mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2024-12-05 10:49:01 +08:00
760 lines
33 KiB
C++
760 lines
33 KiB
C++
///////////////////////////////////////////////////////////////////////
|
|
// File: recodebeam.cpp
|
|
// Description: Beam search to decode from the re-encoded CJK as a sequence of
|
|
// smaller numbers in place of a single large code.
|
|
// Author: Ray Smith
|
|
// Created: Fri Mar 13 09:39:01 PDT 2015
|
|
//
|
|
// (C) Copyright 2015, Google Inc.
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////
|
|
|
|
#include "recodebeam.h"
|
|
#include "networkio.h"
|
|
#include "pageres.h"
|
|
#include "unicharcompress.h"
|
|
|
|
namespace tesseract {
|
|
|
|
// Clipping value for certainty inside Tesseract. Reflects the minimum value
|
|
// of certainty that will be returned by ExtractBestPathAsUnicharIds.
|
|
// Supposedly on a uniform scale that can be compared across languages and
|
|
// engines.
|
|
const float RecodeBeamSearch::kMinCertainty = -20.0f;
|
|
|
|
// The beam width at each code position.
|
|
const int RecodeBeamSearch::kBeamWidths[RecodedCharID::kMaxCodeLen + 1] = {
|
|
5, 10, 16, 16, 16, 16, 16, 16, 16, 16,
|
|
};
|
|
|
|
// Borrows the pointer, which is expected to survive until *this is deleted.
|
|
RecodeBeamSearch::RecodeBeamSearch(const UnicharCompress& recoder,
|
|
int null_char, bool simple_text, Dict* dict)
|
|
: recoder_(recoder),
|
|
dict_(dict),
|
|
space_delimited_(true),
|
|
is_simple_text_(simple_text),
|
|
null_char_(null_char) {
|
|
if (dict_ != NULL && !dict_->IsSpaceDelimitedLang()) space_delimited_ = false;
|
|
}
|
|
|
|
// Decodes the set of network outputs, storing the lattice internally.
|
|
void RecodeBeamSearch::Decode(const NetworkIO& output, double dict_ratio,
|
|
double cert_offset, double worst_dict_cert,
|
|
const UNICHARSET* charset) {
|
|
beam_size_ = 0;
|
|
int width = output.Width();
|
|
for (int t = 0; t < width; ++t) {
|
|
ComputeTopN(output.f(t), output.NumFeatures(), kBeamWidths[0]);
|
|
DecodeStep(output.f(t), t, dict_ratio, cert_offset, worst_dict_cert,
|
|
charset);
|
|
}
|
|
}
|
|
void RecodeBeamSearch::Decode(const GENERIC_2D_ARRAY<float>& output,
|
|
double dict_ratio, double cert_offset,
|
|
double worst_dict_cert,
|
|
const UNICHARSET* charset) {
|
|
beam_size_ = 0;
|
|
int width = output.dim1();
|
|
for (int t = 0; t < width; ++t) {
|
|
ComputeTopN(output[t], output.dim2(), kBeamWidths[0]);
|
|
DecodeStep(output[t], t, dict_ratio, cert_offset, worst_dict_cert, charset);
|
|
}
|
|
}
|
|
|
|
// Returns the best path as labels/scores/xcoords similar to simple CTC.
|
|
void RecodeBeamSearch::ExtractBestPathAsLabels(
|
|
GenericVector<int>* labels, GenericVector<int>* xcoords) const {
|
|
labels->truncate(0);
|
|
xcoords->truncate(0);
|
|
GenericVector<const RecodeNode*> best_nodes;
|
|
ExtractBestPaths(&best_nodes, NULL);
|
|
// Now just run CTC on the best nodes.
|
|
int t = 0;
|
|
int width = best_nodes.size();
|
|
while (t < width) {
|
|
int label = best_nodes[t]->code;
|
|
if (label != null_char_) {
|
|
labels->push_back(label);
|
|
xcoords->push_back(t);
|
|
}
|
|
while (++t < width && !is_simple_text_ && best_nodes[t]->code == label) {
|
|
}
|
|
}
|
|
xcoords->push_back(width);
|
|
}
|
|
|
|
// Returns the best path as unichar-ids/certs/ratings/xcoords skipping
|
|
// duplicates, nulls and intermediate parts.
|
|
void RecodeBeamSearch::ExtractBestPathAsUnicharIds(
|
|
bool debug, const UNICHARSET* unicharset, GenericVector<int>* unichar_ids,
|
|
GenericVector<float>* certs, GenericVector<float>* ratings,
|
|
GenericVector<int>* xcoords) const {
|
|
GenericVector<const RecodeNode*> best_nodes;
|
|
ExtractBestPaths(&best_nodes, NULL);
|
|
ExtractPathAsUnicharIds(best_nodes, unichar_ids, certs, ratings, xcoords);
|
|
if (debug) {
|
|
DebugPath(unicharset, best_nodes);
|
|
DebugUnicharPath(unicharset, best_nodes, *unichar_ids, *certs, *ratings,
|
|
*xcoords);
|
|
}
|
|
}
|
|
|
|
// Returns the best path as a set of WERD_RES.
