mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2025-01-18 06:30:14 +08:00
524a61452d
Squashed commit from https://github.com/tesseract-ocr/tesseract/tree/more-doxygen closes #14 Commits:6317305
doxygen9f42f69
doxygen0fc4d52
doxygen37b4b55
fix typobded8f1
some more doxy020eb00
slight tweak524666d
doxygenify2a36a3e
doxygenify229d218
doxygenify7fd28ae
doxygenifya8c64bc
doxygenifyf5d21b6
fix5d8ede8
doxygenifya58a4e0
language_model.cppfa85709
lm_pain_points.cpp lm_state.cpp6418da3
merge06190ba
Merge branch 'old_doxygen_merge' into more-doxygen84acf08
Merge branch 'master' into more-doxygen50fe1ff
pagewalk.cpp cube_reco_context.cpp2982583
change to relative192a24a
applybox.cpp, take one8eeb053
delete docs for obsolete params52e4c77
modernise classify/ocrfeatures.cpp2a1cba6
modernise cutil/emalloc.cpp773e006
silence doxygen warningaeb1731
silence doxygen warningf18387f
silence doxygen; new params are unused?15ad6bd
doxygenify cutil/efio.cppc8b5dad
doxygenify cutil/danerror.cpp784450f
the globals and exceptions parts are obsolete; remove8bca324
doxygen classify/normfeat.cpp9bcbe16
doxygen classify/normmatch.cppaa9a971
doxygen ccmain/cube_control.cppc083ff2
doxygen ccmain/cube_reco_context.cppf842850
params changed5c94f12
doxygen ccmain/cubeclassifier.cpp15ba750
case sensitivef5c71d4
case sensitivef85655b
doxygen classify/intproto.cpp4bbc7aa
partial doxygen classify/mfx.cppdbb6041
partial doxygen classify/intproto.cpp2aa72db
finish doxygen classify/intproto.cpp0b8de99
doxygen training/mftraining.cpp0b5b35c
partial doxygen ccstruct/coutln.cppb81c766
partial doxygen ccstruct/coutln.cpp40fc415
finished? doxygen ccstruct/coutln.cpp6e4165c
doxygen classify/clusttool.cpp0267dec
doxygen classify/cutoffs.cpp7f0c70c
doxygen classify/fpoint.cpp512f3bd
ignore ~ files5668a52
doxygen classify/intmatcher.cpp84788d4
doxygen classify/kdtree.cpp29f36ca
doxygen classify/mfoutline.cpp40b94b1
silence doxygen warnings6c511b9
doxygen classify/mfx.cppf9b4080
doxygen classify/outfeat.cppaa1df05
doxygen classify/picofeat.cppcc5f466
doxygen training/cntraining.cppcce044f
doxygen training/commontraining.cpp167e216
missing param9498383
renamed params37eeac2
renamed paramd87b5dd
casec8ee174
renamed paramsb858db8
typo4c2a838
h2 context?81a2c0c
fix some param names; add some missing params, no docsbcf8a4c
add some missing params, no docsaf77f86
add some missing params, no docs; fix some param names01df24e
fix some params6161056
fix some params68508b6
fix some params285aeb6
doxygen complains here no matter what529bcfa
rm some missing params, typoscd21226
rm some missing params, add some new ones48a4bc2
fix paramsc844628
missing param312ce37
missing param; rename oneec2fdec
missing param05e15e0
missing paramsd515858
change "<" to < to make doxygen happyb476a28
wrong place
889 lines
29 KiB
C++
889 lines
29 KiB
C++
// Copyright 2008 Google Inc. All Rights Reserved.
|
|
// Author: scharron@google.com (Samuel Charron)
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "commontraining.h"
|
|
|
|
#include "allheaders.h"
|
|
#include "ccutil.h"
|
|
#include "classify.h"
|
|
#include "cluster.h"
|
|
#include "clusttool.h"
|
|
#include "efio.h"
|
|
#include "emalloc.h"
|
|
#include "featdefs.h"
|
|
#include "fontinfo.h"
|
|
#include "freelist.h"
|
|
#include "globals.h"
|
|
#include "intfeaturespace.h"
|
|
#include "mastertrainer.h"
|
|
#include "mf.h"
|
|
#include "ndminx.h"
|
|
#include "oldlist.h"
|
|
#include "params.h"
|
|
#include "shapetable.h"
|
|
#include "tessdatamanager.h"
|
|
#include "tessopt.h"
|
|
#include "tprintf.h"
|
|
#include "unicity_table.h"
|
|
|
|
#include <math.h>
|
|
|
|
using tesseract::CCUtil;
|
|
using tesseract::FontInfo;
|
|
using tesseract::IntFeatureSpace;
|
|
using tesseract::ParamUtils;
|
|
using tesseract::ShapeTable;
|
|
|
|
// Global Variables.
|
|
|
|
// global variable to hold configuration parameters to control clustering
|
|
// -M 0.625 -B 0.05 -I 1.0 -C 1e-6.
