|
other->AddBox(it.extract());
|
|
TBOX box = bbox->bounding_box();
|
|
if (debug) {
|
|
tprintf("Moved box (%d,%d)->(%d,%d) from this to other:\n",
|
|
box.left(), box.bottom(), box.right(), box.top());
|
|
}
|
|
any_moved = true;
|
|
}
|
|
}
|
|
}
|
|
if (!it2.empty()) {
|
|
it2.move_to_first();
|
|
for (it2.mark_cycle_pt(); !it2.cycled_list(); it2.forward()) {
|
|
BLOBNBOX* bbox2 = it2.data();
|
|
if (ThisPartitionBetter(bbox2, *other)) {
|
|
AddBox(it2.extract());
|
|
TBOX box = bbox2->bounding_box();
|
|
if (debug) {
|
|
tprintf("Moved box (%d,%d)->(%d,%d) from other to this:\n",
|
|
box.left(), box.bottom(), box.right(), box.top());
|
|
}
|
|
any_moved = true;
|
|
}
|
|
}
|
|
}
|
|
if (any_moved) {
|
|
if (debug)
|
|
tprintf("Unique did something!\n");
|
|
ComputeLimits();
|
|
other->ComputeLimits();
|
|
if (cb != NULL) {
|
|
SetColumnGoodness(cb);
|
|
other->SetColumnGoodness(cb);
|
|
}
|
|
}
|
|
return any_moved;
|
|
}
|
|
|
|
// Split this partition at the given x coordinate, returning the right
|
|
// half and keeping the left half in this.
|
|
ColPartition* ColPartition::SplitAt(int split_x) {
|
|
if (split_x <= bounding_box_.left() || split_x >= bounding_box_.right())
|
|
return NULL; // There will be no change.
|
|
ColPartition* split_part = ShallowCopy();
|
|
BLOBNBOX_C_IT it(&boxes_);
|
|
for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
|
|
BLOBNBOX* bbox = it.data();
|
|
ColPartition* prev_owner = bbox->owner();
|
|
ASSERT_HOST(prev_owner == this || prev_owner == NULL);
|
|
const TBOX& box = bbox->bounding_box();
|
|
if (box.left() >= split_x) {
|
|
split_part->AddBox(it.extract());
|
|
if (prev_owner != NULL)
|
|
bbox->set_owner(split_part);
|
|
}
|
|
}
|
|
ASSERT_HOST(!it.empty());
|
|
if (split_part->IsEmpty()) {
|
|
// Split part ended up with nothing. Possible if split_x passes
|
|
// through the last blob.
|
|
delete split_part;
|
|
return NULL;
|
|
}
|
|
right_key_tab_ = false;
|
|
split_part->left_key_tab_ = false;
|
|
right_margin_ = split_x;
|
|
split_part->left_margin_ = split_x;
|
|
ComputeLimits();
|
|
split_part->ComputeLimits();
|
|
return split_part;
|
|
}
|
|
|
|
// Recalculates all the coordinate limits of the partition.
|
|
void ColPartition::ComputeLimits() {
|
|
bounding_box_ = TBOX(); // Clear it
|
|
BLOBNBOX_C_IT it(&boxes_);
|
|
BLOBNBOX* bbox = NULL;
|
|
if (it.empty()) {
|
|
bounding_box_.set_left(left_margin_);
|
|
bounding_box_.set_right(right_margin_);
|
|
bounding_box_.set_bottom(0);
|
|
bounding_box_.set_top(0);
|
|
} else {
|
|
for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
|
|
bbox = it.data();
|
|
bounding_box_ += bbox->bounding_box();
|
|
}
|
|
}
|
|
if (!left_key_tab_)
|
|
left_key_ = BoxLeftKey();
|
|
if (left_key_ > BoxLeftKey() && textord_debug_bugs) {
|
|
// TODO(rays) investigate the causes of these error messages, to find
|
|
// out if they are genuinely harmful, or just indicative of junk input.
|
|
tprintf("Computed left-illegal partition\n");
|
|
Print();
|
|
}
|
|
if (!right_key_tab_)
|
|
right_key_ = BoxRightKey();
|
|
if (right_key_ < BoxRightKey() && textord_debug_bugs) {
|
|
tprintf("Computed right-illegal partition\n");
|
|
Print();
|
|
}
|
|
if (it.empty())
|
|
return;
|
|
STATS top_stats(bounding_box_.bottom(), bounding_box_.top() + 1);
|
|
STATS bottom_stats(bounding_box_.bottom(), bounding_box_.top() + 1);
|
|
STATS size_stats(0, bounding_box_.height() + 1);
|
|
for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
|
|
bbox = it.data();
|
|
TBOX box = bbox->bounding_box();
|
|
top_stats.add(box.top(), 1);
|
|
bottom_stats.add(box.bottom(), 1);
|
|
size_stats.add(box.height(), 1);
|
|
}
|
|
median_top_ = static_cast<int>(top_stats.median() + 0.5);
|
|
median_bottom_ = static_cast<int>(bottom_stats.median() + 0.5);
|
|
median_size_ = static_cast<int>(size_stats.median() + 0.5);
|
|
|
|
if (right_margin_ < bounding_box_.right() && textord_debug_bugs) {
|
|
tprintf("Made partition with bad right coords");
|
|
Print();
|
|
}
|
|
if (left_margin_ > bounding_box_.left() && textord_debug_bugs) {
|
|
tprintf("Made partition with bad left coords");
|
|
Print();
|
|
}
|
|
if (TabFind::WithinTestRegion(2, bounding_box_.left(),
|
|
bounding_box_.bottom())) {
|
|
tprintf("Recomputed box for partition %p\n", this);
|
|
Print();
|
|
}
|
|
}
|
|
|
|
// Computes and sets the type_ and first_colum_, last_column_ and column_set_.
|
|
void ColPartition::SetPartitionType(ColPartitionSet* columns) {
|
|
int first_spanned_col = -1;
|
|
int last_spanned_col = -1;
|
|
type_ = columns->SpanningType(blob_type_,
|
|
bounding_box_.left(), bounding_box_.right(),
|
|
MidY(), left_margin_, right_margin_,
|
|
&first_column_, &last_column_,
|
|
&first_spanned_col, &last_spanned_col);
|
|
column_set_ = columns;
|
|
if (first_column_ != last_column_ &&
|
|
(type_ == PT_PULLOUT_TEXT || type_ == PT_PULLOUT_IMAGE ||
|
|
type_ == PT_PULLOUT_LINE)) {
|
|
// Unequal columns may indicate that the pullout spans one of the columns
|
|
// it lies in, so force it to be allocated to just that column.