|
|
void RecodeBeamSearch::ExtractBestPathAsWords(const TBOX& line_box,
|
|
float scale_factor, bool debug,
|
|
const UNICHARSET* unicharset,
|
|
PointerVector<WERD_RES>* words) {
|
|
words->truncate(0);
|
|
GenericVector<int> unichar_ids;
|
|
GenericVector<float> certs;
|
|
GenericVector<float> ratings;
|
|
GenericVector<int> xcoords;
|
|
GenericVector<const RecodeNode*> best_nodes;
|
|
GenericVector<const RecodeNode*> second_nodes;
|
|
ExtractBestPaths(&best_nodes, &second_nodes);
|
|
if (debug) {
|
|
DebugPath(unicharset, best_nodes);
|
|
ExtractPathAsUnicharIds(second_nodes, &unichar_ids, &certs, &ratings,
|
|
&xcoords);
|
|
tprintf("\nSecond choice path:\n");
|
|
DebugUnicharPath(unicharset, second_nodes, unichar_ids, certs, ratings,
|
|
xcoords);
|
|
}
|
|
ExtractPathAsUnicharIds(best_nodes, &unichar_ids, &certs, &ratings, &xcoords);
|
|
int num_ids = unichar_ids.size();
|
|
if (debug) {
|
|
DebugUnicharPath(unicharset, best_nodes, unichar_ids, certs, ratings,
|
|
xcoords);
|
|
}
|
|
// Convert labels to unichar-ids.
|
|
int word_end = 0;
|
|
float prev_space_cert = 0.0f;
|
|
for (int word_start = 0; word_start < num_ids; word_start = word_end) {
|
|
for (word_end = word_start + 1; word_end < num_ids; ++word_end) {
|
|
// A word is terminated when a space character or start_of_word flag is
|
|
// hit. We also want to force a separate word for every non
|
|
// space-delimited character when not in a dictionary context.
|
|
if (unichar_ids[word_end] == UNICHAR_SPACE) break;
|
|
int index = xcoords[word_end];
|
|
if (best_nodes[index]->start_of_word) break;
|
|
if (best_nodes[index]->permuter == TOP_CHOICE_PERM &&
|
|
(!unicharset->IsSpaceDelimited(unichar_ids[word_end]) ||
|
|
!unicharset->IsSpaceDelimited(unichar_ids[word_end - 1])))
|
|
break;
|
|
}
|
|
float space_cert = 0.0f;
|
|
if (word_end < num_ids && unichar_ids[word_end] == UNICHAR_SPACE)
|
|
space_cert = certs[word_end];
|
|
bool leading_space =
|
|
word_start > 0 && unichar_ids[word_start - 1] == UNICHAR_SPACE;
|
|
// Create a WERD_RES for the output word.
|
|
WERD_RES* word_res = InitializeWord(
|
|
leading_space, line_box, word_start, word_end,
|
|
MIN(space_cert, prev_space_cert), unicharset, xcoords, scale_factor);
|
|
for (int i = word_start; i < word_end; ++i) {
|
|
BLOB_CHOICE_LIST* choices = new BLOB_CHOICE_LIST;
|
|
BLOB_CHOICE_IT bc_it(choices);
|
|
BLOB_CHOICE* choice = new BLOB_CHOICE(
|
|
unichar_ids[i], ratings[i], certs[i], -1, 1.0f,
|
|
static_cast<float>(MAX_INT16), 0.0f, BCC_STATIC_CLASSIFIER);
|
|
int col = i - word_start;
|
|
choice->set_matrix_cell(col, col);
|
|
bc_it.add_after_then_move(choice);
|
|
word_res->ratings->put(col, col, choices);
|
|
}
|
|
int index = xcoords[word_end - 1];
|
|
word_res->FakeWordFromRatings(best_nodes[index]->permuter);
|
|
words->push_back(word_res);
|
|
prev_space_cert = space_cert;
|
|
if (word_end < num_ids && unichar_ids[word_end] == UNICHAR_SPACE)
|
|
++word_end;
|
|
}
|
|
}
|
|
|
|
// Generates debug output of the content of the beams after a Decode.
|
|
void RecodeBeamSearch::DebugBeams(const UNICHARSET& unicharset) const {
|
|
for (int p = 0; p < beam_size_; ++p) {
|
|
// Print all the best scoring nodes for each unichar found.
|
|
tprintf("Position %d: Nondict beam\n", p);
|
|
DebugBeamPos(unicharset, beam_[p]->beams_[0]);
|
|
tprintf("Position %d: Dict beam\n", p);
|
|
DebugBeamPos(unicharset, beam_[p]->dawg_beams_[0]);
|
|
}
|
|
}
|
|
|
|
// Generates debug output of the content of a single beam position.