|
|
CLUSTERCONFIG Config = { elliptical, 0.625, 0.05, 1.0, 1e-6, 0 };
|
|
FEATURE_DEFS_STRUCT feature_defs;
|
|
CCUtil ccutil;
|
|
|
|
INT_PARAM_FLAG(debug_level, 0, "Level of Trainer debugging");
|
|
INT_PARAM_FLAG(load_images, 0, "Load images with tr files");
|
|
STRING_PARAM_FLAG(configfile, "", "File to load more configs from");
|
|
STRING_PARAM_FLAG(D, "", "Directory to write output files to");
|
|
STRING_PARAM_FLAG(F, "font_properties", "File listing font properties");
|
|
STRING_PARAM_FLAG(X, "", "File listing font xheights");
|
|
STRING_PARAM_FLAG(U, "unicharset", "File to load unicharset from");
|
|
STRING_PARAM_FLAG(O, "", "File to write unicharset to");
|
|
STRING_PARAM_FLAG(T, "", "File to load trainer from");
|
|
STRING_PARAM_FLAG(output_trainer, "", "File to write trainer to");
|
|
STRING_PARAM_FLAG(test_ch, "", "UTF8 test character string");
|
|
DOUBLE_PARAM_FLAG(clusterconfig_min_samples_fraction, Config.MinSamples,
|
|
"Min number of samples per proto as % of total");
|
|
DOUBLE_PARAM_FLAG(clusterconfig_max_illegal, Config.MaxIllegal,
|
|
"Max percentage of samples in a cluster which have more"
|
|
" than 1 feature in that cluster");
|
|
DOUBLE_PARAM_FLAG(clusterconfig_independence, Config.Independence,
|
|
"Desired independence between dimensions");
|
|
DOUBLE_PARAM_FLAG(clusterconfig_confidence, Config.Confidence,
|
|
"Desired confidence in prototypes created");
|
|
|
|
/**
|
|
* This routine parses the command line arguments that were
|
|
* passed to the program and ses them to set relevant
|
|
* training-related global parameters
|
|
*
|
|
* Globals:
|
|
* - Config current clustering parameters
|
|
* @param argc number of command line arguments to parse
|
|
* @param argv command line arguments
|
|
* @return none
|
|
* @note Exceptions: Illegal options terminate the program.
|
|
*/
|
|
void ParseArguments(int* argc, char ***argv) {
|
|
STRING usage;
|
|
if (*argc) {
|
|
usage += (*argv)[0];
|
|
}
|
|
usage += " [.tr files ...]";
|
|
tesseract::ParseCommandLineFlags(usage.c_str(), argc, argv, true);
|
|
// Record the index of the first non-flag argument to 1, since we set
|
|
// remove_flags to true when parsing the flags.
|
|
tessoptind = 1;
|
|
// Set some global values based on the flags.
|
|
Config.MinSamples =
|
|
MAX(0.0, MIN(1.0, double(FLAGS_clusterconfig_min_samples_fraction)));
|
|
Config.MaxIllegal =
|
|
MAX(0.0, MIN(1.0, double(FLAGS_clusterconfig_max_illegal)));
|
|
Config.Independence =
|
|
MAX(0.0, MIN(1.0, double(FLAGS_clusterconfig_independence)));
|
|
Config.Confidence =
|
|
MAX(0.0, MIN(1.0, double(FLAGS_clusterconfig_confidence)));
|
|
// Set additional parameters from config file if specified.
|
|
if (!FLAGS_configfile.empty()) {
|
|
tesseract::ParamUtils::ReadParamsFile(
|
|
FLAGS_configfile.c_str(),
|
|
tesseract::SET_PARAM_CONSTRAINT_NON_INIT_ONLY,
|
|
ccutil.params());
|
|
}
|
|
}
|
|
|
|
namespace tesseract {
|
|
// Helper loads shape table from the given file.
|
|
ShapeTable* LoadShapeTable(const STRING& file_prefix) {
|
|
ShapeTable* shape_table = NULL;
|
|
STRING shape_table_file = file_prefix;
|
|
shape_table_file += kShapeTableFileSuffix;
|
|
FILE* shape_fp = fopen(shape_table_file.string(), "rb");
|
|
if (shape_fp != NULL) {
|
|
shape_table = new ShapeTable;
|
|
if (!shape_table->DeSerialize(false, shape_fp)) {
|
|
delete shape_table;
|
|
shape_table = NULL;
|
|
tprintf("Error: Failed to read shape table %s\n",
|
|
shape_table_file.string());
|
|
} else {
|
|
int num_shapes = shape_table->NumShapes();
|
|
tprintf("Read shape table %s of %d shapes\n",
|
|
shape_table_file.string(), num_shapes);
|
|
}
|
|
fclose(shape_fp);
|
|
} else {
|
|
tprintf("Warning: No shape table file present: %s\n",
|
|
shape_table_file.string());
|
|
}
|
|
return shape_table;
|
|
}
|
|
|
|
// Helper to write the shape_table.
|
|
void WriteShapeTable(const STRING& file_prefix, const ShapeTable& shape_table) {
|
|
STRING shape_table_file = file_prefix;
|
|
shape_table_file += kShapeTableFileSuffix;
|
|
FILE* fp = fopen(shape_table_file.string(), "wb");
|
|
if (fp != NULL) {
|
|
if (!shape_table.Serialize(fp)) {
|
|
fprintf(stderr, "Error writing shape table: %s\n",
|
|
shape_table_file.string());
|
|
}
|
|
fclose(fp);
|
|
} else {
|
|
fprintf(stderr, "Error creating shape table: %s\n",
|
|
shape_table_file.string());
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Creates a MasterTraininer and loads the training data into it:
|
|
* Initializes feature_defs and IntegerFX.
