tesseract/dict/trie.h
2013-10-20 20:20:10 +00:00

436 lines
19 KiB
C

/* -*-C-*-
********************************************************************************
*
* File: trie.h (Formerly trie.h)
* Description: Functions to build a trie data structure.
* Author: Mark Seaman, SW Productivity
* Created: Fri Oct 16 14:37:00 1987
* Modified: Fri Jul 26 11:26:34 1991 (Mark Seaman) marks@hpgrlt
* Language: C
* Package: N/A
* Status: Reusable Software Component
*
* (c) Copyright 1987, Hewlett-Packard Company.
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
** http://www.apache.org/licenses/LICENSE-2.0
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*
*********************************************************************************/
#ifndef TRIE_H
#define TRIE_H
#include "dawg.h"
#include "cutil.h"
#include "genericvector.h"
class UNICHARSET;
// Note: if we consider either NODE_REF or EDGE_INDEX to ever exceed
// max int32, we will need to change GenericVector to use int64 for size
// and address indices. This does not seem to be needed immediately,
// since currently the largest number of edges limit used by tesseract
// (kMaxNumEdges in wordlist2dawg.cpp) is far less than max int32.
// There are also int casts below to satisfy the WIN32 compiler that would
// need to be changed.
// It might be cleanest to change the types of most of the Trie/Dawg related
// typedefs to int and restrict the casts to extracting these values from
// the 64 bit EDGE_RECORD.
typedef inT64 EDGE_INDEX; // index of an edge in a given node
typedef bool *NODE_MARKER;
typedef GenericVector<EDGE_RECORD> EDGE_VECTOR;
struct TRIE_NODE_RECORD {
EDGE_VECTOR forward_edges;
EDGE_VECTOR backward_edges;
};
typedef GenericVector<TRIE_NODE_RECORD *> TRIE_NODES;
namespace tesseract {
/**
* Concrete class for Trie data structure that allows to store a list of
* words (extends Dawg base class) as well as dynamically add new words.
* This class stores a vector of pointers to TRIE_NODE_RECORDs, each of
* which has a vector of forward and backward edges.
*/
class Trie : public Dawg {
public:
enum RTLReversePolicy {
RRP_DO_NO_REVERSE,
RRP_REVERSE_IF_HAS_RTL,
RRP_FORCE_REVERSE,
};
// Minimum number of concrete characters at the beginning of user patterns.
static const int kSaneNumConcreteChars = 0;
// Various unicode whitespace characters are used to denote unichar patterns,
// (character classifier would never produce these whitespace characters as a
// valid classification).
static const char kAlphaPatternUnicode[];
static const char kDigitPatternUnicode[];
static const char kAlphanumPatternUnicode[];
static const char kPuncPatternUnicode[];
static const char kLowerPatternUnicode[];
static const char kUpperPatternUnicode[];
static const char *get_reverse_policy_name(
RTLReversePolicy reverse_policy);
// max_num_edges argument allows limiting the amount of memory this
// Trie can consume (if a new word insert would cause the Trie to
// contain more edges than max_num_edges, all the edges are cleared
// so that new inserts can proceed).
Trie(DawgType type, const STRING &lang, PermuterType perm,
uinT64 max_num_edges, int unicharset_size, int debug_level) {
init(type, lang, perm, unicharset_size, debug_level);
num_edges_ = 0;
max_num_edges_ = max_num_edges;
deref_node_index_mask_ = ~letter_mask_;
new_dawg_node(); // need to allocate node 0
initialized_patterns_ = false;
}
virtual ~Trie() { nodes_.delete_data_pointers(); }
// Reset the Trie to empty.
void clear();
/** Returns the edge that corresponds to the letter out of this node. */
EDGE_REF edge_char_of(NODE_REF node_ref, UNICHAR_ID unichar_id,
bool word_end) const {
EDGE_RECORD *edge_ptr;
EDGE_INDEX edge_index;
if (!edge_char_of(node_ref, NO_EDGE, FORWARD_EDGE, word_end, unichar_id,
&edge_ptr, &edge_index)) return NO_EDGE;
return make_edge_ref(node_ref, edge_index);
}
/**
* Fills the given NodeChildVector with all the unichar ids (and the
* corresponding EDGE_REFs) for which there is an edge out of this node.
*/
void unichar_ids_of(NODE_REF node, NodeChildVector *vec,
bool word_end) const {
const EDGE_VECTOR &forward_edges =
nodes_[static_cast<int>(node)]->forward_edges;
for (int i = 0; i < forward_edges.size(); ++i) {
if (!word_end || end_of_word_from_edge_rec(forward_edges[i])) {
vec->push_back(NodeChild(unichar_id_from_edge_rec(forward_edges[i]),
make_edge_ref(node, i)));
}
}
}
/**
* Returns the next node visited by following the edge
* indicated by the given EDGE_REF.