|
|
void RecodeBeamSearch::DebugBeamPos(const UNICHARSET& unicharset,
|
|
const RecodeHeap& heap) const {
|
|
GenericVector<const RecodeNode*> unichar_bests;
|
|
unichar_bests.init_to_size(unicharset.size(), NULL);
|
|
const RecodeNode* null_best = NULL;
|
|
int heap_size = heap.size();
|
|
for (int i = 0; i < heap_size; ++i) {
|
|
const RecodeNode* node = &heap.get(i).data;
|
|
if (node->unichar_id == INVALID_UNICHAR_ID) {
|
|
if (null_best == NULL || null_best->score < node->score) null_best = node;
|
|
} else {
|
|
if (unichar_bests[node->unichar_id] == NULL ||
|
|
unichar_bests[node->unichar_id]->score < node->score) {
|
|
unichar_bests[node->unichar_id] = node;
|
|
}
|
|
}
|
|
}
|
|
for (int u = 0; u < unichar_bests.size(); ++u) {
|
|
if (unichar_bests[u] != NULL) {
|
|
const RecodeNode& node = *unichar_bests[u];
|
|
tprintf("label=%d, uid=%d=%s score=%g, c=%g, s=%d, e=%d, perm=%d\n",
|
|
node.code, node.unichar_id,
|
|
unicharset.debug_str(node.unichar_id).string(), node.score,
|
|
node.certainty, node.start_of_word, node.end_of_word,
|
|
node.permuter);
|
|
}
|
|
}
|
|
if (null_best != NULL) {
|
|
tprintf("null_char score=%g, c=%g, s=%d, e=%d, perm=%d\n", null_best->score,
|
|
null_best->certainty, null_best->start_of_word,
|
|
null_best->end_of_word, null_best->permuter);
|
|
}
|
|
}
|
|
|
|
// Returns the given best_nodes as unichar-ids/certs/ratings/xcoords skipping
|
|
// duplicates, nulls and intermediate parts.
|
|
/* static */
|
|
void RecodeBeamSearch::ExtractPathAsUnicharIds(
|
|
const GenericVector<const RecodeNode*>& best_nodes,
|
|
GenericVector<int>* unichar_ids, GenericVector<float>* certs,
|
|
GenericVector<float>* ratings, GenericVector<int>* xcoords) {
|
|
unichar_ids->truncate(0);
|
|
certs->truncate(0);
|
|
ratings->truncate(0);
|
|
xcoords->truncate(0);
|
|
// Backtrack extracting only valid, non-duplicate unichar-ids.
|
|
int t = 0;
|
|
int width = best_nodes.size();
|
|
while (t < width) {
|
|
double certainty = 0.0;
|
|
double rating = 0.0;
|
|
while (t < width && best_nodes[t]->unichar_id == INVALID_UNICHAR_ID) {
|
|
double cert = best_nodes[t++]->certainty;
|
|
if (cert < certainty) certainty = cert;
|
|
rating -= cert;
|
|
}
|
|
if (t < width) {
|
|
int unichar_id = best_nodes[t]->unichar_id;
|
|
unichar_ids->push_back(unichar_id);
|
|
xcoords->push_back(t);
|
|
do {
|
|
double cert = best_nodes[t++]->certainty;
|
|
// Special-case NO-PERM space to forget the certainty of the previous
|
|
// nulls. See long comment in ContinueContext.
|
|
if (cert < certainty || (unichar_id == UNICHAR_SPACE &&
|
|
best_nodes[t - 1]->permuter == NO_PERM)) {
|
|
certainty = cert;
|
|
}
|
|
rating -= cert;
|
|
} while (t < width && best_nodes[t]->duplicate);
|
|
certs->push_back(certainty);
|
|
ratings->push_back(rating);
|
|
} else if (!certs->empty()) {
|
|
if (certainty < certs->back()) certs->back() = certainty;
|
|
ratings->back() += rating;
|
|
}
|
|
}
|
|
xcoords->push_back(width);
|
|
}
|
|
|
|
// Sets up a word with the ratings matrix and fake blobs with boxes in the
|
|
// right places.
|
|
WERD_RES* RecodeBeamSearch::InitializeWord(bool leading_space,
|
|
const TBOX& line_box, int word_start,
|
|
int word_end, float space_certainty,
|
|
const UNICHARSET* unicharset,
|
|
const GenericVector<int>& xcoords,
|
|
float scale_factor) {
|
|
// Make a fake blob for each non-zero label.
|
|
C_BLOB_LIST blobs;
|
|
C_BLOB_IT b_it(&blobs);
|
|
for (int i = word_start; i < word_end; ++i) {
|
|
int min_half_width = xcoords[i + 1] - xcoords[i];
|
|
if (i > 0 && xcoords[i] - xcoords[i - 1] < min_half_width)
|
|
min_half_width = xcoords[i] - xcoords[i - 1];
|
|
if (min_half_width < 1) min_half_width = 1;
|
|
// Make a fake blob.