|
|
if (first_spanned_col >= 0) {
|
|
first_column_ = first_spanned_col;
|
|
last_column_ = first_spanned_col;
|
|
} else {
|
|
if ((first_column_ & 1) == 0)
|
|
last_column_ = first_column_;
|
|
else if ((last_column_ & 1) == 0)
|
|
first_column_ = last_column_;
|
|
else
|
|
first_column_ = last_column_ = (first_column_ + last_column_) / 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Returns the first and last column touched by this partition.
|
|
void ColPartition::ColumnRange(ColPartitionSet* columns,
|
|
int* first_col, int* last_col) {
|
|
int first_spanned_col = -1;
|
|
int last_spanned_col = -1;
|
|
type_ = columns->SpanningType(blob_type_,
|
|
bounding_box_.left(), bounding_box_.right(),
|
|
MidY(), left_margin_, right_margin_,
|
|
first_col, last_col,
|
|
&first_spanned_col, &last_spanned_col);
|
|
}
|
|
|
|
// Sets the internal flags good_width_ and good_column_.
|
|
void ColPartition::SetColumnGoodness(WidthCallback* cb) {
|
|
int y = MidY();
|
|
int width = RightAtY(y) - LeftAtY(y);
|
|
good_width_ = cb->Run(width);
|
|
good_column_ = blob_type_ == BRT_TEXT && left_key_tab_ && right_key_tab_;
|
|
}
|
|
|
|
// Adds this ColPartition to a matching WorkingPartSet if one can be found,
|
|
// otherwise starts a new one in the appropriate column, ending the previous.
|
|
void ColPartition::AddToWorkingSet(const ICOORD& bleft, const ICOORD& tright,
|
|
int resolution,
|
|
ColPartition_LIST* used_parts,
|
|
WorkingPartSet_LIST* working_sets) {
|
|
if (block_owned_)
|
|
return; // Done it already.
|
|
block_owned_ = true;
|
|
WorkingPartSet_IT it(working_sets);
|
|
// If there is an upper partner use its working_set_ directly.
|
|
ColPartition* partner = SingletonPartner(true);
|
|
if (partner != NULL && partner->working_set_ != NULL) {
|
|
working_set_ = partner->working_set_;
|
|
working_set_->AddPartition(this);
|
|
return;
|
|
}
|
|
if (partner != NULL && textord_debug_bugs) {
|
|
tprintf("Partition with partner has no working set!:");
|
|
Print();
|
|
partner->Print();
|
|
}
|
|
// Search for the column that the left edge fits in.
|
|
WorkingPartSet* work_set = NULL;
|
|
it.move_to_first();
|
|
int col_index = 0;
|
|
for (it.mark_cycle_pt(); !it.cycled_list() &&
|
|
col_index != first_column_;
|
|
it.forward(), ++col_index);
|
|
if (textord_debug_tabfind >= 2) {
|
|
tprintf("Match is %s for:", (col_index & 1) ? "Real" : "Between");
|
|
Print();
|
|
}
|
|
if (it.cycled_list() && textord_debug_bugs) {
|
|
tprintf("Target column=%d, only had %d\n", first_column_, col_index);
|
|
}
|
|
ASSERT_HOST(!it.cycled_list());
|
|
work_set = it.data();
|
|
// If last_column_ != first_column, then we need to scoop up all blocks
|
|
// between here and the last_column_ and put back in work_set.
|
|
if (!it.cycled_list() && last_column_ != first_column_) {
|
|
// Find the column that the right edge falls in.
|
|
BLOCK_LIST completed_blocks;
|
|
TO_BLOCK_LIST to_blocks;
|
|
for (; !it.cycled_list() && col_index <= last_column_;
|
|
it.forward(), ++col_index) {
|
|
WorkingPartSet* end_set = it.data();
|
|
end_set->ExtractCompletedBlocks(bleft, tright, resolution, used_parts,
|
|
&completed_blocks, &to_blocks);
|
|
}
|
|
work_set->InsertCompletedBlocks(&completed_blocks, &to_blocks);
|
|
}
|
|
working_set_ = work_set;
|
|
work_set->AddPartition(this);
|
|
}
|
|
|
|
// From the given block_parts list, builds one or more BLOCKs and
|
|
// corresponding TO_BLOCKs, such that the line spacing is uniform in each.
|
|
// Created blocks are appended to the end of completed_blocks and to_blocks.
|
|
// The used partitions are put onto used_parts, as they may still be referred
|
|
// to in the partition grid. bleft, tright and resolution are the bounds
|
|
// and resolution of the original image.
|
|
void ColPartition::LineSpacingBlocks(const ICOORD& bleft, const ICOORD& tright,
|
|
int resolution,
|
|
ColPartition_LIST* block_parts,
|
|
ColPartition_LIST* used_parts,
|
|
BLOCK_LIST* completed_blocks,
|
|
TO_BLOCK_LIST* to_blocks) {
|
|
int page_height = tright.y() - bleft.y();
|
|
// Compute the initial spacing stats.
|
|
ColPartition_IT it(block_parts);
|
|
int part_count = 0;
|
|
for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
|
|
ColPartition* part = it.data();
|
|
ASSERT_HOST(!part->boxes()->empty());
|
|
STATS side_steps(0, part->bounding_box().height());
|
|
BLOBNBOX_C_IT blob_it(part->boxes());
|
|
int prev_bottom = blob_it.data()->bounding_box().bottom();
|
|
for (blob_it.forward(); !blob_it.at_first(); blob_it.forward()) {
|
|
BLOBNBOX* blob = blob_it.data();
|
|
int bottom = blob->bounding_box().bottom();
|
|
int step = bottom - prev_bottom;
|
|
if (step < 0)
|
|
step = -step;
|
|
side_steps.add(step, 1);
|
|
prev_bottom = bottom;
|
|
}
|
|
part->set_side_step(static_cast<int>(side_steps.median() + 0.5));
|
|
if (!it.at_last()) {
|
|
ColPartition* next_part = it.data_relative(1);
|
|
part->set_bottom_spacing(part->median_bottom() -
|
|
next_part->median_bottom());
|
|
part->set_top_spacing(part->median_top() - next_part->median_top());
|
|
} else {
|
|
part->set_bottom_spacing(page_height);
|
|
part->set_top_spacing(page_height);
|
|
}
|
|
if (textord_debug_tabfind) {
|
|
part->Print();
|
|
tprintf("side step = %.2f, top spacing = %d, bottom spacing=%d\n",
|
|
side_steps.median(), part->top_spacing(), part->bottom_spacing());
|
|
}
|
|
++part_count;
|
|
}
|
|
if (part_count == 0)
|
|
return;
|
|
|
|
SmoothSpacings(resolution, page_height, block_parts);
|
|
|
|
// Move the partitions into individual block lists and make the blocks.