|
|
* Loads the shape_table if shape_table != NULL.
|
|
* Loads initial unicharset from -U command-line option.
|
|
* If FLAGS_T is set, loads the majority of data from there, else:
|
|
* - Loads font info from -F option.
|
|
* - Loads xheights from -X option.
|
|
* - Loads samples from .tr files in remaining command-line args.
|
|
* - Deletes outliers and computes canonical samples.
|
|
* - If FLAGS_output_trainer is set, saves the trainer for future use.
|
|
* Computes canonical and cloud features.
|
|
* If shape_table is not NULL, but failed to load, make a fake flat one,
|
|
* as shape clustering was not run.
|
|
*/
|
|
MasterTrainer* LoadTrainingData(int argc, const char* const * argv,
|
|
bool replication,
|
|
ShapeTable** shape_table,
|
|
STRING* file_prefix) {
|
|
InitFeatureDefs(&feature_defs);
|
|
InitIntegerFX();
|
|
*file_prefix = "";
|
|
if (!FLAGS_D.empty()) {
|
|
*file_prefix += FLAGS_D.c_str();
|
|
*file_prefix += "/";
|
|
}
|
|
// If we are shape clustering (NULL shape_table) or we successfully load
|
|
// a shape_table written by a previous shape clustering, then
|
|
// shape_analysis will be true, meaning that the MasterTrainer will replace
|
|
// some members of the unicharset with their fragments.
|
|
bool shape_analysis = false;
|
|
if (shape_table != NULL) {
|
|
*shape_table = LoadShapeTable(*file_prefix);
|
|
if (*shape_table != NULL)
|
|
shape_analysis = true;
|
|
} else {
|
|
shape_analysis = true;
|
|
}
|
|
MasterTrainer* trainer = new MasterTrainer(NM_CHAR_ANISOTROPIC,
|
|
shape_analysis,
|
|
replication,
|
|
FLAGS_debug_level);
|
|
IntFeatureSpace fs;
|
|
fs.Init(kBoostXYBuckets, kBoostXYBuckets, kBoostDirBuckets);
|
|
if (FLAGS_T.empty()) {
|
|
trainer->LoadUnicharset(FLAGS_U.c_str());
|
|
// Get basic font information from font_properties.
|
|
if (!FLAGS_F.empty()) {
|
|
if (!trainer->LoadFontInfo(FLAGS_F.c_str())) {
|
|
delete trainer;
|
|
return NULL;
|
|
}
|
|
}
|
|
if (!FLAGS_X.empty()) {
|
|
if (!trainer->LoadXHeights(FLAGS_X.c_str())) {
|
|
delete trainer;
|
|
return NULL;
|
|
}
|
|
}
|
|
trainer->SetFeatureSpace(fs);
|
|
const char* page_name;
|
|
// Load training data from .tr files on the command line.
|
|
while ((page_name = GetNextFilename(argc, argv)) != NULL) {
|
|
tprintf("Reading %s ...\n", page_name);
|
|
trainer->ReadTrainingSamples(page_name, feature_defs, false);
|
|
|
|
// If there is a file with [lang].[fontname].exp[num].fontinfo present,
|
|
// read font spacing information in to fontinfo_table.
|
|
int pagename_len = strlen(page_name);
|
|
char *fontinfo_file_name = new char[pagename_len + 7];
|
|
strncpy(fontinfo_file_name, page_name, pagename_len - 2); // remove "tr"
|
|
strcpy(fontinfo_file_name + pagename_len - 2, "fontinfo"); // +"fontinfo"
|
|
trainer->AddSpacingInfo(fontinfo_file_name);
|
|
delete[] fontinfo_file_name;
|
|
|
|
// Load the images into memory if required by the classifier.
|
|
if (FLAGS_load_images) {
|
|
STRING image_name = page_name;
|
|
// Chop off the tr and replace with tif. Extension must be tif!
|
|
image_name.truncate_at(image_name.length() - 2);
|
|
image_name += "tif";
|
|
trainer->LoadPageImages(image_name.string());
|
|
}
|
|
}
|
|
trainer->PostLoadCleanup();
|
|
// Write the master trainer if required.
|
|
if (!FLAGS_output_trainer.empty()) {
|
|
FILE* fp = fopen(FLAGS_output_trainer.c_str(), "wb");
|
|
if (fp == NULL) {
|
|
tprintf("Can't create saved trainer data!\n");
|
|
} else {
|
|
trainer->Serialize(fp);
|
|
fclose(fp);
|
|
}
|
|
}
|
|
} else {
|
|
bool success = false;
|
|
tprintf("Loading master trainer from file:%s\n",
|
|
FLAGS_T.c_str());
|
|
FILE* fp = fopen(FLAGS_T.c_str(), "rb");
|
|
if (fp == NULL) {
|
|
tprintf("Can't read file %s to initialize master trainer\n",
|
|
FLAGS_T.c_str());
|
|
} else {
|
|
success = trainer->DeSerialize(false, fp);
|
|
fclose(fp);
|
|
}
|
|
if (!success) {
|
|
tprintf("Deserialize of master trainer failed!\n");
|
|
delete trainer;
|
|
return NULL;
|
|
}
|
|
trainer->SetFeatureSpace(fs);
|
|
}
|
|
trainer->PreTrainingSetup();
|
|
if (!FLAGS_O.empty() &&
|
|
!trainer->unicharset().save_to_file(FLAGS_O.c_str())) {
|
|
fprintf(stderr, "Failed to save unicharset to file %s\n", FLAGS_O.c_str());
|
|
delete trainer;
|
|
return NULL;
|
|
}
|
|
if (shape_table != NULL) {
|
|
// If we previously failed to load a shapetable, then shape clustering
|
|
// wasn't run so make a flat one now.