|
|
TBOX box(xcoords[i] - min_half_width, 0, xcoords[i] + min_half_width,
|
|
line_box.height());
|
|
box.scale(scale_factor);
|
|
box.move(ICOORD(line_box.left(), line_box.bottom()));
|
|
box.set_top(line_box.top());
|
|
b_it.add_after_then_move(C_BLOB::FakeBlob(box));
|
|
}
|
|
// Make a fake word from the blobs.
|
|
WERD* word = new WERD(&blobs, leading_space, NULL);
|
|
// Make a WERD_RES from the word.
|
|
WERD_RES* word_res = new WERD_RES(word);
|
|
word_res->uch_set = unicharset;
|
|
word_res->combination = true; // Give it ownership of the word.
|
|
word_res->space_certainty = space_certainty;
|
|
word_res->ratings = new MATRIX(word_end - word_start, 1);
|
|
return word_res;
|
|
}
|
|
|
|
// Fills top_n_flags_ with bools that are true iff the corresponding output
|
|
// is one of the top_n.
|
|
void RecodeBeamSearch::ComputeTopN(const float* outputs, int num_outputs,
|
|
int top_n) {
|
|
top_n_flags_.init_to_size(num_outputs, false);
|
|
top_heap_.clear();
|
|
for (int i = 0; i < num_outputs; ++i) {
|
|
if (top_heap_.size() < top_n || outputs[i] > top_heap_.PeekTop().key) {
|
|
TopPair entry(outputs[i], i);
|
|
top_heap_.Push(&entry);
|
|
if (top_heap_.size() > top_n) top_heap_.Pop(&entry);
|
|
}
|
|
}
|
|
while (!top_heap_.empty()) {
|
|
TopPair entry;
|
|
top_heap_.Pop(&entry);
|
|
top_n_flags_[entry.data] = true;
|
|
}
|
|
}
|
|
|
|
// Adds the computation for the current time-step to the beam. Call at each
|
|
// time-step in sequence from left to right. outputs is the activation vector
|
|
// for the current timestep.
|
|
void RecodeBeamSearch::DecodeStep(const float* outputs, int t,
|
|
double dict_ratio, double cert_offset,
|
|
double worst_dict_cert,
|
|
const UNICHARSET* charset) {
|
|
if (t == beam_.size()) beam_.push_back(new RecodeBeam);
|
|
RecodeBeam* step = beam_[t];
|
|
beam_size_ = t + 1;
|
|
step->Clear();
|
|
if (t == 0) {
|
|
// The first step can only use singles and initials.
|
|
ContinueContext(NULL, 0, outputs, false, true, dict_ratio, cert_offset,
|
|
worst_dict_cert, step);
|
|
if (dict_ != NULL)
|
|
ContinueContext(NULL, 0, outputs, true, true, dict_ratio, cert_offset,
|
|
worst_dict_cert, step);
|
|
} else {
|
|
RecodeBeam* prev = beam_[t - 1];
|
|
if (charset != NULL) {
|
|
for (int i = prev->dawg_beams_[0].size() - 1; i >= 0; --i) {
|
|
GenericVector<const RecodeNode*> path;
|
|
ExtractPath(&prev->dawg_beams_[0].get(i).data, &path);
|
|
tprintf("Step %d: Dawg beam %d:\n", t, i);
|
|
DebugPath(charset, path);
|
|
}
|
|
}
|
|
int total_beam = 0;
|
|
// Try true and then false only if the beam is empty. This enables extending
|
|
// the context using only the top-n results first, which may have an empty
|
|
// intersection with the valid codes, so we fall back to the rest if the
|
|
// beam is empty.
|
|
for (int flag = 1; flag >= 0 && total_beam == 0; --flag) {
|
|
for (int length = 0; length <= RecodedCharID::kMaxCodeLen; ++length) {
|
|
// Working backwards through the heaps doesn't guarantee that we see the
|
|
// best first, but it comes before a lot of the worst, so it is slightly
|
|
// more efficient than going forwards.
|
|
for (int i = prev->dawg_beams_[length].size() - 1; i >= 0; --i) {
|
|
ContinueContext(&prev->dawg_beams_[length].get(i).data, length,
|
|
outputs, true, flag, dict_ratio, cert_offset,
|
|
worst_dict_cert, step);
|
|
}
|
|
for (int i = prev->beams_[length].size() - 1; i >= 0; --i) {
|
|
ContinueContext(&prev->beams_[length].get(i).data, length, outputs,
|
|
false, flag, dict_ratio, cert_offset, worst_dict_cert,
|
|
step);
|
|
}
|
|
}
|
|
for (int length = 0; length <= RecodedCharID::kMaxCodeLen; ++length) {
|
|
total_beam += step->beams_[length].size();
|
|
total_beam += step->dawg_beams_[length].size();
|
|
}
|
|
}
|
|
// Special case for the best initial dawg. Push it on the heap if good
|
|
// enough, but there is only one, so it doesn't blow up the beam.