|
|
BLOCK_IT block_it(completed_blocks);
|
|
TO_BLOCK_IT to_block_it(to_blocks);
|
|
ColPartition_LIST spacing_parts;
|
|
ColPartition_IT sp_block_it(&spacing_parts);
|
|
for (it.mark_cycle_pt(); !it.empty();) {
|
|
ColPartition* part = it.extract();
|
|
sp_block_it.add_to_end(part);
|
|
it.forward();
|
|
if (it.empty() || !part->SpacingsEqual(*it.data(), resolution)) {
|
|
// There is a spacing boundary. Check to see if it.data() belongs
|
|
// better in the current block or the next one.
|
|
if (!it.empty()) {
|
|
ColPartition* next_part = it.data();
|
|
// If there is a size match one-way, then the middle line goes with
|
|
// its matched size, otherwise it goes with the smallest spacing.
|
|
ColPartition* third_part = it.at_last() ? NULL : it.data_relative(1);
|
|
if (textord_debug_tabfind)
|
|
tprintf("Spacings unequal: upper:%d/%d, lower:%d/%d,"
|
|
" sizes %d %d %d\n",
|
|
part->top_spacing(), part->bottom_spacing(),
|
|
next_part->top_spacing(), next_part->bottom_spacing(),
|
|
part->median_size(), next_part->median_size(),
|
|
third_part != NULL ? third_part->median_size() : 0);
|
|
// If spacing_diff ends up positive, then next_part goes in the
|
|
// current block.
|
|
int spacing_diff = next_part->bottom_spacing() - part->bottom_spacing();
|
|
if (part->SizesSimilar(*next_part) &&
|
|
(third_part == NULL || !next_part->SizesSimilar(*third_part))) {
|
|
// Sizes overrule.
|
|
spacing_diff = 1;
|
|
} else if (!part->SizesSimilar(*next_part) && third_part != NULL &&
|
|
next_part->SizesSimilar(*third_part)) {
|
|
// Sizes overrule.
|
|
spacing_diff = -1;
|
|
}
|
|
if (spacing_diff > 0) {
|
|
sp_block_it.add_to_end(it.extract());
|
|
it.forward();
|
|
}
|
|
}
|
|
TO_BLOCK* to_block = MakeBlock(bleft, tright, &spacing_parts, used_parts);
|
|
if (to_block != NULL) {
|
|
to_block_it.add_to_end(to_block);
|
|
block_it.add_to_end(to_block->block);
|
|
}
|
|
sp_block_it.set_to_list(&spacing_parts);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Helper function to clip the input pos to the given bleft, tright bounds.
|
|
static void ClipCoord(const ICOORD& bleft, const ICOORD& tright, ICOORD* pos) {
|
|
if (pos->x() < bleft.x())
|
|
pos->set_x(bleft.x());
|
|
if (pos->x() > tright.x())
|
|
pos->set_x(tright.x());
|
|
if (pos->y() < bleft.y())
|
|
pos->set_y(bleft.y());
|
|
if (pos->y() > tright.y())
|
|
pos->set_y(tright.y());
|
|
}
|
|
|
|
// Constructs a block from the given list of partitions.
|
|
// Arguments are as LineSpacingBlocks above.
|
|
TO_BLOCK* ColPartition::MakeBlock(const ICOORD& bleft, const ICOORD& tright,
|
|
ColPartition_LIST* block_parts,
|
|
ColPartition_LIST* used_parts) {
|
|
if (block_parts->empty())
|
|
return NULL; // Nothing to do.
|
|
ColPartition_IT it(block_parts);
|
|
ColPartition* part = it.data();
|
|
int line_spacing = part->bottom_spacing();
|
|
if (line_spacing < part->median_size())
|
|
line_spacing = part->bounding_box().height();
|
|
PolyBlockType type = it.data()->type();
|
|
bool text_type = it.data()->IsTextType();
|
|
ICOORDELT_LIST vertices;
|
|
ICOORDELT_IT vert_it(&vertices);
|
|
ICOORD start, end;
|
|
int min_x = MAX_INT32;
|
|
int max_x = MIN_INT32;
|
|
int min_y = MAX_INT32;
|
|
int max_y = MIN_INT32;
|
|
int iteration = 0;
|
|
do {
|
|
if (iteration == 0)
|
|
ColPartition::LeftEdgeRun(&it, &start, &end);
|
|
else
|
|
ColPartition::RightEdgeRun(&it, &start, &end);
|
|
ClipCoord(bleft, tright, &start);
|
|
ClipCoord(bleft, tright, &end);
|
|
vert_it.add_after_then_move(new ICOORDELT(start));
|
|
vert_it.add_after_then_move(new ICOORDELT(end));
|
|
min_x = MIN(min_x, start.x());
|
|
min_x = MIN(min_x, end.x());
|
|
max_x = MAX(max_x, start.x());
|
|
max_x = MAX(max_x, end.x());
|
|
min_y = MIN(min_y, start.y());
|
|
min_y = MIN(min_y, end.y());
|
|
max_y = MAX(max_y, start.y());
|
|
max_y = MAX(max_y, end.y());
|
|
if ((iteration == 0 && it.at_first()) ||
|
|
(iteration == 1 && it.at_last())) {
|
|
++iteration;
|
|
it.move_to_last();
|
|
}
|
|
} while (iteration < 2);
|
|
if (textord_debug_tabfind)
|
|
tprintf("Making block at (%d,%d)->(%d,%d)\n",
|
|
min_x, min_y, max_x, max_y);
|
|
BLOCK* block = new BLOCK("", true, 0, 0, min_x, min_y, max_x, max_y);
|
|
block->set_poly_block(new POLY_BLOCK(&vertices, type));
|
|
// Make a matching TO_BLOCK and put all the BLOBNBOXes from the parts in it.
|
|
// Move all the parts to a done list as they are no longer needed, except
|
|
// that have have to continue to exist until the part grid is deleted.
|
|
// Compute the median blob size as we go, as the block needs to know.
|
|
STATS heights(0, max_y + 1 - min_y);
|
|
TO_BLOCK* to_block = new TO_BLOCK(block);
|
|
BLOBNBOX_IT blob_it(&to_block->blobs);
|
|
ColPartition_IT used_it(used_parts);
|
|
for (it.move_to_first(); !it.empty(); it.forward()) {
|
|
ColPartition* part = it.extract();
|
|
if (text_type) {
|
|
// Only transfer blobs from text regions to the output blocks.