|
|
if (*shape_table == NULL) {
|
|
*shape_table = new ShapeTable;
|
|
trainer->SetupFlatShapeTable(*shape_table);
|
|
tprintf("Flat shape table summary: %s\n",
|
|
(*shape_table)->SummaryStr().string());
|
|
}
|
|
(*shape_table)->set_unicharset(trainer->unicharset());
|
|
}
|
|
return trainer;
|
|
}
|
|
|
|
} // namespace tesseract.
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
/**
|
|
* This routine returns the next command line argument. If
|
|
* there are no remaining command line arguments, it returns
|
|
* NULL. This routine should only be called after all option
|
|
* arguments have been parsed and removed with ParseArguments.
|
|
*
|
|
* Globals:
|
|
* - tessoptind defined by tessopt sys call
|
|
* @return Next command line argument or NULL.
|
|
* @note Exceptions: none
|
|
* @note History: Fri Aug 18 09:34:12 1989, DSJ, Created.
|
|
*/
|
|
const char *GetNextFilename(int argc, const char* const * argv) {
|
|
if (tessoptind < argc)
|
|
return argv[tessoptind++];
|
|
else
|
|
return NULL;
|
|
} /* GetNextFilename */
|
|
|
|
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
/**
|
|
* This routine searches thru a list of labeled lists to find
|
|
* a list with the specified label. If a matching labeled list
|
|
* cannot be found, NULL is returned.
|
|
* @param List list to search
|
|
* @param Label label to search for
|
|
* @return Labeled list with the specified Label or NULL.
|
|
* @note Globals: none
|
|
* @note Exceptions: none
|
|
* @note History: Fri Aug 18 15:57:41 1989, DSJ, Created.
|
|
*/
|
|
LABELEDLIST FindList (
|
|
LIST List,
|
|
char *Label)
|
|
{
|
|
LABELEDLIST LabeledList;
|
|
|
|
iterate (List)
|
|
{
|
|
LabeledList = (LABELEDLIST) first_node (List);
|
|
if (strcmp (LabeledList->Label, Label) == 0)
|
|
return (LabeledList);
|
|
}
|
|
return (NULL);
|
|
|
|
} /* FindList */
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
/**
|
|
* This routine allocates a new, empty labeled list and gives
|
|
* it the specified label.
|
|
* @param Label label for new list
|
|
* @return New, empty labeled list.
|
|
* @note Globals: none
|
|
* @note Exceptions: none
|
|
* @note History: Fri Aug 18 16:08:46 1989, DSJ, Created.
|
|
*/
|
|
LABELEDLIST NewLabeledList (
|
|
const char *Label)
|
|
{
|
|
LABELEDLIST LabeledList;
|
|
|
|
LabeledList = (LABELEDLIST) Emalloc (sizeof (LABELEDLISTNODE));
|
|
LabeledList->Label = (char*)Emalloc (strlen (Label)+1);
|
|
strcpy (LabeledList->Label, Label);
|
|
LabeledList->List = NIL_LIST;
|
|
LabeledList->SampleCount = 0;
|
|
LabeledList->font_sample_count = 0;
|
|
return (LabeledList);
|
|
|
|
} /* NewLabeledList */
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
// TODO(rays) This is now used only by cntraining. Convert cntraining to use
|
|
// the new method or get rid of it entirely.
|
|
/**
|
|
* This routine reads training samples from a file and
|
|
* places them into a data structure which organizes the
|
|
* samples by FontName and CharName. It then returns this
|
|
* data structure.
|
|
* @param file open text file to read samples from
|
|
* @param feature_defs
|
|
* @param feature_name
|
|
* @param max_samples
|
|
* @param unicharset
|
|
* @param training_samples
|
|
* @return none
|
|
* @note Globals: none
|
|
* @note Exceptions: none
|
|
* @note History:
|
|
* - Fri Aug 18 13:11:39 1989, DSJ, Created.
|
|
* - Tue May 17 1998 simplifications to structure, illiminated
|
|
* font, and feature specification levels of structure.
|
|
*/
|
|
void ReadTrainingSamples(const FEATURE_DEFS_STRUCT& feature_defs,
|
|
const char *feature_name, int max_samples,
|
|
UNICHARSET* unicharset,
|
|
FILE* file, LIST* training_samples) {
|
|
char buffer[2048];
|
|
char unichar[UNICHAR_LEN + 1];
|
|
LABELEDLIST char_sample;
|
|
FEATURE_SET feature_samples;
|
|
CHAR_DESC char_desc;
|
|
int i;
|
|
int feature_type = ShortNameToFeatureType(feature_defs, feature_name);
|
|
// Zero out the font_sample_count for all the classes.