|
|
RecodeHeap* dawg_heap = &step->dawg_beams_[0];
|
|
if (step->best_initial_dawg_.code >= 0 &&
|
|
(dawg_heap->size() < kBeamWidths[0] ||
|
|
step->best_initial_dawg_.score > dawg_heap->PeekTop().data.score)) {
|
|
RecodePair entry(step->best_initial_dawg_.score,
|
|
step->best_initial_dawg_);
|
|
dawg_heap->Push(&entry);
|
|
if (dawg_heap->size() > kBeamWidths[0]) dawg_heap->Pop(&entry);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Adds to the appropriate beams the legal (according to recoder)
|
|
// continuations of context prev, which is of the given length, using the
|
|
// given network outputs to provide scores to the choices. Uses only those
|
|
// choices for which top_n_flags[index] == top_n_flag.
|
|
void RecodeBeamSearch::ContinueContext(const RecodeNode* prev, int length,
|
|
const float* outputs, bool use_dawgs,
|
|
bool top_n_flag, double dict_ratio,
|
|
double cert_offset,
|
|
double worst_dict_cert,
|
|
RecodeBeam* step) {
|
|
RecodedCharID prefix;
|
|
RecodedCharID full_code;
|
|
const RecodeNode* previous = prev;
|
|
for (int p = length - 1; p >= 0; --p, previous = previous->prev) {
|
|
while (previous != NULL &&
|
|
(previous->duplicate || previous->code == null_char_)) {
|
|
previous = previous->prev;
|
|
}
|
|
prefix.Set(p, previous->code);
|
|
full_code.Set(p, previous->code);
|
|
}
|
|
if (prev != NULL && !is_simple_text_) {
|
|
float cert = NetworkIO::ProbToCertainty(outputs[prev->code]) + cert_offset;
|
|
if ((cert >= kMinCertainty || prev->code == null_char_) &&
|
|
top_n_flags_[prev->code] == top_n_flag) {
|
|
if (use_dawgs) {
|
|
if (cert > worst_dict_cert) {
|
|
PushDupIfBetter(kBeamWidths[length], cert, prev,
|
|
&step->dawg_beams_[length]);
|
|
}
|
|
} else {
|
|
PushDupIfBetter(kBeamWidths[length], cert * dict_ratio, prev,
|
|
&step->beams_[length]);
|
|
}
|
|
}
|
|
if (prev->code != null_char_ && length > 0 &&
|
|
top_n_flags_[null_char_] == top_n_flag) {
|
|
// Allow nulls within multi code sequences, as the nulls within are not
|
|
// explicitly included in the code sequence.
|
|
cert = NetworkIO::ProbToCertainty(outputs[null_char_]) + cert_offset;
|
|
if (cert >= kMinCertainty && (!use_dawgs || cert > worst_dict_cert)) {
|
|
if (use_dawgs) {
|
|
PushNoDawgIfBetter(kBeamWidths[length], null_char_,
|
|
INVALID_UNICHAR_ID, NO_PERM, cert, prev,
|
|
&step->dawg_beams_[length]);
|
|
} else {
|
|
PushNoDawgIfBetter(kBeamWidths[length], null_char_,
|
|
INVALID_UNICHAR_ID, TOP_CHOICE_PERM,
|
|
cert * dict_ratio, prev, &step->beams_[length]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
const GenericVector<int>* final_codes = recoder_.GetFinalCodes(prefix);
|
|
if (final_codes != NULL) {
|
|
for (int i = 0; i < final_codes->size(); ++i) {
|
|
int code = (*final_codes)[i];
|
|
if (top_n_flags_[code] != top_n_flag) continue;
|
|
if (prev != NULL && prev->code == code && !is_simple_text_) continue;
|
|
float cert = NetworkIO::ProbToCertainty(outputs[code]) + cert_offset;
|
|
if (cert < kMinCertainty && code != null_char_) continue;
|
|
full_code.Set(length, code);
|
|
int unichar_id = recoder_.DecodeUnichar(full_code);
|
|
// Map the null char to INVALID.
|
|
if (length == 0 && code == null_char_) unichar_id = INVALID_UNICHAR_ID;
|
|
if (use_dawgs) {
|
|
if (cert > worst_dict_cert) {
|
|
ContinueDawg(kBeamWidths[0], code, unichar_id, cert, prev,
|
|
&step->dawg_beams_[0], step);
|
|
}
|
|
} else {
|
|
PushNoDawgIfBetter(kBeamWidths[0], code, unichar_id, TOP_CHOICE_PERM,
|
|
cert * dict_ratio, prev, &step->beams_[0]);
|
|
if (dict_ != NULL &&
|
|
((unichar_id == UNICHAR_SPACE && cert > worst_dict_cert) ||
|
|
!dict_->getUnicharset().IsSpaceDelimited(unichar_id))) {
|
|
// Any top choice position that can start a new word, ie a space or
|
|
// any non-space-delimited character, should also be considered
|
|
// by the dawg search, so push initial dawg to the dawg heap.
