mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2025-01-07 18:27:48 +08:00
243 lines
11 KiB
C++
243 lines
11 KiB
C++
///////////////////////////////////////////////////////////////////////
|
|
// File: classify.cpp
|
|
// Description: classify class.
|
|
// Author: Samuel Charron
|
|
//
|
|
// (C) Copyright 2006, Google Inc.
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////
|
|
|
|
// Include automatically generated configuration file if running autoconf.
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config_auto.h"
|
|
#endif
|
|
|
|
#include "classify.h"
|
|
#include "fontinfo.h"
|
|
#include "intproto.h"
|
|
#include "mfoutline.h"
|
|
#include "scrollview.h"
|
|
#include "shapeclassifier.h"
|
|
#include "shapetable.h"
|
|
#include "unicity_table.h"
|
|
#include <string.h>
|
|
|
|
namespace tesseract {
|
|
Classify::Classify()
|
|
: BOOL_MEMBER(allow_blob_division, true, "Use divisible blobs chopping",
|
|
this->params()),
|
|
BOOL_MEMBER(prioritize_division, FALSE,
|
|
"Prioritize blob division over chopping", this->params()),
|
|
INT_MEMBER(tessedit_single_match, FALSE, "Top choice only from CP",
|
|
this->params()),
|
|
BOOL_MEMBER(classify_enable_learning, true, "Enable adaptive classifier",
|
|
this->params()),
|
|
INT_MEMBER(classify_debug_level, 0, "Classify debug level",
|
|
this->params()),
|
|
INT_MEMBER(classify_norm_method, character, "Normalization Method ...",
|
|
this->params()),
|
|
double_MEMBER(classify_char_norm_range, 0.2,
|
|
"Character Normalization Range ...", this->params()),
|
|
double_MEMBER(classify_min_norm_scale_x, 0.0, "Min char x-norm scale ...",
|
|
this->params()), /* PREV DEFAULT 0.1 */
|
|
double_MEMBER(classify_max_norm_scale_x, 0.325,
|
|
"Max char x-norm scale ...",
|
|
this->params()), /* PREV DEFAULT 0.3 */
|
|
double_MEMBER(classify_min_norm_scale_y, 0.0, "Min char y-norm scale ...",
|
|
this->params()), /* PREV DEFAULT 0.1 */
|
|
double_MEMBER(classify_max_norm_scale_y, 0.325,
|
|
"Max char y-norm scale ...",
|
|
this->params()), /* PREV DEFAULT 0.3 */
|
|
double_MEMBER(classify_max_rating_ratio, 1.5,
|
|
"Veto ratio between classifier ratings", this->params()),
|
|
double_MEMBER(classify_max_certainty_margin, 5.5,
|
|
"Veto difference between classifier certainties",
|
|
this->params()),
|
|
BOOL_MEMBER(tess_cn_matching, 0, "Character Normalized Matching",
|
|
this->params()),
|
|
BOOL_MEMBER(tess_bn_matching, 0, "Baseline Normalized Matching",
|
|
this->params()),
|
|
BOOL_MEMBER(classify_enable_adaptive_matcher, 1,
|
|
"Enable adaptive classifier", this->params()),
|
|
BOOL_MEMBER(classify_use_pre_adapted_templates, 0,
|
|
"Use pre-adapted classifier templates", this->params()),
|
|
BOOL_MEMBER(classify_save_adapted_templates, 0,
|
|
"Save adapted templates to a file", this->params()),
|
|
BOOL_MEMBER(classify_enable_adaptive_debugger, 0, "Enable match debugger",
|
|
this->params()),
|
|
BOOL_MEMBER(classify_nonlinear_norm, 0,
|
|
"Non-linear stroke-density normalization", this->params()),
|
|
INT_MEMBER(matcher_debug_level, 0, "Matcher Debug Level", this->params()),
|
|
