tesseract/unittest/imagedata_test.cc
Stefan Weil 2b7df59187 Add more unittests from Google
They were provided by Jeff Breidenbach <jbreiden@google.com>.

Signed-off-by: Stefan Weil <sw@weilnetz.de>
2018-08-25 18:16:46 +02:00

114 lines
4.7 KiB
C++

#include "tesseract/ccstruct/imagedata.h"
#include <string>
#include <vector>
using tesseract::DocumentCache;
using tesseract::DocumentData;
using tesseract::ImageData;
namespace {
// Tests the caching mechanism of DocumentData/ImageData.
class ImagedataTest : public ::testing::Test {
protected:
ImagedataTest() {
}
// Creates a fake DocumentData, writes it to a file, and returns the filename.
string MakeFakeDoc(int num_pages, int doc_id,
std::vector<string>* page_texts) {
// The size of the fake images that we will use.
const int kImageSize = 1048576;
// Not using a real image here - just an array of zeros! We are just testing
// that the truth text matches.
std::vector<char> fake_image(kImageSize, 0);
DocumentData write_doc("My document");
for (int p = 0; p < num_pages; ++p) {
// Make some fake text that is different for each page and save it.
page_texts->push_back(
StringPrintf("Page %d of %d in doc %d", p, num_pages, doc_id));
// Make an imagedata and put it in the document.
ImageData* imagedata =
ImageData::Build("noname", p, "eng", fake_image.data(),
fake_image.size(), (*page_texts)[p].c_str(), NULL);
EXPECT_EQ(kImageSize, imagedata->MemoryUsed());
write_doc.AddPageToDocument(imagedata);
}
// Write it to a file.
string filename = file::JoinPath(
FLAGS_test_tmpdir, absl::StrCat("documentdata", doc_id, ".lstmf"));
EXPECT_TRUE(write_doc.SaveDocument(filename.c_str(), NULL));
return filename;
}
};
TEST_F(ImagedataTest, CachesProperly) {
// This test verifies that Imagedata can be stored in a DocumentData and a
// collection of them is cached correctly given limited memory.
// Number of pages to put in the fake document.
const int kNumPages = 12;
// Allowances to read the document. Big enough for 1, 3, 0, all pages.
const int kMemoryAllowances[] = {2000000, 4000000, 1000000, 100000000, 0};
// Order in which to read the pages, with some sequential and some seeks.
const int kPageReadOrder[] = { 0, 1, 2, 3, 8, 4, 5, 6, 7, 11, 10, 9, -1 };
std::vector<string> page_texts;
string filename = MakeFakeDoc(kNumPages, 0, &page_texts);
// Now try getting it back with different memory allowances and check that
// the pages can still be read.
for (int m = 0; kMemoryAllowances[m] > 0; ++m) {
DocumentData read_doc("My document");
EXPECT_TRUE(
read_doc.LoadDocument(filename.c_str(), 0, kMemoryAllowances[m], NULL));
LOG(ERROR) << "Allowance = " << kMemoryAllowances[m];
// Read the pages in a specific order.
for (int p = 0; kPageReadOrder[p] >= 0; ++p) {
int page = kPageReadOrder[p];
const ImageData* imagedata = read_doc.GetPage(page);
EXPECT_NE(reinterpret_cast<const ImageData*>(NULL), imagedata);
// Check that this is the right page.
EXPECT_STREQ(page_texts[page].c_str(),
imagedata->transcription().string());
}
}
}
TEST_F(ImagedataTest, CachesMultiDocs) {
// This test verifies that DocumentCache works to store multiple DocumentData
// and the two caching strategies read images in the right order.
// Number of pages in each document.
const std::vector<int> kNumPages = {6, 5, 7};
std::vector<std::vector<string>> page_texts;
GenericVector<STRING> filenames;
for (int d = 0; d < kNumPages.size(); ++d) {
page_texts.emplace_back(std::vector<string>());
string filename = MakeFakeDoc(kNumPages[d], d, &page_texts.back());
filenames.push_back(STRING(filename.c_str()));
}
// Now try getting them back with different cache strategies and check that
// the pages come out in the right order.
DocumentCache robin_cache(8000000);
robin_cache.LoadDocuments(filenames, tesseract::CS_ROUND_ROBIN, nullptr);
DocumentCache serial_cache(8000000);
serial_cache.LoadDocuments(filenames, tesseract::CS_SEQUENTIAL, nullptr);
for (int p = 0; p <= 21; ++p) {
LOG(INFO) << "Page " << p;
const ImageData* robin_data = robin_cache.GetPageBySerial(p);
const ImageData* serial_data = serial_cache.GetPageBySerial(p);
CHECK(robin_data != nullptr);
CHECK(serial_data != nullptr);
int robin_doc = p % kNumPages.size();
int robin_page = p / kNumPages.size() % kNumPages[robin_doc];
// Check that this is the right page.
EXPECT_STREQ(page_texts[robin_doc][robin_page].c_str(),
robin_data->transcription().string());
int serial_doc = p / kNumPages[0] % kNumPages.size();
int serial_page = p % kNumPages[0] % kNumPages[serial_doc];
EXPECT_STREQ(page_texts[serial_doc][serial_page].c_str(),
serial_data->transcription().string());
}
}
} // namespace.