|
|
float dawg_cert = cert;
|
|
PermuterType permuter = TOP_CHOICE_PERM;
|
|
// Since we use the space either side of a dictionary word in the
|
|
// certainty of the word, (to properly handle weak spaces) and the
|
|
// space is coming from a non-dict word, we need special conditions
|
|
// to avoid degrading the certainty of the dict word that follows.
|
|
// With a space we don't multiply the certainty by dict_ratio, and we
|
|
// flag the space with NO_PERM to indicate that we should not use the
|
|
// predecessor nulls to generate the confidence for the space, as they
|
|
// have already been multiplied by dict_ratio, and we can't go back to
|
|
// insert more entries in any previous heaps.
|
|
if (unichar_id == UNICHAR_SPACE)
|
|
permuter = NO_PERM;
|
|
else
|
|
dawg_cert *= dict_ratio;
|
|
PushInitialDawgIfBetter(code, unichar_id, permuter, false, false,
|
|
dawg_cert, prev, &step->best_initial_dawg_);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
const GenericVector<int>* next_codes = recoder_.GetNextCodes(prefix);
|
|
if (next_codes != NULL) {
|
|
for (int i = 0; i < next_codes->size(); ++i) {
|
|
int code = (*next_codes)[i];
|
|
if (top_n_flags_[code] != top_n_flag) continue;
|
|
if (prev != NULL && prev->code == code && !is_simple_text_) continue;
|
|
float cert = NetworkIO::ProbToCertainty(outputs[code]) + cert_offset;
|
|
if (cert < kMinCertainty && code != null_char_) continue;
|
|
if (use_dawgs) {
|
|
if (cert > worst_dict_cert) {
|
|
ContinueDawg(kBeamWidths[length + 1], code, INVALID_UNICHAR_ID, cert,
|
|
prev, &step->dawg_beams_[length + 1], step);
|
|
}
|
|
} else {
|
|
PushNoDawgIfBetter(kBeamWidths[length + 1], code, INVALID_UNICHAR_ID,
|
|
TOP_CHOICE_PERM, cert * dict_ratio, prev,
|
|
&step->beams_[length + 1]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Adds a RecodeNode composed of the tuple (code, unichar_id, cert, prev,
|
|
// appropriate-dawg-args, cert) to the given heap (dawg_beam_) if unichar_id
|
|
// is a valid continuation of whatever is in prev.
|
|
void RecodeBeamSearch::ContinueDawg(int max_size, int code, int unichar_id,
|
|
float cert, const RecodeNode* prev,
|
|
RecodeHeap* heap, RecodeBeam* step) {
|
|
if (unichar_id == INVALID_UNICHAR_ID) {
|
|
PushNoDawgIfBetter(max_size, code, unichar_id, NO_PERM, cert, prev, heap);
|
|
return;
|
|
}
|
|
// Avoid dictionary probe if score a total loss.
|
|
float score = cert;
|
|
if (prev != NULL) score += prev->score;
|
|
if (heap->size() >= max_size && score <= heap->PeekTop().data.score) return;
|
|
const RecodeNode* uni_prev = prev;
|
|
// Prev may be a partial code, null_char, or duplicate, so scan back to the
|
|
// last valid unichar_id.
|
|
while (uni_prev != NULL &&
|
|
(uni_prev->unichar_id == INVALID_UNICHAR_ID || uni_prev->duplicate))
|
|
uni_prev = uni_prev->prev;
|
|
if (unichar_id == UNICHAR_SPACE) {
|
|
if (uni_prev != NULL && uni_prev->end_of_word) {
|
|
// Space is good. Push initial state, to the dawg beam and a regular
|
|
// space to the top choice beam.
|
|
PushInitialDawgIfBetter(code, unichar_id, uni_prev->permuter, false,
|
|
false, cert, prev, &step->best_initial_dawg_);
|
|
PushNoDawgIfBetter(max_size, code, unichar_id, uni_prev->permuter, cert,
|
|
prev, &step->beams_[0]);
|
|
}
|
|
return;
|
|
} else if (uni_prev != NULL && uni_prev->start_of_dawg &&
|
|
uni_prev->unichar_id != UNICHAR_SPACE &&
|
|
dict_->getUnicharset().IsSpaceDelimited(uni_prev->unichar_id) &&
|
|
dict_->getUnicharset().IsSpaceDelimited(unichar_id)) {
|
|
return; // Can't break words between space delimited chars.
|
|
}
|
|
DawgPositionVector initial_dawgs;
|
|
DawgPositionVector* updated_dawgs = new DawgPositionVector;
|
|
DawgArgs dawg_args(&initial_dawgs, updated_dawgs, NO_PERM);
|
|
bool word_start = false;
|
|
if (uni_prev == NULL) {
|
|
// Starting from beginning of line.
|
|
dict_->default_dawgs(&initial_dawgs, false);
|
|
word_start = true;
|
|
} else if (uni_prev->dawgs != NULL) {
|
|
// Continuing a previous dict word.
|
|
dawg_args.active_dawgs = uni_prev->dawgs;
|
|
word_start = uni_prev->start_of_dawg;
|
|
} else {
|
|
return; // Can't continue if not a dict word.