|
|
LIST it = *training_samples;
|
|
iterate(it) {
|
|
char_sample = reinterpret_cast<LABELEDLIST>(first_node(it));
|
|
char_sample->font_sample_count = 0;
|
|
}
|
|
|
|
while (fgets(buffer, 2048, file) != NULL) {
|
|
if (buffer[0] == '\n')
|
|
continue;
|
|
|
|
sscanf(buffer, "%*s %s", unichar);
|
|
if (unicharset != NULL && !unicharset->contains_unichar(unichar)) {
|
|
unicharset->unichar_insert(unichar);
|
|
if (unicharset->size() > MAX_NUM_CLASSES) {
|
|
tprintf("Error: Size of unicharset in training is "
|
|
"greater than MAX_NUM_CLASSES\n");
|
|
exit(1);
|
|
}
|
|
}
|
|
char_sample = FindList(*training_samples, unichar);
|
|
if (char_sample == NULL) {
|
|
char_sample = NewLabeledList(unichar);
|
|
*training_samples = push(*training_samples, char_sample);
|
|
}
|
|
char_desc = ReadCharDescription(feature_defs, file);
|
|
feature_samples = char_desc->FeatureSets[feature_type];
|
|
if (char_sample->font_sample_count < max_samples || max_samples <= 0) {
|
|
char_sample->List = push(char_sample->List, feature_samples);
|
|
char_sample->SampleCount++;
|
|
char_sample->font_sample_count++;
|
|
} else {
|
|
FreeFeatureSet(feature_samples);
|
|
}
|
|
for (i = 0; i < char_desc->NumFeatureSets; i++) {
|
|
if (feature_type != i)
|
|
FreeFeatureSet(char_desc->FeatureSets[i]);
|
|
}
|
|
free(char_desc);
|
|
}
|
|
} // ReadTrainingSamples
|
|
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
/**
|
|
* This routine deallocates all of the space allocated to
|
|
* the specified list of training samples.
|
|
* @param CharList list of all fonts in document
|
|
* @return none
|
|
* @note Globals: none
|
|
* @note Exceptions: none
|
|
* @note History: Fri Aug 18 17:44:27 1989, DSJ, Created.
|
|
*/
|
|
void FreeTrainingSamples(LIST CharList) {
|
|
LABELEDLIST char_sample;
|
|
FEATURE_SET FeatureSet;
|
|
LIST FeatureList;
|
|
|
|
|
|
iterate(CharList) { /* iterate thru all of the fonts */
|
|
char_sample = (LABELEDLIST) first_node(CharList);
|
|
FeatureList = char_sample->List;
|
|
iterate(FeatureList) { /* iterate thru all of the classes */
|
|
FeatureSet = (FEATURE_SET) first_node(FeatureList);
|
|
FreeFeatureSet(FeatureSet);
|
|
}
|
|
FreeLabeledList(char_sample);
|
|
}
|
|
destroy(CharList);
|
|
} /* FreeTrainingSamples */
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
/**
|
|
* This routine deallocates all of the memory consumed by
|
|
* a labeled list. It does not free any memory which may be
|
|
* consumed by the items in the list.
|
|
* @param LabeledList labeled list to be freed
|
|
* @note Globals: none
|
|
* @return none
|
|
* @note Exceptions: none
|
|
* @note History: Fri Aug 18 17:52:45 1989, DSJ, Created.
|
|
*/
|
|
void FreeLabeledList(LABELEDLIST LabeledList) {
|
|
destroy(LabeledList->List);
|
|
free(LabeledList->Label);
|
|
free(LabeledList);
|
|
} /* FreeLabeledList */
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
/**
|
|
* This routine reads samples from a LABELEDLIST and enters
|
|
* those samples into a clusterer data structure. This
|
|
* data structure is then returned to the caller.
|
|
* @param char_sample: LABELEDLIST that holds all the feature information for a
|
|
* @param FeatureDefs
|
|
* @param program_feature_type
|
|
* given character.
|
|
* @return Pointer to new clusterer data structure.
|
|
* @note Globals: None
|
|
* @note Exceptions: None
|
|
* @note History: 8/16/89, DSJ, Created.