*/
NODE_REF next_node(EDGE_REF edge_ref) const {
if (edge_ref == NO_EDGE || num_edges_ == 0) return NO_EDGE;
return next_node_from_edge_rec(*deref_edge_ref(edge_ref));
}
/**
* Returns true if the edge indicated by the given EDGE_REF
* marks the end of a word.
*/
bool end_of_word(EDGE_REF edge_ref) const {
if (edge_ref == NO_EDGE || num_edges_ == 0) return false;
return end_of_word_from_edge_rec(*deref_edge_ref(edge_ref));
}
/** Returns UNICHAR_ID stored in the edge indicated by the given EDGE_REF. */
UNICHAR_ID edge_letter(EDGE_REF edge_ref) const {
if (edge_ref == NO_EDGE || num_edges_ == 0) return INVALID_UNICHAR_ID;
return unichar_id_from_edge_rec(*deref_edge_ref(edge_ref));
}
// Sets the UNICHAR_ID in the given edge_rec to 0, marking the edge dead.
void KillEdge(EDGE_RECORD* edge_rec) const {
*edge_rec &= ~letter_mask_;
}
// Prints the contents of the node indicated by the given NODE_REF.
// At most max_num_edges will be printed.
void print_node(NODE_REF node, int max_num_edges) const;
// Writes edges from nodes_ to an EDGE_ARRAY and creates a SquishedDawg.
// Eliminates redundant edges and returns the pointer to the SquishedDawg.
// Note: the caller is responsible for deallocating memory associated
// with the returned SquishedDawg pointer.
SquishedDawg *trie_to_dawg();
// Reads a list of words from the given file and adds into the Trie.
// Calls WERD_CHOICE::reverse_unichar_ids_if_rtl() according to the reverse
// policy and information in the unicharset.
// Returns false on error.
bool read_and_add_word_list(const char *filename,
const UNICHARSET &unicharset,
Trie::RTLReversePolicy reverse);
// Reads a list of words from the given file, applying the reverse_policy,
// according to information in the unicharset.
// Returns false on error.
bool read_word_list(const char *filename,
const UNICHARSET &unicharset,
Trie::RTLReversePolicy reverse_policy,
GenericVector<STRING>* words);
// Adds a list of words previously read using read_word_list to the trie
// using the given unicharset to convert to unichar-ids.
// Returns false on error.
bool add_word_list(const GenericVector<STRING>& words,
const UNICHARSET &unicharset);
// Inserts the list of patterns from the given file into the Trie.
// The pattern list file should contain one pattern per line in UTF-8 format.
//
// Each pattern can contain any non-whitespace characters, however only the
// patterns that contain characters from the unicharset of the corresponding
// language will be useful.
// The only meta character is '\'. To be used in a pattern as an ordinary
// string it should be escaped with '\' (e.g. string "C:\Documents" should
// be written in the patterns file as "C:\\Documents").
// This function supports a very limited regular expression syntax. One can
// express a character, a certain character class and a number of times the
// entity should be repeated in the pattern.
//
// To denote a character class use one of:
// \c - unichar for which UNICHARSET::get_isalpha() is true (character)
// \d - unichar for which UNICHARSET::get_isdigit() is true
// \n - unichar for which UNICHARSET::get_isdigit() and
// UNICHARSET::isalpha() are true
// \p - unichar for which UNICHARSET::get_ispunct() is true
// \a - unichar for which UNICHARSET::get_islower() is true
// \A - unichar for which UNICHARSET::get_isupper() is true
//
// \* could be specified after each character or pattern to indicate that
// the character/pattern can be repeated any number of times before the next
// character/pattern occurs.
//
// Examples:
// 1-8\d\d-GOOG-411 will be expanded to strings:
// 1-800-GOOG-411, 1-801-GOOG-411, ... 1-899-GOOG-411.
//
// http://www.\n\*.com will be expanded to strings like:
// http://www.a.com http://www.a123.com ... http://www.ABCDefgHIJKLMNop.com
//
// Note: In choosing which patterns to include please be aware of the fact
// providing very generic patterns will make tesseract run slower.
// For example \n\* at the beginning of the pattern will make Tesseract
// consider all the combinations of proposed character choices for each
// of the segmentations, which will be unacceptably slow.
// Because of potential problems with speed that could be difficult to
// identify, each user pattern has to have at least kSaneNumConcreteChars
// concrete characters from the unicharset at the beginning.
bool read_pattern_list(const char *filename, const UNICHARSET &unicharset);
// Initializes the values of *_pattern_ unichar ids.