|
|
}
|
|
PermuterType permuter = static_cast<PermuterType>(
|
|
dict_->def_letter_is_okay(&dawg_args, unichar_id, false));
|
|
if (permuter != NO_PERM) {
|
|
PushHeapIfBetter(max_size, code, unichar_id, permuter, false, word_start,
|
|
dawg_args.valid_end, false, cert, prev,
|
|
dawg_args.updated_dawgs, heap);
|
|
if (dawg_args.valid_end && !space_delimited_) {
|
|
// We can start another word right away, so push initial state as well,
|
|
// to the dawg beam, and the regular character to the top choice beam,
|
|
// since non-dict words can start here too.
|
|
PushInitialDawgIfBetter(code, unichar_id, permuter, word_start, true,
|
|
cert, prev, &step->best_initial_dawg_);
|
|
PushHeapIfBetter(max_size, code, unichar_id, permuter, false, word_start,
|
|
true, false, cert, prev, NULL, &step->beams_[0]);
|
|
}
|
|
} else {
|
|
delete updated_dawgs;
|
|
}
|
|
}
|
|
|
|
// Adds a RecodeNode composed of the tuple (code, unichar_id,
|
|
// initial-dawg-state, prev, cert) to the given heap if/ there is room or if
|
|
// better than the current worst element if already full.
|
|
void RecodeBeamSearch::PushInitialDawgIfBetter(int code, int unichar_id,
|
|
PermuterType permuter,
|
|
bool start, bool end, float cert,
|
|
const RecodeNode* prev,
|
|
RecodeNode* best_initial_dawg) {
|
|
float score = cert;
|
|
if (prev != NULL) score += prev->score;
|
|
if (best_initial_dawg->code < 0 || score > best_initial_dawg->score) {
|
|
DawgPositionVector* initial_dawgs = new DawgPositionVector;
|
|
dict_->default_dawgs(initial_dawgs, false);
|
|
RecodeNode node(code, unichar_id, permuter, true, start, end, false, cert,
|
|
score, prev, initial_dawgs);
|
|
*best_initial_dawg = node;
|
|
}
|
|
}
|
|
|
|
// Adds a copy of the given prev as a duplicate of and successor to prev, if
|
|
// there is room or if better than the current worst element if already full.
|
|
/* static */
|
|
void RecodeBeamSearch::PushDupIfBetter(int max_size, float cert,
|
|
const RecodeNode* prev,
|
|
RecodeHeap* heap) {
|
|
PushHeapIfBetter(max_size, prev->code, prev->unichar_id, prev->permuter,
|
|
false, false, false, true, cert, prev, NULL, heap);
|
|
}
|
|
|
|
// Adds a RecodeNode composed of the tuple (code, unichar_id, permuter,
|
|
// false, false, false, false, cert, prev, NULL) to heap if there is room
|
|
// or if better than the current worst element if already full.
|
|
/* static */
|
|
void RecodeBeamSearch::PushNoDawgIfBetter(int max_size, int code,
|
|
int unichar_id, PermuterType permuter,
|
|
float cert, const RecodeNode* prev,
|
|
RecodeHeap* heap) {
|
|
float score = cert;
|
|
if (prev != NULL) score += prev->score;
|
|
if (heap->size() < max_size || score > heap->PeekTop().data.score) {
|
|
RecodeNode node(code, unichar_id, permuter, false, false, false, false,
|
|
cert, score, prev, NULL);
|
|
RecodePair entry(score, node);
|
|
heap->Push(&entry);
|
|
if (heap->size() > max_size) heap->Pop(&entry);
|
|
}
|
|
}
|
|
|
|
// Adds a RecodeNode composed of the tuple (code, unichar_id, permuter,
|
|
// dawg_start, word_start, end, dup, cert, prev, d) to heap if there is room
|
|
// or if better than the current worst element if already full.
|
|
/* static */
|
|
void RecodeBeamSearch::PushHeapIfBetter(int max_size, int code, int unichar_id,
|
|
PermuterType permuter, bool dawg_start,
|
|
bool word_start, bool end, bool dup,
|
|
float cert, const RecodeNode* prev,
|
|
DawgPositionVector* d,
|
|
RecodeHeap* heap) {
|
|
float score = cert;
|
|
if (prev != NULL) score += prev->score;
|
|
if (heap->size() < max_size || score > heap->PeekTop().data.score) {
|
|
RecodeNode node(code, unichar_id, permuter, dawg_start, word_start, end,
|
|
dup, cert, score, prev, d);
|
|
RecodePair entry(score, node);
|
|
heap->Push(&entry);
|
|
ASSERT_HOST(entry.data.dawgs == NULL);
|
|
if (heap->size() > max_size) heap->Pop(&entry);
|
|
} else {
|
|
delete d;
|
|
}
|
|
}
|
|
|
|
// Backtracks to extract the best path through the lattice that was built
|
|
// during Decode. On return the best_nodes vector essentially contains the set
|
|
// of code, score pairs that make the optimal path with the constraint that
|
|
// the recoder can decode the code sequence back to a sequence of unichar-ids.