|
|
// The rest stay behind and get deleted with the ColPartitions.
|
|
for (BLOBNBOX_C_IT bb_it(part->boxes()); !bb_it.empty();
|
|
bb_it.forward()) {
|
|
BLOBNBOX* bblob = bb_it.extract();
|
|
ASSERT_HOST(bblob->owner() == part);
|
|
ASSERT_HOST(bblob->region_type() >= BRT_UNKNOWN);
|
|
C_OUTLINE_IT ol_it(bblob->cblob()->out_list());
|
|
ASSERT_HOST(ol_it.data()->pathlength() > 0);
|
|
heights.add(bblob->bounding_box().height(), 1);
|
|
blob_it.add_after_then_move(bblob);
|
|
}
|
|
}
|
|
used_it.add_to_end(part);
|
|
}
|
|
if (text_type && blob_it.empty()) {
|
|
delete block;
|
|
delete to_block;
|
|
return NULL;
|
|
}
|
|
to_block->line_size = heights.median();
|
|
int block_height = block->bounding_box().height();
|
|
if (block_height < line_spacing)
|
|
line_spacing = block_height;
|
|
to_block->line_spacing = line_spacing;
|
|
to_block->max_blob_size = block_height + 1;
|
|
if (type == PT_VERTICAL_TEXT) {
|
|
// This block will get rotated 90 deg clockwise so record the inverse.
|
|
FCOORD rotation(0.0f, 1.0f);
|
|
block->set_re_rotation(rotation);
|
|
}
|
|
return to_block;
|
|
}
|
|
|
|
// Returns a copy of everything except the list of boxes. The resulting
|
|
// ColPartition is only suitable for keeping in a column candidate list.
|
|
ColPartition* ColPartition::ShallowCopy() const {
|
|
ColPartition* part = new ColPartition(blob_type_, vertical_);
|
|
part->left_margin_ = left_margin_;
|
|
part->right_margin_ = right_margin_;
|
|
part->bounding_box_ = bounding_box_;
|
|
part->median_bottom_ = median_bottom_;
|
|
part->median_top_ = median_top_;
|
|
part->median_size_ = median_size_;
|
|
part->good_width_ = good_width_;
|
|
part->good_column_ = good_column_;
|
|
part->left_key_tab_ = left_key_tab_;
|
|
part->right_key_tab_ = right_key_tab_;
|
|
part->type_ = type_;
|
|
part->left_key_ = left_key_;
|
|
part->right_key_ = right_key_;
|
|
return part;
|
|
}
|
|
|
|
// Provides a color for BBGrid to draw the rectangle.
|
|
// Must be kept in sync with PolyBlockType.
|
|
ScrollView::Color ColPartition::BoxColor() const {
|
|
return POLY_BLOCK::ColorForPolyBlockType(type_);
|
|
}
|
|
|
|
// Keep in sync with BlobRegionType.
|
|
static char kBlobTypes[BRT_COUNT + 1] = "NHRIUVT";
|
|
|
|
// Prints debug information on this.
|
|
void ColPartition::Print() {
|
|
int y = MidY();
|
|
tprintf("ColPart:%c(M%d-%c%d-B%d,%d/%d)->(%dB-%d%c-%dM,%d/%d)"
|
|
" w-ok=%d, v-ok=%d, type=%d%c, fc=%d, lc=%d, boxes=%d"
|
|
" ts=%d bs=%d ls=%d rs=%d\n",
|
|
boxes_.empty() ? 'E' : ' ',
|
|
left_margin_, left_key_tab_ ? 'T' : 'B', LeftAtY(y),
|
|
bounding_box_.left(), median_bottom_, bounding_box_.bottom(),
|
|
bounding_box_.right(), RightAtY(y), right_key_tab_ ? 'T' : 'B',
|
|
right_margin_, median_top_, bounding_box_.top(),
|
|
good_width_, good_column_, type_,
|
|
kBlobTypes[blob_type_],
|
|
first_column_, last_column_, boxes_.length(),
|
|
space_above_, space_below_, space_to_left_, space_to_right_);
|
|
}
|
|
|
|
// Sets the types of all partitions in the run to be the max of the types.
|
|
void ColPartition::SmoothPartnerRun(int working_set_count) {
|
|
STATS left_stats(0, working_set_count);
|
|
STATS right_stats(0, working_set_count);
|
|
PolyBlockType max_type = type_;
|
|
ColPartition* partner;
|
|
for (partner = SingletonPartner(false); partner != NULL;
|
|
partner = partner->SingletonPartner(false)) {
|
|
if (partner->type_ > max_type)
|
|
max_type = partner->type_;
|
|
if (column_set_ == partner->column_set_) {
|
|
left_stats.add(partner->first_column_, 1);
|
|
right_stats.add(partner->last_column_, 1);
|
|
}
|
|
}
|
|
type_ = max_type;
|
|
first_column_ = left_stats.mode();
|
|
last_column_ = right_stats.mode();
|
|
if (last_column_ < first_column_)
|
|
last_column_ = first_column_;
|
|
|
|
for (partner = SingletonPartner(false); partner != NULL;
|
|
partner = partner->SingletonPartner(false)) {
|
|
partner->type_ = max_type;
|
|
if (column_set_ == partner->column_set_) {
|
|
partner->first_column_ = first_column_;
|
|
partner->last_column_ = last_column_;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Cleans up the partners of the given type so that there is at most
|
|
// one partner. This makes block creation simpler.
|
|
void ColPartition::RefinePartners(PolyBlockType type) {
|
|
if (type_ == type) {
|
|
RefinePartnersInternal(true);
|
|
RefinePartnersInternal(false);
|
|
} else if (type == PT_COUNT) {
|
|
// This is the final pass. Make sure only the correctly typed
|
|
// partners surivive, however many there are.
|
|
RefinePartnersByType(true, &upper_partners_);
|
|
RefinePartnersByType(false, &lower_partners_);
|
|
}
|
|
}
|
|
|
|
////////////////// PRIVATE CODE /////////////////////////////
|
|
|
|
// Cleans up the partners above if upper is true, else below.
|
|
void ColPartition::RefinePartnersInternal(bool upper) {
|
|
ColPartition_CLIST* partners = upper ? &upper_partners_ : &lower_partners_;
|
|
if (!partners->empty() && !partners->singleton()) {
|
|
RefinePartnersByType(upper, partners);
|
|
if (!partners->empty() && !partners->singleton()) {
|
|
// Check for transitive partnerships and break the cycle.