|
|
*/
|
|
CLUSTERER *SetUpForClustering(const FEATURE_DEFS_STRUCT &FeatureDefs,
|
|
LABELEDLIST char_sample,
|
|
const char* program_feature_type) {
|
|
uinT16 N;
|
|
int i, j;
|
|
FLOAT32 *Sample = NULL;
|
|
CLUSTERER *Clusterer;
|
|
inT32 CharID;
|
|
LIST FeatureList = NULL;
|
|
FEATURE_SET FeatureSet = NULL;
|
|
|
|
int desc_index = ShortNameToFeatureType(FeatureDefs, program_feature_type);
|
|
N = FeatureDefs.FeatureDesc[desc_index]->NumParams;
|
|
Clusterer = MakeClusterer(N, FeatureDefs.FeatureDesc[desc_index]->ParamDesc);
|
|
|
|
FeatureList = char_sample->List;
|
|
CharID = 0;
|
|
iterate(FeatureList) {
|
|
FeatureSet = (FEATURE_SET) first_node(FeatureList);
|
|
for (i = 0; i < FeatureSet->MaxNumFeatures; i++) {
|
|
if (Sample == NULL)
|
|
Sample = (FLOAT32 *)Emalloc(N * sizeof(FLOAT32));
|
|
for (j = 0; j < N; j++)
|
|
Sample[j] = FeatureSet->Features[i]->Params[j];
|
|
MakeSample (Clusterer, Sample, CharID);
|
|
}
|
|
CharID++;
|
|
}
|
|
if ( Sample != NULL ) free( Sample );
|
|
return( Clusterer );
|
|
|
|
} /* SetUpForClustering */
|
|
|
|
/*------------------------------------------------------------------------*/
|
|
void MergeInsignificantProtos(LIST ProtoList, const char* label,
|
|
CLUSTERER *Clusterer, CLUSTERCONFIG *Config) {
|
|
PROTOTYPE *Prototype;
|
|
bool debug = strcmp(FLAGS_test_ch.c_str(), label) == 0;
|
|
|
|
LIST pProtoList = ProtoList;
|
|
iterate(pProtoList) {
|
|
Prototype = (PROTOTYPE *) first_node (pProtoList);
|
|
if (Prototype->Significant || Prototype->Merged)
|
|
continue;
|
|
FLOAT32 best_dist = 0.125;
|
|
PROTOTYPE* best_match = NULL;
|
|
// Find the nearest alive prototype.
|
|
LIST list_it = ProtoList;
|
|
iterate(list_it) {
|
|
PROTOTYPE* test_p = (PROTOTYPE *) first_node (list_it);
|
|
if (test_p != Prototype && !test_p->Merged) {
|
|
FLOAT32 dist = ComputeDistance(Clusterer->SampleSize,
|
|
Clusterer->ParamDesc,
|
|
Prototype->Mean, test_p->Mean);
|
|
if (dist < best_dist) {
|
|
best_match = test_p;
|
|
best_dist = dist;
|
|
}
|
|
}
|
|
}
|
|
if (best_match != NULL && !best_match->Significant) {
|
|
if (debug)
|
|
tprintf("Merging red clusters (%d+%d) at %g,%g and %g,%g\n",
|
|
best_match->NumSamples, Prototype->NumSamples,
|
|
best_match->Mean[0], best_match->Mean[1],
|
|
Prototype->Mean[0], Prototype->Mean[1]);
|
|
best_match->NumSamples = MergeClusters(Clusterer->SampleSize,
|
|
Clusterer->ParamDesc,
|
|
best_match->NumSamples,
|
|
Prototype->NumSamples,
|
|
best_match->Mean,
|
|
best_match->Mean, Prototype->Mean);
|
|
Prototype->NumSamples = 0;
|
|
Prototype->Merged = 1;
|
|
} else if (best_match != NULL) {
|
|
if (debug)
|
|
tprintf("Red proto at %g,%g matched a green one at %g,%g\n",
|
|
Prototype->Mean[0], Prototype->Mean[1],
|
|
best_match->Mean[0], best_match->Mean[1]);
|
|
Prototype->Merged = 1;
|
|
}
|
|
}
|
|
// Mark significant those that now have enough samples.
|
|
int min_samples = (inT32) (Config->MinSamples * Clusterer->NumChar);
|
|
pProtoList = ProtoList;
|
|
iterate(pProtoList) {
|
|
Prototype = (PROTOTYPE *) first_node (pProtoList);
|
|
// Process insignificant protos that do not match a green one
|
|
if (!Prototype->Significant && Prototype->NumSamples >= min_samples &&
|
|
!Prototype->Merged) {
|
|
if (debug)
|
|
tprintf("Red proto at %g,%g becoming green\n",
|
|
Prototype->Mean[0], Prototype->Mean[1]);
|
|
Prototype->Significant = true;
|
|
}
|
|
}
|
|
} /* MergeInsignificantProtos */
|
|
|
|
/*-----------------------------------------------------------------------------*/
|
|
void CleanUpUnusedData(
|
|
LIST ProtoList)
|
|
{
|
|
PROTOTYPE* Prototype;
|
|
|
|
iterate(ProtoList)
|
|
{
|
|
Prototype = (PROTOTYPE *) first_node (ProtoList);
|
|
if(Prototype->Variance.Elliptical != NULL)
|
|
{
|
|