|
|
void RecodeBeamSearch::ExtractBestPaths(
|
|
GenericVector<const RecodeNode*>* best_nodes,
|
|
GenericVector<const RecodeNode*>* second_nodes) const {
|
|
// Scan both beams to extract the best and second best paths.
|
|
const RecodeNode* best_node = NULL;
|
|
const RecodeNode* second_best_node = NULL;
|
|
const RecodeBeam* last_beam = beam_[beam_size_ - 1];
|
|
int heap_size = last_beam->beams_[0].size();
|
|
for (int i = 0; i < heap_size; ++i) {
|
|
const RecodeNode* node = &last_beam->beams_[0].get(i).data;
|
|
if (best_node == NULL || node->score > best_node->score) {
|
|
second_best_node = best_node;
|
|
best_node = node;
|
|
} else if (second_best_node == NULL ||
|
|
node->score > second_best_node->score) {
|
|
second_best_node = node;
|
|
}
|
|
}
|
|
// Scan the entire dawg heap for the best *valid* nodes, if any.
|
|
int dawg_size = last_beam->dawg_beams_[0].size();
|
|
for (int i = 0; i < dawg_size; ++i) {
|
|
const RecodeNode* dawg_node = &last_beam->dawg_beams_[0].get(i).data;
|
|
// dawg_node may be a null_char, or duplicate, so scan back to the last
|
|
// valid unichar_id.
|
|
const RecodeNode* back_dawg_node = dawg_node;
|
|
while (back_dawg_node != NULL &&
|
|
(back_dawg_node->unichar_id == INVALID_UNICHAR_ID ||
|
|
back_dawg_node->duplicate))
|
|
back_dawg_node = back_dawg_node->prev;
|
|
if (back_dawg_node != NULL &&
|
|
(back_dawg_node->end_of_word ||
|
|
back_dawg_node->unichar_id == UNICHAR_SPACE)) {
|
|
// Dawg node is valid. Use it in preference to back_dawg_node, as the
|
|
// score comparison is fair that way.
|
|
if (best_node == NULL || dawg_node->score > best_node->score) {
|
|
second_best_node = best_node;
|
|
best_node = dawg_node;
|
|
} else if (second_best_node == NULL ||
|
|
dawg_node->score > second_best_node->score) {
|
|
second_best_node = dawg_node;
|
|
}
|
|
}
|
|
}
|
|
if (second_nodes != NULL) ExtractPath(second_best_node, second_nodes);
|
|
ExtractPath(best_node, best_nodes);
|
|
}
|
|
|
|
// Helper backtracks through the lattice from the given node, storing the
|
|
// path and reversing it.
|
|
void RecodeBeamSearch::ExtractPath(
|
|
const RecodeNode* node, GenericVector<const RecodeNode*>* path) const {
|
|
path->truncate(0);
|
|
while (node != NULL) {
|
|
path->push_back(node);
|
|
node = node->prev;
|
|
}
|
|
path->reverse();
|
|
}
|
|
|
|
// Helper prints debug information on the given lattice path.
|
|
void RecodeBeamSearch::DebugPath(
|
|
const UNICHARSET* unicharset,
|
|
const GenericVector<const RecodeNode*>& path) const {
|
|
for (int c = 0; c < path.size(); ++c) {
|
|
const RecodeNode& node = *path[c];
|
|
tprintf("%d %d=%s score=%g, c=%g, s=%d, e=%d, perm=%d\n", c,
|
|
node.unichar_id, unicharset->debug_str(node.unichar_id).string(),
|
|
node.score, node.certainty, node.start_of_word, node.end_of_word,
|
|
node.permuter);
|
|
}
|
|
}
|
|
|
|
// Helper prints debug information on the given unichar path.
|
|
void RecodeBeamSearch::DebugUnicharPath(
|
|
const UNICHARSET* unicharset, const GenericVector<const RecodeNode*>& path,
|
|
const GenericVector<int>& unichar_ids, const GenericVector<float>& certs,
|
|
const GenericVector<float>& ratings,
|
|
const GenericVector<int>& xcoords) const {
|
|
int num_ids = unichar_ids.size();
|
|
double total_rating = 0.0;
|
|
for (int c = 0; c < num_ids; ++c) {
|
|
int coord = xcoords[c];
|
|
tprintf("%d %d=%s r=%g, c=%g, s=%d, e=%d, perm=%d\n", coord, unichar_ids[c],
|
|
unicharset->debug_str(unichar_ids[c]).string(), ratings[c],
|
|
certs[c], path[coord]->start_of_word, path[coord]->end_of_word,
|
|
path[coord]->permuter);
|
|
total_rating += ratings[c];
|
|
}
|
|
tprintf("Path total rating = %g\n", total_rating);
|
|
}
|
|
|
|
} // namespace tesseract.
|