INT_MEMBER(matcher_debug_flags, 0, "Matcher Debug Flags", this->params()),
|
|
INT_MEMBER(classify_learning_debug_level, 0, "Learning Debug Level: ",
|
|
this->params()),
|
|
double_MEMBER(matcher_good_threshold, 0.125, "Good Match (0-1)",
|
|
this->params()),
|
|
double_MEMBER(matcher_reliable_adaptive_result, 0.0, "Great Match (0-1)",
|
|
this->params()),
|
|
double_MEMBER(matcher_perfect_threshold, 0.02, "Perfect Match (0-1)",
|
|
this->params()),
|
|
double_MEMBER(matcher_bad_match_pad, 0.15, "Bad Match Pad (0-1)",
|
|
this->params()),
|
|
double_MEMBER(matcher_rating_margin, 0.1, "New template margin (0-1)",
|
|
this->params()),
|
|
double_MEMBER(matcher_avg_noise_size, 12.0, "Avg. noise blob length",
|
|
this->params()),
|
|
INT_MEMBER(matcher_permanent_classes_min, 1, "Min # of permanent classes",
|
|
this->params()),
|
|
INT_MEMBER(matcher_min_examples_for_prototyping, 3,
|
|
"Reliable Config Threshold", this->params()),
|
|
INT_MEMBER(matcher_sufficient_examples_for_prototyping, 5,
|
|
"Enable adaption even if the ambiguities have not been seen",
|
|
this->params()),
|
|
double_MEMBER(matcher_clustering_max_angle_delta, 0.015,
|
|
"Maximum angle delta for prototype clustering",
|
|
this->params()),
|
|
double_MEMBER(classify_misfit_junk_penalty, 0.0,
|
|
"Penalty to apply when a non-alnum is vertically out of "
|
|
"its expected textline position",
|
|
this->params()),
|
|
double_MEMBER(rating_scale, 1.5, "Rating scaling factor", this->params()),
|
|
double_MEMBER(certainty_scale, 20.0, "Certainty scaling factor",
|
|
this->params()),
|
|
double_MEMBER(tessedit_class_miss_scale, 0.00390625,
|
|
"Scale factor for features not used", this->params()),
|
|
double_MEMBER(
|
|
classify_adapted_pruning_factor, 2.5,
|
|
"Prune poor adapted results this much worse than best result",
|
|
this->params()),
|
|
double_MEMBER(classify_adapted_pruning_threshold, -1.0,
|
|
"Threshold at which classify_adapted_pruning_factor starts",
|
|
this->params()),
|
|
INT_MEMBER(classify_adapt_proto_threshold, 230,
|
|
"Threshold for good protos during adaptive 0-255",
|
|
this->params()),
|
|
INT_MEMBER(classify_adapt_feature_threshold, 230,
|
|
"Threshold for good features during adaptive 0-255",
|
|
this->params()),
|
|
BOOL_MEMBER(disable_character_fragments, TRUE,
|
|
"Do not include character fragments in the"
|
|
" results of the classifier",
|
|
this->params()),
|
|
double_MEMBER(classify_character_fragments_garbage_certainty_threshold,
|
|
-3.0,
|
|
"Exclude fragments that do not look like whole"
|
|
" characters from training and adaption",
|
|
this->params()),
|
|
BOOL_MEMBER(classify_debug_character_fragments, FALSE,
|
|
"Bring up graphical debugging windows for fragments training",
|
|
this->params()),
|
|
BOOL_MEMBER(matcher_debug_separate_windows, FALSE,
|
|
"Use two different windows for debugging the matching: "
|
|
"One for the protos and one for the features.",
|
|
this->params()),
|
|
STRING_MEMBER(classify_learn_debug_str, "", "Class str to debug learning",
|
|
this->params()),
|
|
INT_MEMBER(classify_class_pruner_threshold, 229,
|
|
"Class Pruner Threshold 0-255", this->params()),
|
|