memfree(Prototype->Variance.Elliptical);
|
|
Prototype->Variance.Elliptical = NULL;
|
|
}
|
|
if(Prototype->Magnitude.Elliptical != NULL)
|
|
{
|
|
memfree(Prototype->Magnitude.Elliptical);
|
|
Prototype->Magnitude.Elliptical = NULL;
|
|
}
|
|
if(Prototype->Weight.Elliptical != NULL)
|
|
{
|
|
memfree(Prototype->Weight.Elliptical);
|
|
Prototype->Weight.Elliptical = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*------------------------------------------------------------------------*/
|
|
LIST RemoveInsignificantProtos(
|
|
LIST ProtoList,
|
|
BOOL8 KeepSigProtos,
|
|
BOOL8 KeepInsigProtos,
|
|
int N)
|
|
|
|
{
|
|
LIST NewProtoList = NIL_LIST;
|
|
LIST pProtoList;
|
|
PROTOTYPE* Proto;
|
|
PROTOTYPE* NewProto;
|
|
int i;
|
|
|
|
pProtoList = ProtoList;
|
|
iterate(pProtoList)
|
|
{
|
|
Proto = (PROTOTYPE *) first_node (pProtoList);
|
|
if ((Proto->Significant && KeepSigProtos) ||
|
|
(!Proto->Significant && KeepInsigProtos))
|
|
{
|
|
NewProto = (PROTOTYPE *)Emalloc(sizeof(PROTOTYPE));
|
|
|
|
NewProto->Mean = (FLOAT32 *)Emalloc(N * sizeof(FLOAT32));
|
|
NewProto->Significant = Proto->Significant;
|
|
NewProto->Style = Proto->Style;
|
|
NewProto->NumSamples = Proto->NumSamples;
|
|
NewProto->Cluster = NULL;
|
|
NewProto->Distrib = NULL;
|
|
|
|
for (i=0; i < N; i++)
|
|
NewProto->Mean[i] = Proto->Mean[i];
|
|
if (Proto->Variance.Elliptical != NULL)
|
|
{
|
|
NewProto->Variance.Elliptical = (FLOAT32 *)Emalloc(N * sizeof(FLOAT32));
|
|
for (i=0; i < N; i++)
|
|
NewProto->Variance.Elliptical[i] = Proto->Variance.Elliptical[i];
|
|
}
|
|
else
|
|
NewProto->Variance.Elliptical = NULL;
|
|
//---------------------------------------------
|
|
if (Proto->Magnitude.Elliptical != NULL)
|
|
{
|
|
NewProto->Magnitude.Elliptical = (FLOAT32 *)Emalloc(N * sizeof(FLOAT32));
|
|
for (i=0; i < N; i++)
|
|
NewProto->Magnitude.Elliptical[i] = Proto->Magnitude.Elliptical[i];
|
|
}
|
|
else
|
|
NewProto->Magnitude.Elliptical = NULL;
|
|
//------------------------------------------------
|
|
if (Proto->Weight.Elliptical != NULL)
|
|
{
|
|
NewProto->Weight.Elliptical = (FLOAT32 *)Emalloc(N * sizeof(FLOAT32));
|
|
for (i=0; i < N; i++)
|
|
NewProto->Weight.Elliptical[i] = Proto->Weight.Elliptical[i];
|
|
}
|
|
else
|
|
NewProto->Weight.Elliptical = NULL;
|
|
|
|
NewProto->TotalMagnitude = Proto->TotalMagnitude;
|
|
NewProto->LogMagnitude = Proto->LogMagnitude;
|
|
NewProtoList = push_last(NewProtoList, NewProto);
|
|
}
|
|
}
|
|
FreeProtoList(&ProtoList);
|
|
return (NewProtoList);
|
|
} /* RemoveInsignificantProtos */
|
|
|
|
/*----------------------------------------------------------------------------*/
|
|
MERGE_CLASS FindClass (
|
|
LIST List,
|
|
const char *Label)
|
|
{
|
|
MERGE_CLASS MergeClass;
|
|
|
|
iterate (List)
|
|
{
|
|
MergeClass = (MERGE_CLASS) first_node (List);
|
|
if (strcmp (MergeClass->Label, Label) == 0)
|
|
return (MergeClass);
|
|
}
|
|
return (NULL);
|
|
|
|
} /* FindClass */
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
MERGE_CLASS NewLabeledClass (
|
|
const char *Label)
|
|
{
|
|
MERGE_CLASS MergeClass;
|
|
|
|
MergeClass = new MERGE_CLASS_NODE;
|
|
MergeClass->Label = (char*)Emalloc (strlen (Label)+1);
|
|
strcpy (MergeClass->Label, Label);
|
|
MergeClass->Class = NewClass (MAX_NUM_PROTOS, MAX_NUM_CONFIGS);
|
|
return (MergeClass);
|
|
|
|
} /* NewLabeledClass */
|
|
|
|
/*-----------------------------------------------------------------------------*/
|
|
/**
|
|
* This routine deallocates all of the space allocated to
|
|
* the specified list of training samples.
|
|
* @param ClassList list of all fonts in document
|
|
* @return none
|
|
* @note Globals: none
|
|
* @note Exceptions: none
|
|
* @note History: Fri Aug 18 17:44:27 1989, DSJ, Created.
