mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2025-01-18 14:41:36 +08:00
4d514d5a60
git-svn-id: https://tesseract-ocr.googlecode.com/svn/trunk@878 d0cd1f9f-072b-0410-8dd7-cf729c803f20
175 lines
5.4 KiB
C++
175 lines
5.4 KiB
C++
///////////////////////////////////////////////////////////////////////
|
|
// File: params_model.cpp
|
|
// Description: Trained language model parameters.
|
|
// Author: David Eger
|
|
// Created: Mon Jun 11 11:26:42 PDT 2012
|
|
//
|
|
// (C) Copyright 2012, Google Inc.
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////
|
|
|
|
#include "params_model.h"
|
|
|
|
#include <ctype.h>
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
|
|
#include "bitvector.h"
|
|
#include "tprintf.h"
|
|
|
|
namespace tesseract {
|
|
|
|
// Scale factor to apply to params model scores.
|
|
static const float kScoreScaleFactor = 100.0f;
|
|
// Minimum cost result to return.
|
|
static const float kMinFinalCost = 0.001f;
|
|
// Maximum cost result to return.
|
|
static const float kMaxFinalCost = 100.0f;
|
|
|
|
void ParamsModel::Print() {
|
|
for (int p = 0; p < PTRAIN_NUM_PASSES; ++p) {
|
|
tprintf("ParamsModel for pass %d lang %s\n", p, lang_.string());
|
|
for (int i = 0; i < weights_vec_[p].size(); ++i) {
|
|
tprintf("%s = %g\n", kParamsTrainingFeatureTypeName[i],
|
|
weights_vec_[p][i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ParamsModel::Copy(const ParamsModel &other_model) {
|
|
for (int p = 0; p < PTRAIN_NUM_PASSES; ++p) {
|
|
weights_vec_[p] = other_model.weights_for_pass(
|
|
static_cast<PassEnum>(p));
|
|
}
|
|
}
|
|
|
|
// Given a (modifiable) line, parse out a key / value pair.
|
|
// Return true on success.
|
|
bool ParamsModel::ParseLine(char *line, char** key, float *val) {
|
|
if (line[0] == '#')
|
|
return false;
|
|
int end_of_key = 0;
|
|
while (line[end_of_key] && !isspace(line[end_of_key])) end_of_key++;
|
|
if (!line[end_of_key]) {
|
|
tprintf("ParamsModel::Incomplete line %s\n", line);
|
|
return false;
|
|
}
|
|
line[end_of_key++] = 0;
|
|
*key = line;
|
|
if (sscanf(line + end_of_key, " %f", val) != 1)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
// Applies params model weights to the given features.
|
|
// Assumes that features is an array of size PTRAIN_NUM_FEATURE_TYPES.
|
|
// The cost is set to a number that can be multiplied by the outline length,
|
|
// as with the old ratings scheme. This enables words of different length
|
|
// and combinations of words to be compared meaningfully.
|
|
float ParamsModel::ComputeCost(const float features[]) const {
|
|
float unnorm_score = 0.0;
|
|
for (int f = 0; f < PTRAIN_NUM_FEATURE_TYPES; ++f) {
|
|
unnorm_score += weights_vec_[pass_][f] * features[f];
|
|
}
|
|
return ClipToRange(-unnorm_score / kScoreScaleFactor,
|
|
kMinFinalCost, kMaxFinalCost);
|
|
}
|
|
|
|
bool ParamsModel::Equivalent(const ParamsModel &that) const {
|
|
float epsilon = 0.0001;
|
|
for (int p = 0; p < PTRAIN_NUM_PASSES; ++p) {
|
|
if (weights_vec_[p].size() != that.weights_vec_[p].size()) return false;
|
|
for (int i = 0; i < weights_vec_[p].size(); i++) {
|
|
if (weights_vec_[p][i] != that.weights_vec_[p][i] &&
|
|
fabs(weights_vec_[p][i] - that.weights_vec_[p][i]) > epsilon)
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool ParamsModel::LoadFromFile(
|
|
const char *lang,
|
|
const char *full_path) {
|
|
FILE *fp = fopen(full_path, "rb");
|
|
if (!fp) {
|
|
tprintf("Error opening file %s\n", full_path);
|
|
return false;
|
|
}
|
|
bool result = LoadFromFp(lang, fp, -1);
|
|
fclose(fp);
|
|
return result;
|
|
}
|
|
|
|
bool ParamsModel::LoadFromFp(const char *lang, FILE *fp, inT64 end_offset) {
|
|
const int kMaxLineSize = 100;
|
|
char line[kMaxLineSize];
|
|
BitVector present;
|
|
present.Init(PTRAIN_NUM_FEATURE_TYPES);
|
|
lang_ = lang;
|
|
// Load weights for passes with adaption on.
|
|
GenericVector<float> &weights = weights_vec_[pass_];
|
|
weights.init_to_size(PTRAIN_NUM_FEATURE_TYPES, 0.0);
|
|
|
|
while ((end_offset < 0 || ftell(fp) < end_offset) &&
|
|
fgets(line, kMaxLineSize, fp)) {
|
|
char *key = NULL;
|
|
float value;
|
|
if (!ParseLine(line, &key, &value))
|
|
continue;
|
|
int idx = ParamsTrainingFeatureByName(key);
|
|
if (idx < 0) {
|
|
tprintf("ParamsModel::Unknown parameter %s\n", key);
|
|
continue;
|
|
}
|
|
if (!present[idx]) {
|
|
present.SetValue(idx, true);
|
|
}
|
|
weights[idx] = value;
|
|
}
|
|
bool complete = (present.NumSetBits() == PTRAIN_NUM_FEATURE_TYPES);
|
|
if (!complete) {
|
|
for (int i = 0; i < PTRAIN_NUM_FEATURE_TYPES; i++) {
|
|
if (!present[i]) {
|
|
tprintf("Missing field %s.\n", kParamsTrainingFeatureTypeName[i]);
|
|
}
|
|
}
|
|
lang_ = "";
|
|
weights.truncate(0);
|
|
}
|
|
return complete;
|
|
}
|
|
|
|
bool ParamsModel::SaveToFile(const char *full_path) const {
|
|
const GenericVector<float> &weights = weights_vec_[pass_];
|
|
if (weights.size() != PTRAIN_NUM_FEATURE_TYPES) {
|
|
tprintf("Refusing to save ParamsModel that has not been initialized.\n");
|
|
return false;
|
|
}
|
|
FILE *fp = fopen(full_path, "wb");
|
|
if (!fp) {
|
|
tprintf("Could not open %s for writing.\n", full_path);
|
|
return false;
|
|
}
|
|
bool all_good = true;
|
|
for (int i = 0; i < weights.size(); i++) {
|
|
if (fprintf(fp, "%s %f\n", kParamsTrainingFeatureTypeName[i], weights[i])
|
|
< 0) {
|
|
all_good = false;
|
|
}
|
|
}
|
|
fclose(fp);
|
|
return all_good;
|
|
}
|
|
|
|
} // namespace tesseract
|