|
|
RefinePartnerShortcuts(upper, partners);
|
|
if (!partners->empty() && !partners->singleton()) {
|
|
// Types didn't fix it. Flowing text keeps the one with the longest
|
|
// sequence of singleton matching partners. All others max overlap.
|
|
if (type_ == PT_FLOWING_TEXT)
|
|
RefineFlowingTextPartners(upper, partners);
|
|
else
|
|
RefinePartnersByOverlap(upper, partners);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Restricts the partners to only desirable types. For text and BRT_HLINE this
|
|
// means the same type_ , and for image types it means any image type.
|
|
void ColPartition::RefinePartnersByType(bool upper,
|
|
ColPartition_CLIST* partners) {
|
|
if (TabFind::WithinTestRegion(2, bounding_box_.left(),
|
|
bounding_box_.bottom())) {
|
|
tprintf("Refining %s partners by type for:\n", upper ? "Upper" : "Lower");
|
|
Print();
|
|
}
|
|
ColPartition_C_IT it(partners);
|
|
// Purify text by type.
|
|
if (blob_type_ > BRT_UNKNOWN || blob_type_ == BRT_HLINE) {
|
|
// Keep only partners matching type_.
|
|
// Exception: PT_VERTICAL_TEXT is allowed to stay with the other
|
|
// text types if it is the only partner.
|
|
for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
|
|
ColPartition* partner = it.data();
|
|
if (partner->type_ != type_ &&
|
|
(!partners->singleton() ||
|
|
(type_ != PT_VERTICAL_TEXT && partner->type_ != PT_VERTICAL_TEXT) ||
|
|
!IsTextType() || !partner->IsTextType())) {
|
|
partner->RemovePartner(!upper, this);
|
|
it.extract();
|
|
} else if (TabFind::WithinTestRegion(2, bounding_box_.left(),
|
|
bounding_box_.bottom())) {
|
|
tprintf("Keeping partner:");
|
|
partner->Print();
|
|
}
|
|
}
|
|
} else {
|
|
// Keep only images with images, but not being fussy about type.
|
|
for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
|
|
ColPartition* partner = it.data();
|
|
if (partner->blob_type_ > BRT_UNKNOWN ||
|
|
partner->blob_type_ == BRT_HLINE) {
|
|
partner->RemovePartner(!upper, this);
|
|
it.extract();
|
|
} else if (TabFind::WithinTestRegion(2, bounding_box_.left(),
|
|
bounding_box_.bottom())) {
|
|
tprintf("Keeping partner:");
|
|
partner->Print();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Remove transitive partnerships: this<->a, and a<->b and this<->b.
|
|
// Gets rid of this<->b, leaving a clean chain.
|
|
// Also if we have this<->a and a<->this, then gets rid of this<->a, as
|
|
// this has multiple partners.
|
|
void ColPartition::RefinePartnerShortcuts(bool upper,
|
|
ColPartition_CLIST* partners) {
|
|
bool done_any = false;
|
|
do {
|
|
done_any = false;
|
|
ColPartition_C_IT it(partners);
|
|
for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
|
|
ColPartition* a = it.data();
|
|
// Check for a match between all of a's partners (it1/b1) and all
|
|
// of this's partners (it2/b2).
|
|
ColPartition_C_IT it1(upper ? &a->upper_partners_ : &a->lower_partners_);
|
|
for (it1.mark_cycle_pt(); !it1.cycled_list(); it1.forward()) {
|
|
ColPartition* b1 = it1.data();
|
|
if (b1 == this) {
|
|
done_any = true;
|
|
it.extract();
|
|
a->RemovePartner(!upper, this);
|
|
break;
|
|
}
|
|
ColPartition_C_IT it2(partners);
|
|
for (it2.mark_cycle_pt(); !it2.cycled_list(); it2.forward()) {
|
|
ColPartition* b2 = it2.data();
|
|
if (b1 == b2) {
|
|
// Jackpot! b2 should not be a partner of this.
|
|
it2.extract();
|
|
b2->RemovePartner(!upper, this);
|
|
done_any = true;
|
|
// That potentially invalidated all the iterators, so break out
|
|
// and start again.
|
|
break;
|
|
}
|
|
}
|
|
if (done_any)
|
|
break;
|
|
}
|
|
if (done_any)
|
|
break;
|
|
}
|
|
} while (done_any && !partners->empty() && !partners->singleton());
|
|
}
|
|
|
|
// Keeps the partner with the longest sequence of singleton matching partners.
|
|
// Converts all others to pullout.
|
|
void ColPartition::RefineFlowingTextPartners(bool upper,
|
|
ColPartition_CLIST* partners) {
|
|
ColPartition_C_IT it(partners);
|
|
ColPartition* best_partner = it.data();
|
|
// Nasty iterative algorithm.
|
|
int depth = 1;
|
|
int survivors = 0;
|
|
do {
|
|
survivors = 0;
|
|
for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
|
|
ColPartition* partner = it.data();
|
|
// See if it survives a chase to depth levels.
|
|
for (int i = 0; i < depth && partner != NULL; ++i) {
|
|
partner = partner->SingletonPartner(upper);
|
|
if (partner != NULL && partner->type_ != PT_FLOWING_TEXT)
|
|
partner = NULL;
|
|
}
|
|
if (partner != NULL) {
|
|
++survivors;
|
|
best_partner = it.data();
|
|
}
|
|
}
|
|
++depth;
|
|
} while (survivors > 1 && depth <= kMaxPartnerDepth);
|
|
// Keep only the best partner.
|
|
for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
|
|
ColPartition* partner = it.data();
|
|
if (partner != best_partner) {
|
|
partner->RemovePartner(!upper, this);
|
|
it.extract();
|
|
// Change the types of partner to be PT_PULLOUT_TEXT.
|
|
while (partner != NULL && partner->type_ == PT_FLOWING_TEXT) {
|
|
partner->type_ = PT_PULLOUT_TEXT;
|
|
partner = partner->SingletonPartner(upper);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Keep the partner with the biggest overlap.
|
|
void ColPartition::RefinePartnersByOverlap(bool upper,
|
|
ColPartition_CLIST* partners) {
|
|
ColPartition_C_IT it(partners);
|
|
ColPartition* best_partner = it.data();
|
|
// Find the partner with the best overlap.
|
|
int best_overlap = 0;
|
|
for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
|
|
ColPartition* partner = it.data();
|
|
int overlap = MIN(bounding_box_.right(), partner->bounding_box_.right())
|
|
- MAX(bounding_box_.left(), partner->bounding_box_.left());
|
|
if (overlap > best_overlap) {
|
|
best_overlap = overlap;
|
|
best_partner = partner;
|
|
}
|
|
}
|
|
// Keep only the best partner.