|
|
*/
|
|
void FreeLabeledClassList (
|
|
LIST ClassList)
|
|
{
|
|
MERGE_CLASS MergeClass;
|
|
|
|
iterate (ClassList) /* iterate thru all of the fonts */
|
|
{
|
|
MergeClass = (MERGE_CLASS) first_node (ClassList);
|
|
free (MergeClass->Label);
|
|
FreeClass(MergeClass->Class);
|
|
delete MergeClass;
|
|
}
|
|
destroy (ClassList);
|
|
|
|
} /* FreeLabeledClassList */
|
|
|
|
/* SetUpForFloat2Int */
|
|
CLASS_STRUCT* SetUpForFloat2Int(const UNICHARSET& unicharset,
|
|
LIST LabeledClassList) {
|
|
MERGE_CLASS MergeClass;
|
|
CLASS_TYPE Class;
|
|
int NumProtos;
|
|
int NumConfigs;
|
|
int NumWords;
|
|
int i, j;
|
|
float Values[3];
|
|
PROTO NewProto;
|
|
PROTO OldProto;
|
|
BIT_VECTOR NewConfig;
|
|
BIT_VECTOR OldConfig;
|
|
|
|
// printf("Float2Int ...\n");
|
|
|
|
CLASS_STRUCT* float_classes = new CLASS_STRUCT[unicharset.size()];
|
|
iterate(LabeledClassList)
|
|
{
|
|
UnicityTableEqEq<int> font_set;
|
|
MergeClass = (MERGE_CLASS) first_node (LabeledClassList);
|
|
Class = &float_classes[unicharset.unichar_to_id(MergeClass->Label)];
|
|
NumProtos = MergeClass->Class->NumProtos;
|
|
NumConfigs = MergeClass->Class->NumConfigs;
|
|
font_set.move(&MergeClass->Class->font_set);
|
|
Class->NumProtos = NumProtos;
|
|
Class->MaxNumProtos = NumProtos;
|
|
Class->Prototypes = (PROTO) Emalloc (sizeof(PROTO_STRUCT) * NumProtos);
|
|
for(i=0; i < NumProtos; i++)
|
|
{
|
|
NewProto = ProtoIn(Class, i);
|
|
OldProto = ProtoIn(MergeClass->Class, i);
|
|
Values[0] = OldProto->X;
|
|
Values[1] = OldProto->Y;
|
|
Values[2] = OldProto->Angle;
|
|
Normalize(Values);
|
|
NewProto->X = OldProto->X;
|
|
NewProto->Y = OldProto->Y;
|
|
NewProto->Length = OldProto->Length;
|
|
NewProto->Angle = OldProto->Angle;
|
|
NewProto->A = Values[0];
|
|
NewProto->B = Values[1];
|
|
NewProto->C = Values[2];
|
|
}
|
|
|
|
Class->NumConfigs = NumConfigs;
|
|
Class->MaxNumConfigs = NumConfigs;
|
|
Class->font_set.move(&font_set);
|
|
Class->Configurations = (BIT_VECTOR*) Emalloc (sizeof(BIT_VECTOR) * NumConfigs);
|
|
NumWords = WordsInVectorOfSize(NumProtos);
|
|
for(i=0; i < NumConfigs; i++)
|
|
{
|
|
NewConfig = NewBitVector(NumProtos);
|
|
OldConfig = MergeClass->Class->Configurations[i];
|
|
for(j=0; j < NumWords; j++)
|
|
NewConfig[j] = OldConfig[j];
|
|
Class->Configurations[i] = NewConfig;
|
|
}
|
|
}
|
|
return float_classes;
|
|
} // SetUpForFloat2Int
|
|
|
|
/*--------------------------------------------------------------------------*/
|
|
void Normalize (
|
|
float *Values)
|
|
{
|
|
register float Slope;
|
|
register float Intercept;
|
|
register float Normalizer;
|
|
|
|
Slope = tan (Values [2] * 2 * PI);
|
|
Intercept = Values [1] - Slope * Values [0];
|
|
Normalizer = 1 / sqrt (Slope * Slope + 1.0);
|
|
|
|
Values [0] = Slope * Normalizer;
|
|
Values [1] = - Normalizer;
|
|
Values [2] = Intercept * Normalizer;
|
|
} // Normalize
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
void FreeNormProtoList (
|
|
LIST CharList)
|
|
|
|
{
|
|
LABELEDLIST char_sample;
|
|
|
|
iterate (CharList) /* iterate thru all of the fonts */
|
|
{
|
|
char_sample = (LABELEDLIST) first_node (CharList);
|
|
FreeLabeledList (char_sample);
|
|
}
|
|
destroy (CharList);
|
|
|
|
} // FreeNormProtoList
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
void AddToNormProtosList(
|
|
LIST* NormProtoList,
|
|
LIST ProtoList,
|
|
char* CharName)
|
|
{
|
|
PROTOTYPE* Proto;
|
|
LABELEDLIST LabeledProtoList;
|
|
|
|
LabeledProtoList = NewLabeledList(CharName);
|
|
iterate(ProtoList)
|
|
{
|
|
Proto = (PROTOTYPE *) first_node (ProtoList);
|
|
LabeledProtoList->List = push(LabeledProtoList->List, Proto);
|
|
}
|
|
*NormProtoList = push(*NormProtoList, LabeledProtoList);
|
|
}
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
int NumberOfProtos(
|
|
LIST ProtoList,
|
|
BOOL8 CountSigProtos,
|
|
BOOL8 CountInsigProtos)
|
|
{
|
|
int N = 0;
|
|
PROTOTYPE *Proto;
|
|
|
|
iterate(ProtoList)
|
|
{
|
|
Proto = (PROTOTYPE *) first_node ( ProtoList );
|
|
if (( Proto->Significant && CountSigProtos ) ||
|
|
( ! Proto->Significant && CountInsigProtos ) )
|
|
N++;
|
|
}
|
|
return(N);
|
|
}
|