tesseract/src/wordrec/params_model.h
Stefan Weil 9ceb0c6430 Fix line endings
Replace DOS line endings (CRLF) by standard (LF only).

Signed-off-by: Stefan Weil <sw@weilnetz.de>
2018-04-25 19:04:50 +02:00

90 lines
3.0 KiB
C++

///////////////////////////////////////////////////////////////////////
// File: params_model.h
// Description: Trained feature serialization for language parameter training.
// Author: David Eger
// Created: Mon Jun 11 11:26:42 PDT 2012
//
// (C) Copyright 2011, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
///////////////////////////////////////////////////////////////////////
#ifndef TESSERACT_WORDREC_PARAMS_MODEL_H_
#define TESSERACT_WORDREC_PARAMS_MODEL_H_
#include "params_training_featdef.h"
#include "ratngs.h"
#include "strngs.h"
namespace tesseract {
// Represents the learned weights for a given language.
class ParamsModel {
public:
// Enum for expressing OCR pass.
enum PassEnum {
PTRAIN_PASS1,
PTRAIN_PASS2,
PTRAIN_NUM_PASSES
};
ParamsModel() : pass_(PTRAIN_PASS1) {}
ParamsModel(const char *lang, const GenericVector<float> &weights) :
lang_(lang), pass_(PTRAIN_PASS1) { weights_vec_[pass_] = weights; }
inline bool Initialized() {
return weights_vec_[pass_].size() == PTRAIN_NUM_FEATURE_TYPES;
}
// Prints out feature weights.
void Print();
// Clears weights for all passes.
void Clear() {
for (int p = 0; p < PTRAIN_NUM_PASSES; ++p) weights_vec_[p].clear();
}
// Copies the weights of the given params model.
void Copy(const ParamsModel &other_model);
// Applies params model weights to the given features.
// Assumes that features is an array of size PTRAIN_NUM_FEATURE_TYPES.
float ComputeCost(const float features[]) const;
bool Equivalent(const ParamsModel &that) const;
// Returns true on success.
bool SaveToFile(const char *full_path) const;
// Returns true on success.
bool LoadFromFile(const char *lang, const char *full_path);
bool LoadFromFp(const char *lang, TFile *fp);
const GenericVector<float>& weights() const {
return weights_vec_[pass_];
}
const GenericVector<float>& weights_for_pass(PassEnum pass) const {
return weights_vec_[pass];
}
void SetPass(PassEnum pass) { pass_ = pass; }
private:
bool ParseLine(char *line, char **key, float *val);
STRING lang_;
// Set to the current pass type and used to determine which set of weights
// should be used for ComputeCost() and other functions.
PassEnum pass_;
// Several sets of weights for various OCR passes (e.g. pass1 with adaption,
// pass2 without adaption, etc).
GenericVector<float> weights_vec_[PTRAIN_NUM_PASSES];
};
} // namespace tesseract
#endif // TESSERACT_WORDREC_PARAMS_MODEL_H_