|
|
for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
|
|
ColPartition* partner = it.data();
|
|
if (partner != best_partner) {
|
|
partner->RemovePartner(!upper, this);
|
|
it.extract();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Return true if bbox belongs better in this than other.
|
|
bool ColPartition::ThisPartitionBetter(BLOBNBOX* bbox,
|
|
const ColPartition& other) {
|
|
TBOX box = bbox->bounding_box();
|
|
// Margins take priority.
|
|
int left = box.left();
|
|
int right = box.right();
|
|
if (left < left_margin_ || right > right_margin_)
|
|
return false;
|
|
if (left < other.left_margin_ || right > other.right_margin_)
|
|
return true;
|
|
int top = box.top();
|
|
int bottom = box.bottom();
|
|
int this_overlap = MIN(top, median_top_) - MAX(bottom, median_bottom_);
|
|
int other_overlap = MIN(top, other.median_top_) -
|
|
MAX(bottom, other.median_bottom_);
|
|
int this_miss = median_top_ - median_bottom_ - this_overlap;
|
|
int other_miss = other.median_top_ - other.median_bottom_ - other_overlap;
|
|
if (TabFind::WithinTestRegion(3, box.left(), box.bottom())) {
|
|
tprintf("Unique on (%d,%d)->(%d,%d) overlap %d/%d, miss %d/%d, mt=%d/%d\n",
|
|
box.left(), box.bottom(), box.right(), box.top(),
|
|
this_overlap, other_overlap, this_miss, other_miss,
|
|
median_top_, other.median_top_);
|
|
}
|
|
if (this_miss < other_miss)
|
|
return true;
|
|
if (this_miss > other_miss)
|
|
return false;
|
|
if (this_overlap > other_overlap)
|
|
return true;
|
|
if (this_overlap < other_overlap)
|
|
return false;
|
|
return median_top_ >= other.median_top_;
|
|
}
|
|
|
|
// Returns the median line-spacing between the current position and the end
|
|
// of the list.
|
|
// The iterator is passed by value so the iteration does not modify the
|
|
// caller's iterator.
|
|
static int MedianSpacing(int page_height, ColPartition_IT it) {
|
|
STATS stats(0, page_height);
|
|
while (!it.cycled_list()) {
|
|
ColPartition* part = it.data();
|
|
it.forward();
|
|
stats.add(part->bottom_spacing(), 1);
|
|
stats.add(part->top_spacing(), 1);
|
|
}
|
|
return static_cast<int>(stats.median() + 0.5);
|
|
}
|
|
|
|
// Smoothes the spacings in the list into groups of equal linespacing.
|
|
// resolution is the resolution of the original image, used as a basis
|
|
// for thresholds in change of spacing. page_height is in pixels.
|
|
void ColPartition::SmoothSpacings(int resolution, int page_height,
|
|
ColPartition_LIST* parts) {
|
|
// The task would be trivial if we didn't have to allow for blips -
|
|
// occasional offsets in spacing caused by anomolous text, such as all
|
|
// caps, groups of descenders, joined words, Arabic etc.
|
|
// The neighbourhood stores a consecutive group of partitions so that
|
|
// blips can be detected correctly, yet conservatively enough to not
|
|
// mistake genuine spacing changes for blips. See example below.
|
|
ColPartition* neighbourhood[PN_COUNT];
|
|
ColPartition_IT it(parts);
|
|
it.mark_cycle_pt();
|
|
// Although we know nothing about the spacings is this list, the median is
|
|
// used as an approximation to allow blips.
|
|
// If parts of this block aren't spaced to the median, then we can't
|
|
// accept blips in those parts, but we'll recalculate it each time we
|
|
// split the block, so the median becomes more likely to match all the text.
|
|
int median_space = MedianSpacing(page_height, it);
|
|
ColPartition_IT start_it(it);
|
|
ColPartition_IT end_it(it);
|
|
for (int i = 0; i < PN_COUNT; ++i) {
|
|
if (i < PN_UPPER || it.cycled_list()) {
|
|
neighbourhood[i] = NULL;
|
|
} else {
|
|
if (i == PN_LOWER)
|
|
end_it = it;
|
|
neighbourhood[i] = it.data();
|
|
it.forward();
|
|
}
|
|
}
|
|
while (neighbourhood[PN_UPPER] != NULL) {
|
|
// Test for end of a group. Normally SpacingsEqual is true within a group,
|
|
// but in the case of a blip, it will be false. Here is an example:
|
|
// Line enum Spacing below (spacing between tops of lines)
|
|
// 1 ABOVE2 20
|
|
// 2 ABOVE1 20
|
|
// 3 UPPER 15
|
|
// 4 LOWER 25
|
|
// 5 BELOW1 20
|
|
// 6 BELOW2 20
|
|
// Line 4 is all in caps (regular caps), so the spacing between line 3
|
|
// and line 4 (looking at the tops) is smaller than normal, and the
|
|
// spacing between line 4 and line 5 is larger than normal, but the
|
|
// two of them add to twice the normal spacing.
|
|
// The following if has to accept unequal spacings 3 times to pass the
|
|
// blip (20/15, 15/25 and 25/20)
|
|
// When the blip is in the middle, OKSpacingBlip tests that one of
|
|
// ABOVE1 and BELOW1 matches the median.
|
|
// The first time, everything is shifted down 1, so we present
|
|
// OKSpacingBlip with neighbourhood+1 and check that PN_UPPER is median.
|
|
// The last time, everything is shifted up 1, so we present OKSpacingBlip
|
|
// with neighbourhood-1 and check that PN_LOWER matches the median.
|
|
if (neighbourhood[PN_LOWER] == NULL ||
|
|
(!neighbourhood[PN_UPPER]->SpacingsEqual(*neighbourhood[PN_LOWER],
|
|
resolution) &&
|
|
!OKSpacingBlip(resolution, median_space, neighbourhood) &&
|
|
(!OKSpacingBlip(resolution, median_space, neighbourhood - 1) ||
|
|
!neighbourhood[PN_LOWER]->SpacingEqual(median_space, resolution)) &&
|
|
(!OKSpacingBlip(resolution, median_space, neighbourhood + 1) ||
|
|
!neighbourhood[PN_UPPER]->SpacingEqual(median_space, resolution)))) {
|
|
// The group has ended. PN_UPPER is the last member.
|
|
// Compute the mean spacing over the group.