// This function should be called before calling read_pattern_list().
void initialize_patterns(UNICHARSET *unicharset);
// Fills in the given unichar id vector with the unichar ids that represent
// the patterns of the character classes of the given unichar_id.
void unichar_id_to_patterns(UNICHAR_ID unichar_id,
const UNICHARSET &unicharset,
GenericVector<UNICHAR_ID> *vec) const;
// Returns the given EDGE_REF if the EDGE_RECORD that it points to has
// a self loop and the given unichar_id matches the unichar_id stored in the
// EDGE_RECORD, returns NO_EDGE otherwise.
virtual EDGE_REF pattern_loop_edge(EDGE_REF edge_ref,
UNICHAR_ID unichar_id,
bool word_end) const {
if (edge_ref == NO_EDGE) return NO_EDGE;
EDGE_RECORD *edge_rec = deref_edge_ref(edge_ref);
return (marker_flag_from_edge_rec(*edge_rec) &&
unichar_id == unichar_id_from_edge_rec(*edge_rec) &&
word_end == end_of_word_from_edge_rec(*edge_rec)) ?
edge_ref : NO_EDGE;
}
// Adds a word to the Trie (creates the necessary nodes and edges).
//
// If repetitions vector is not NULL, each entry in the vector indicates
// whether the unichar id with the corresponding index in the word is allowed
// to repeat an unlimited number of times. For each entry that is true, MARKER
// flag of the corresponding edge created for this unichar id is set to true).
//
// Return true if add succeeded, false otherwise (e.g. when a word contained
// an invalid unichar id or the trie was getting too large and was cleared).
bool add_word_to_dawg(const WERD_CHOICE &word,
const GenericVector<bool> *repetitions);
bool add_word_to_dawg(const WERD_CHOICE &word) {
return add_word_to_dawg(word, NULL);
}
protected:
// The structure of an EDGE_REF for Trie edges is as follows:
// [LETTER_START_BIT, flag_start_bit_):
// edge index in *_edges in a TRIE_NODE_RECORD
// [flag_start_bit, 30th bit]: node index in nodes (TRIE_NODES vector)
//
// With this arrangement there are enough bits to represent edge indices
// (each node can have at most unicharset_size_ forward edges and
// the position of flag_start_bit is set to be log2(unicharset_size_)).
// It is also possible to accommodate a maximum number of nodes that is at
// least as large as that of the SquishedDawg representation (in SquishedDawg
// each EDGE_RECORD has 32-(flag_start_bit+NUM_FLAG_BITS) bits to represent
// the next node index).
//
// Returns the pointer to EDGE_RECORD after decoding the location
// of the edge from the information in the given EDGE_REF.
// This function assumes that EDGE_REF holds valid node/edge indices.
inline EDGE_RECORD *deref_edge_ref(EDGE_REF edge_ref) const {
int edge_index = static_cast<int>(
(edge_ref & letter_mask_) >> LETTER_START_BIT);
int node_index = static_cast<int>(
(edge_ref & deref_node_index_mask_) >> flag_start_bit_);
TRIE_NODE_RECORD *node_rec = nodes_[node_index];
return &(node_rec->forward_edges[edge_index]);
}
/** Constructs EDGE_REF from the given node_index and edge_index. */
inline EDGE_REF make_edge_ref(NODE_REF node_index,
EDGE_INDEX edge_index) const {
return ((node_index << flag_start_bit_) |
(edge_index << LETTER_START_BIT));
}
/** Sets up this edge record to the requested values. */
inline void link_edge(EDGE_RECORD *edge, NODE_REF nxt, bool repeats,
int direction, bool word_end, UNICHAR_ID unichar_id) {
EDGE_RECORD flags = 0;
if (repeats) flags |= MARKER_FLAG;
if (word_end) flags |= WERD_END_FLAG;
if (direction == BACKWARD_EDGE) flags |= DIRECTION_FLAG;
*edge = ((nxt << next_node_start_bit_) |
(static_cast<EDGE_RECORD>(flags) << flag_start_bit_) |
(static_cast<EDGE_RECORD>(unichar_id) << LETTER_START_BIT));
}
/** Prints the given EDGE_RECORD. */
inline void print_edge_rec(const EDGE_RECORD &edge_rec) const {
tprintf("|" REFFORMAT "|%s%s%s|%d|", next_node_from_edge_rec(edge_rec),
marker_flag_from_edge_rec(edge_rec) ? "R," : "",
(direction_from_edge_rec(edge_rec) == FORWARD_EDGE) ? "F" : "B",
end_of_word_from_edge_rec(edge_rec) ? ",E" : "",
unichar_id_from_edge_rec(edge_rec));
}
// Returns true if the next node in recorded the given EDGE_RECORD
// has exactly one forward edge.
inline bool can_be_eliminated(const EDGE_RECORD &edge_rec) {
NODE_REF node_ref = next_node_from_edge_rec(edge_rec);
return (node_ref != NO_EDGE &&
nodes_[static_cast<int>(node_ref)]->forward_edges.size() == 1);
}
// Prints the contents of the Trie.
