tesseract/lstm/weightmatrix.h

184 lines
8.1 KiB
C++

///////////////////////////////////////////////////////////////////////
// File: weightmatrix.h
// Description: Hides distinction between float/int implementations.
// Author: Ray Smith
// Created: Tue Jun 17 09:05:39 PST 2014
//
// (C) Copyright 2014, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
///////////////////////////////////////////////////////////////////////
#ifndef TESSERACT_LSTM_WEIGHTMATRIX_H_
#define TESSERACT_LSTM_WEIGHTMATRIX_H_
#include "genericvector.h"
#include "matrix.h"
#include "tprintf.h"
namespace tesseract {
// Convenience instantiation of GENERIC_2D_ARRAY<double> with additional
// operations to write a strided vector, so the transposed form of the input
// is memory-contiguous.
class TransposedArray : public GENERIC_2D_ARRAY<double> {
public:
// Copies the whole input transposed, converted to double, into *this.
void Transpose(const GENERIC_2D_ARRAY<double>& input);
// Writes a vector of data representing a timestep (gradients or sources).
// The data is assumed to be of size1 in size (the strided dimension).
void WriteStrided(int t, const float* data) {
int size1 = dim1();
for (int i = 0; i < size1; ++i) put(i, t, data[i]);
}
void WriteStrided(int t, const double* data) {
int size1 = dim1();
for (int i = 0; i < size1; ++i) put(i, t, data[i]);
}
// Prints the first and last num elements of the un-transposed array.
void PrintUnTransposed(int num) {
int num_features = dim1();
int width = dim2();
for (int y = 0; y < num_features; ++y) {
for (int t = 0; t < width; ++t) {
if (num == 0 || t < num || t + num >= width) {
tprintf(" %g", (*this)(y, t));
}
}
tprintf("\n");
}
}
}; // class TransposedArray
// Generic weight matrix for network layers. Can store the matrix as either
// an array of floats or inT8. Provides functions to compute the forward and
// backward steps with the matrix and updates to the weights.
class WeightMatrix {
public:
WeightMatrix() : int_mode_(false), use_ada_grad_(false) {}
// Sets up the network for training. Initializes weights using weights of
// scale `range` picked according to the random number generator `randomizer`.
// Note the order is outputs, inputs, as this is the order of indices to
// the matrix, so the adjacent elements are multiplied by the input during
// a forward operation.
int InitWeightsFloat(int no, int ni, bool ada_grad, float weight_range,
TRand* randomizer);
// Converts a float network to an int network. Each set of input weights that
// corresponds to a single output weight is converted independently:
// Compute the max absolute value of the weight set.
// Scale so the max absolute value becomes MAX_INT8.
// Round to integer.
// Store a multiplicative scale factor (as a float) that will reproduce
// the original value, subject to rounding errors.
void ConvertToInt();
// Accessors.
bool is_int_mode() const {
return int_mode_;
}
int NumOutputs() const { return int_mode_ ? wi_.dim1() : wf_.dim1(); }
// Provides one set of weights. Only used by peep weight maxpool.
const double* GetWeights(int index) const { return wf_[index]; }
// Provides access to the deltas (dw_).
double GetDW(int i, int j) const { return dw_(i, j); }
// Allocates any needed memory for running Backward, and zeroes the deltas,
// thus eliminating any existing momentum.
void InitBackward(bool ada_grad);
// Writes to the given file. Returns false in case of error.
bool Serialize(bool training, TFile* fp) const;
// Reads from the given file. Returns false in case of error.
// If swap is true, assumes a big/little-endian swap is needed.
bool DeSerialize(bool training, bool swap, TFile* fp);
// As DeSerialize, but reads an old (float) format WeightMatrix for
// backward compatibility.
bool DeSerializeOld(bool training, bool swap, TFile* fp);
// Computes matrix.vector v = Wu.
// u is of size W.dim2() - 1 and the output v is of size W.dim1().
// u is imagined to have an extra element at the end with value 1, to
// implement the bias, but it doesn't actually have it.
// Asserts that the call matches what we have.
void MatrixDotVector(const double* u, double* v) const;
void MatrixDotVector(const inT8* u, double* v) const;
// MatrixDotVector for peep weights, MultiplyAccumulate adds the
// component-wise products of *this[0] and v to inout.
void MultiplyAccumulate(const double* v, double* inout);
// Computes vector.matrix v = uW.
// u is of size W.dim1() and the output v is of size W.dim2() - 1.
// The last result is discarded, as v is assumed to have an imaginary
// last value of 1, as with MatrixDotVector.
void VectorDotMatrix(const double* u, double* v) const;
// Fills dw_[i][j] with the dot product u[i][] . v[j][], using elements
// from u and v, starting with u[i][offset] and v[j][offset].
// Note that (matching MatrixDotVector) v[last][] is missing, presumed 1.0.
// Runs parallel if requested. Note that inputs must be transposed.
void SumOuterTransposed(const TransposedArray& u, const TransposedArray& v,
bool parallel);
// Updates the weights using the given learning rate and momentum.
// num_samples is the quotient to be used in the adagrad computation iff
// use_ada_grad_ is true.
void Update(double learning_rate, double momentum, int num_samples);
// Adds the dw_ in other to the dw_ is *this.
void AddDeltas(const WeightMatrix& other);
// Sums the products of weight updates in *this and other, splitting into
// positive (same direction) in *same and negative (different direction) in
// *changed.
void CountAlternators(const WeightMatrix& other, double* same,
double* changed) const;
void Debug2D(const char* msg);
// Computes and returns the dot product of the two n-vectors u and v.
static double DotProduct(const double* u, const double* v, int n);
// Utility function converts an array of float to the corresponding array
// of double.
static void FloatToDouble(const GENERIC_2D_ARRAY<float>& wf,
GENERIC_2D_ARRAY<double>* wd);
private:
// Computes matrix.vector v = Wu.
// u is of size starts.back()+extents.back() and the output v is of size
// starts.size().
// The weight matrix w, is of size starts.size()xMAX(extents)+add_bias_fwd.
// If add_bias_fwd, an extra element at the end of w[i] is the bias weight
// and is added to v[i].
static void MatrixDotVectorInternal(const GENERIC_2D_ARRAY<double>& w,
bool add_bias_fwd, bool skip_bias_back,
const double* u, double* v);
private:
// Choice between float and 8 bit int implementations.
GENERIC_2D_ARRAY<double> wf_;
GENERIC_2D_ARRAY<inT8> wi_;
// Transposed copy of wf_, used only for Backward, and set with each Update.
TransposedArray wf_t_;
// Which of wf_ and wi_ are we actually using.
bool int_mode_;
// True if we are running adagrad in this weight matrix.
bool use_ada_grad_;
// If we are using wi_, then scales_ is a factor to restore the row product
// with a vector to the correct range.
GenericVector<double> scales_;
// Weight deltas. dw_ is the new delta, and updates_ the momentum-decaying
// amount to be added to wf_/wi_.
GENERIC_2D_ARRAY<double> dw_;
GENERIC_2D_ARRAY<double> updates_;
// Iff use_ada_grad_, the sum of squares of dw_. The number of samples is
// given to Update(). Serialized iff use_ada_grad_.
GENERIC_2D_ARRAY<double> dw_sq_sum_;
};
} // namespace tesseract.
#endif // TESSERACT_LSTM_WEIGHTMATRIX_H_