|
|
ColPartition_IT sum_it(start_it);
|
|
ColPartition* last_part = neighbourhood[PN_UPPER];
|
|
double total_bottom = 0.0;
|
|
double total_top = 0.0;
|
|
int total_count = 0;
|
|
ColPartition* upper = sum_it.data();
|
|
// We do not process last_part, as its spacing is different.
|
|
while (upper != last_part) {
|
|
total_bottom += upper->bottom_spacing();
|
|
total_top += upper->top_spacing();
|
|
++total_count;
|
|
sum_it.forward();
|
|
upper = sum_it.data();
|
|
}
|
|
if (total_count > 0) {
|
|
// There were at least 2 lines, so set them all to the mean.
|
|
int top_spacing = static_cast<int>(total_top / total_count + 0.5);
|
|
int bottom_spacing = static_cast<int>(total_bottom / total_count + 0.5);
|
|
if (textord_debug_tabfind) {
|
|
tprintf("Spacing run ended. Cause:");
|
|
if (neighbourhood[PN_LOWER] == NULL) {
|
|
tprintf("No more lines\n");
|
|
} else {
|
|
tprintf("Spacing change. Spacings:\n");
|
|
for (int i = 0; i < PN_COUNT; ++i) {
|
|
if (neighbourhood[i] == NULL) {
|
|
tprintf("NULL\n");
|
|
} else {
|
|
tprintf("Top = %d, bottom = %d\n",
|
|
neighbourhood[i]->top_spacing(),
|
|
neighbourhood[i]->bottom_spacing());
|
|
}
|
|
}
|
|
}
|
|
tprintf("Mean spacing = %d/%d\n", top_spacing, bottom_spacing);
|
|
}
|
|
sum_it = start_it;
|
|
upper = sum_it.data();
|
|
while (upper != last_part) {
|
|
upper->set_top_spacing(top_spacing);
|
|
upper->set_bottom_spacing(bottom_spacing);
|
|
if (textord_debug_tabfind) {
|
|
tprintf("Setting mean on:");
|
|
upper->Print();
|
|
}
|
|
sum_it.forward();
|
|
upper = sum_it.data();
|
|
}
|
|
}
|
|
// PN_LOWER starts the next group and end_it is the next start_it.
|
|
start_it = end_it;
|
|
// Recalculate the median spacing to maximize the chances of detecting
|
|
// spacing blips.
|
|
median_space = MedianSpacing(page_height, end_it);
|
|
}
|
|
// Shuffle pointers.
|
|
for (int j = 1; j < PN_COUNT; ++j) {
|
|
neighbourhood[j - 1] = neighbourhood[j];
|
|
}
|
|
if (it.cycled_list()) {
|
|
neighbourhood[PN_COUNT - 1] = NULL;
|
|
} else {
|
|
neighbourhood[PN_COUNT - 1] = it.data();
|
|
it.forward();
|
|
}
|
|
end_it.forward();
|
|
}
|
|
}
|
|
|
|
// Returns true if the parts array of pointers to partitions matches the
|
|
// condition for a spacing blip. See SmoothSpacings for what this means
|
|
// and how it is used.
|
|
bool ColPartition::OKSpacingBlip(int resolution, int median_spacing,
|
|
ColPartition** parts) {
|
|
if (parts[PN_UPPER] == NULL || parts[PN_LOWER] == NULL)
|
|
return false;
|
|
// The blip is OK if upper and lower sum to an OK value and at least
|
|
// one of above1 and below1 is equal to the median.
|
|
return parts[PN_UPPER]->SummedSpacingOK(*parts[PN_LOWER],
|
|
median_spacing, resolution) &&
|
|
((parts[PN_ABOVE1] != NULL &&
|
|
parts[PN_ABOVE1]->SpacingEqual(median_spacing, resolution)) ||
|
|
(parts[PN_BELOW1] != NULL &&
|
|
parts[PN_BELOW1]->SpacingEqual(median_spacing, resolution)));
|
|
}
|
|
|
|
// Returns true if both the top and bottom spacings of this match the given
|
|
// spacing to within suitable margins dictated by the image resolution.
|
|
bool ColPartition::SpacingEqual(int spacing, int resolution) const {
|
|
int bottom_error = BottomSpacingMargin(resolution);
|
|
int top_error = TopSpacingMargin(resolution);
|
|
return NearlyEqual(bottom_spacing_, spacing, bottom_error) &&
|
|
NearlyEqual(top_spacing_, spacing, top_error);
|
|
}
|
|
|
|
// Returns true if both the top and bottom spacings of this and other
|
|
// match to within suitable margins dictated by the image resolution.
|
|
bool ColPartition::SpacingsEqual(const ColPartition& other,
|
|
int resolution) const {
|
|
int bottom_error = MAX(BottomSpacingMargin(resolution),
|
|
other.BottomSpacingMargin(resolution));
|
|
int top_error = MAX(TopSpacingMargin(resolution),
|
|
other.TopSpacingMargin(resolution));
|
|
return NearlyEqual(bottom_spacing_, other.bottom_spacing_, bottom_error) &&
|
|
(NearlyEqual(top_spacing_, other.top_spacing_, top_error) ||
|
|
NearlyEqual(top_spacing_ + other.top_spacing_, bottom_spacing_ * 2,
|
|
bottom_error));
|
|
}
|
|
|
|
// Returns true if the sum spacing of this and other match the given
|
|
// spacing (or twice the given spacing) to within a suitable margin dictated
|
|
// by the image resolution.
|
|
bool ColPartition::SummedSpacingOK(const ColPartition& other,
|
|
int spacing, int resolution) const {
|
|
int bottom_error = MAX(BottomSpacingMargin(resolution),
|
|
other.BottomSpacingMargin(resolution));
|
|
int top_error = MAX(TopSpacingMargin(resolution),
|
|
other.TopSpacingMargin(resolution));
|
|
int bottom_total = bottom_spacing_ + other.bottom_spacing_;
|
|
int top_total = top_spacing_ + other.top_spacing_;
|
|
return (NearlyEqual(spacing, bottom_total, bottom_error) &&
|
|
NearlyEqual(spacing, top_total, top_error)) ||
|
|
(NearlyEqual(spacing * 2, bottom_total, bottom_error) &&
|
|
NearlyEqual(spacing * 2, top_total, top_error));
|
|
}
|
|
|
|
// Returns a suitable spacing margin that can be applied to bottoms of
|
|
// text lines, based on the resolution and the stored side_step_.