// At most max_num_edges will be printed for each node.
void print_all(const char* msg, int max_num_edges) {
tprintf("\n__________________________\n%s\n", msg);
for (int i = 0; i < nodes_.size(); ++i) print_node(i, max_num_edges);
tprintf("__________________________\n");
}
// Finds the edge with the given direction, word_end and unichar_id
// in the node indicated by node_ref. Fills in the pointer to the
// EDGE_RECORD and the index of the edge with the the values
// corresponding to the edge found. Returns true if an edge was found.
bool edge_char_of(NODE_REF node_ref, NODE_REF next_node,
int direction, bool word_end, UNICHAR_ID unichar_id,
EDGE_RECORD **edge_ptr, EDGE_INDEX *edge_index) const;
// Adds an single edge linkage between node1 and node2 in the direction
// indicated by direction argument.
bool add_edge_linkage(NODE_REF node1, NODE_REF node2, bool repeats,
int direction, bool word_end,
UNICHAR_ID unichar_id);
// Adds forward edge linkage from node1 to node2 and the corresponding
// backward edge linkage in the other direction.
bool add_new_edge(NODE_REF node1, NODE_REF node2,
bool repeats, bool word_end, UNICHAR_ID unichar_id) {
return (add_edge_linkage(node1, node2, repeats, FORWARD_EDGE,
word_end, unichar_id) &&
add_edge_linkage(node2, node1, repeats, BACKWARD_EDGE,
word_end, unichar_id));
}
// Sets the word ending flags in an already existing edge pair.
// Returns true on success.
void add_word_ending(EDGE_RECORD *edge,
NODE_REF the_next_node,
bool repeats,
UNICHAR_ID unichar_id);
// Allocates space for a new node in the Trie.
NODE_REF new_dawg_node();
// Removes a single edge linkage to between node1 and node2 in the
// direction indicated by direction argument.
void remove_edge_linkage(NODE_REF node1, NODE_REF node2, int direction,
bool word_end, UNICHAR_ID unichar_id);
// Removes forward edge linkage from node1 to node2 and the corresponding
// backward edge linkage in the other direction.
void remove_edge(NODE_REF node1, NODE_REF node2,
bool word_end, UNICHAR_ID unichar_id) {
remove_edge_linkage(node1, node2, FORWARD_EDGE, word_end, unichar_id);
remove_edge_linkage(node2, node1, BACKWARD_EDGE, word_end, unichar_id);
}
// Compares edge1 and edge2 in the given node to see if they point to two
// next nodes that could be collapsed. If they do, performs the reduction
// and returns true.
bool eliminate_redundant_edges(NODE_REF node, const EDGE_RECORD &edge1,
const EDGE_RECORD &edge2);
// Assuming that edge_index indicates the first edge in a group of edges
// in this node with a particular letter value, looks through these edges
// to see if any of them can be collapsed. If so does it. Returns to the
// caller when all edges with this letter have been reduced.
// Returns true if further reduction is possible with this same letter.
bool reduce_lettered_edges(EDGE_INDEX edge_index,
UNICHAR_ID unichar_id,
NODE_REF node,
EDGE_VECTOR* backward_edges,
NODE_MARKER reduced_nodes);
/**
* Order num_edges of consequtive EDGE_RECORDS in the given EDGE_VECTOR in
* increasing order of unichar ids. This function is normally called
* for all edges in a single node, and since number of edges in each node
* is usually quite small, selection sort is used.
*/
void sort_edges(EDGE_VECTOR *edges);
/** Eliminates any redundant edges from this node in the Trie. */
void reduce_node_input(NODE_REF node, NODE_MARKER reduced_nodes);
// Returns the pattern unichar id for the given character class code.
UNICHAR_ID character_class_to_pattern(char ch);
// Member variables
TRIE_NODES nodes_; // vector of nodes in the Trie
uinT64 num_edges_; // sum of all edges (forward and backward)
uinT64 max_num_edges_; // maximum number of edges allowed
uinT64 deref_direction_mask_; // mask for EDGE_REF to extract direction
uinT64 deref_node_index_mask_; // mask for EDGE_REF to extract node index
// Freelist of edges in the root backwards node that were previously zeroed.
GenericVector<EDGE_INDEX> root_back_freelist_;
// Variables for translating character class codes denoted in user patterns
// file to the unichar ids used to represent them in a Trie.
bool initialized_patterns_;
UNICHAR_ID alpha_pattern_;
UNICHAR_ID digit_pattern_;
UNICHAR_ID alphanum_pattern_;
UNICHAR_ID punc_pattern_;
UNICHAR_ID lower_pattern_;
UNICHAR_ID upper_pattern_;
};
} // namespace tesseract
#endif