|
|
int ColPartition::BottomSpacingMargin(int resolution) const {
|
|
return static_cast<int>(kMaxSpacingDrift * resolution + 0.5) + side_step_;
|
|
}
|
|
|
|
// Returns a suitable spacing margin that can be applied to tops of
|
|
// text lines, based on the resolution and the stored side_step_.
|
|
int ColPartition::TopSpacingMargin(int resolution) const {
|
|
return static_cast<int>(kMaxTopSpacingFraction * median_size_ + 0.5) +
|
|
BottomSpacingMargin(resolution);
|
|
}
|
|
|
|
// Returns true if the median text sizes of this and other agree to within
|
|
// a reasonable multiplicative factor.
|
|
bool ColPartition::SizesSimilar(const ColPartition& other) const {
|
|
return median_size_ <= other.median_size_ * kMaxSizeRatio &&
|
|
other.median_size_ <= median_size_ * kMaxSizeRatio;
|
|
}
|
|
|
|
// Computes and returns in start, end a line segment formed from a
|
|
// forwards-iterated group of left edges of partitions that satisfy the
|
|
// condition that the rightmost left margin is to the left of the
|
|
// leftmost left bounding box edge.
|
|
// TODO(rays) Not good enough. Needs improving to tightly wrap text in both
|
|
// directions, and to loosely wrap images.
|
|
void ColPartition::LeftEdgeRun(ColPartition_IT* part_it,
|
|
ICOORD* start, ICOORD* end) {
|
|
ColPartition* part = part_it->data();
|
|
int start_y = part->bounding_box_.top();
|
|
if (!part_it->at_first() &&
|
|
part_it->data_relative(-1)->bounding_box_.bottom() > start_y)
|
|
start_y = (start_y + part_it->data_relative(-1)->bounding_box_.bottom())/2;
|
|
int end_y = part->bounding_box_.bottom();
|
|
int min_right = MAX_INT32;
|
|
int max_left = MIN_INT32;
|
|
do {
|
|
part = part_it->data();
|
|
int top = part->bounding_box_.top();
|
|
int bottom = part->bounding_box_.bottom();
|
|
int tl_key = part->SortKey(part->left_margin_, top);
|
|
int tr_key = part->SortKey(part->bounding_box_.left(), top);
|
|
int bl_key = part->SortKey(part->left_margin_, bottom);
|
|
int br_key = part->SortKey(part->bounding_box_.left(), bottom);
|
|
int left_key = MAX(tl_key, bl_key);
|
|
int right_key = MIN(tr_key, br_key);
|
|
if (left_key <= min_right && right_key >= max_left) {
|
|
// This part is good - let's keep it.
|
|
min_right = MIN(min_right, right_key);
|
|
max_left = MAX(max_left, left_key);
|
|
end_y = bottom;
|
|
part_it->forward();
|
|
if (!part_it->at_first() && part_it->data()->bounding_box_.top() < end_y)
|
|
end_y = (end_y + part_it->data()->bounding_box_.top()) / 2;
|
|
} else {
|
|
if (textord_debug_tabfind)
|
|
tprintf("Sum key %d/%d, new %d/%d\n",
|
|
max_left, min_right, left_key, right_key);
|
|
break;
|
|
}
|
|
} while (!part_it->at_first());
|
|
start->set_y(start_y);
|
|
start->set_x(part->XAtY(min_right, start_y));
|
|
end->set_y(end_y);
|
|
end->set_x(part->XAtY(min_right, end_y));
|
|
if (textord_debug_tabfind && !part_it->at_first())
|
|
tprintf("Left run from y=%d to %d terminated with sum %d-%d, new %d-%d\n",
|
|
start_y, end_y, part->XAtY(max_left, end_y),
|
|
end->x(), part->left_margin_, part->bounding_box_.left());
|
|
}
|
|
|
|
// Computes and returns in start, end a line segment formed from a
|
|
// backwards-iterated group of right edges of partitions that satisfy the
|
|
// condition that the leftmost right margin is to the right of the
|
|
// rightmost right bounding box edge.
|
|
// TODO(rays) Not good enough. Needs improving to tightly wrap text in both
|
|
// directions, and to loosely wrap images.
|
|
void ColPartition::RightEdgeRun(ColPartition_IT* part_it,
|
|
ICOORD* start, ICOORD* end) {
|
|
ColPartition* part = part_it->data();
|
|
int start_y = part->bounding_box_.bottom();
|
|
if (!part_it->at_first() &&
|
|
part_it->data_relative(1)->bounding_box_.top() < start_y)
|
|
start_y = (start_y + part_it->data_relative(1)->bounding_box_.top()) / 2;
|
|
int end_y = part->bounding_box_.top();
|
|
int min_right = MAX_INT32;
|
|
int max_left = MIN_INT32;
|
|
do {
|
|
part = part_it->data();
|
|
int top = part->bounding_box_.top();
|
|
int bottom = part->bounding_box_.bottom();
|
|
int tl_key = part->SortKey(part->bounding_box_.right(), top);
|
|
int tr_key = part->SortKey(part->right_margin_, top);
|
|
int bl_key = part->SortKey(part->bounding_box_.right(), bottom);
|
|
int br_key = part->SortKey(part->right_margin_, bottom);
|
|
int left_key = MAX(tl_key, bl_key);
|
|
int right_key = MIN(tr_key, br_key);
|
|
if (left_key <= min_right && right_key >= max_left) {
|
|
// This part is good - let's keep it.
|
|
min_right = MIN(min_right, right_key);
|
|
max_left = MAX(max_left, left_key);
|
|
end_y = top;
|
|
part_it->backward();
|
|
if (!part_it->at_last() &&
|
|
part_it->data()->bounding_box_.bottom() > end_y)
|
|
end_y = (end_y + part_it->data()->bounding_box_.bottom()) / 2;
|
|
} else {
|
|
if (textord_debug_tabfind)
|
|
tprintf("Sum cross %d/%d, new %d/%d\n",
|
|
max_left, min_right, left_key, right_key);
|
|
break;
|
|
}
|
|
} while (!part_it->at_last());
|
|
start->set_y(start_y);
|
|
start->set_x(part->XAtY(max_left, start_y));
|
|
end->set_y(end_y);
|
|
end->set_x(part->XAtY(max_left, end_y));
|
|
if (textord_debug_tabfind && !part_it->at_last())
|
|
tprintf("Right run from y=%d to %d terminated with sum %d-%d, new %d-%d\n",
|
|
start_y, end_y, end->x(), part->XAtY(min_right, end_y),
|
|
part->bounding_box_.right(), part->right_margin_);
|
|
}
|
|
|
|
} // namespace tesseract.
|
|
|