INT_MEMBER(classify_class_pruner_multiplier, 15,
|
|
"Class Pruner Multiplier 0-255: ", this->params()),
|
|
INT_MEMBER(classify_cp_cutoff_strength, 7,
|
|
"Class Pruner CutoffStrength: ", this->params()),
|
|
INT_MEMBER(classify_integer_matcher_multiplier, 10,
|
|
"Integer Matcher Multiplier 0-255: ", this->params()),
|
|
EnableLearning(true),
|
|
INT_MEMBER(il1_adaption_test, 0,
|
|
"Don't adapt to i/I at beginning of word", this->params()),
|
|
BOOL_MEMBER(classify_bln_numeric_mode, 0,
|
|
"Assume the input is numbers [0-9].", this->params()),
|
|
double_MEMBER(speckle_large_max_size, 0.30, "Max large speckle size",
|
|
this->params()),
|
|
double_MEMBER(speckle_rating_penalty, 10.0,
|
|
"Penalty to add to worst rating for noise", this->params()),
|
|
shape_table_(NULL),
|
|
dict_(this),
|
|
static_classifier_(NULL) {
|
|
fontinfo_table_.set_compare_callback(
|
|
NewPermanentTessCallback(CompareFontInfo));
|
|
fontinfo_table_.set_clear_callback(
|
|
NewPermanentTessCallback(FontInfoDeleteCallback));
|
|
fontset_table_.set_compare_callback(
|
|
NewPermanentTessCallback(CompareFontSet));
|
|
fontset_table_.set_clear_callback(
|
|
NewPermanentTessCallback(FontSetDeleteCallback));
|
|
AdaptedTemplates = NULL;
|
|
BackupAdaptedTemplates = NULL;
|
|
PreTrainedTemplates = NULL;
|
|
AllProtosOn = NULL;
|
|
AllConfigsOn = NULL;
|
|
AllConfigsOff = NULL;
|
|
TempProtoMask = NULL;
|
|
NormProtos = NULL;
|
|
|
|
NumAdaptationsFailed = 0;
|
|
|
|
learn_debug_win_ = NULL;
|
|
learn_fragmented_word_debug_win_ = NULL;
|
|
learn_fragments_debug_win_ = NULL;
|
|
|
|
CharNormCutoffs = new uinT16[MAX_NUM_CLASSES];
|
|
BaselineCutoffs = new uinT16[MAX_NUM_CLASSES];
|
|
}
|
|
|
|
Classify::~Classify() {
|
|
EndAdaptiveClassifier();
|
|
delete learn_debug_win_;
|
|
delete learn_fragmented_word_debug_win_;
|
|
delete learn_fragments_debug_win_;
|
|
delete[] CharNormCutoffs;
|
|
delete[] BaselineCutoffs;
|
|
}
|
|
|
|
|
|
// Takes ownership of the given classifier, and uses it for future calls
|
|
// to CharNormClassifier.
|
|
void Classify::SetStaticClassifier(ShapeClassifier* static_classifier) {
|
|
delete static_classifier_;
|
|
static_classifier_ = static_classifier;
|
|
}
|
|
|
|
// Moved from speckle.cpp
|
|
// Adds a noise classification result that is a bit worse than the worst
|
|
// current result, or the worst possible result if no current results.
|
|
void Classify::AddLargeSpeckleTo(int blob_length, BLOB_CHOICE_LIST *choices) {
|
|
BLOB_CHOICE_IT bc_it(choices);
|
|
// If there is no classifier result, we will use the worst possible certainty
|
|
// and corresponding rating.
|
|
float certainty = -getDict().certainty_scale;
|
|
float rating = rating_scale * blob_length;
|
|
if (!choices->empty() && blob_length > 0) {
|
|
bc_it.move_to_last();
|
|
BLOB_CHOICE* worst_choice = bc_it.data();
|
|
// Add speckle_rating_penalty to worst rating, matching old value.
|
|
rating = worst_choice->rating() + speckle_rating_penalty;
|
|
// Compute the rating to correspond to the certainty. (Used to be kept
|
|
// the same, but that messes up the language model search.)
|
|
certainty = -rating * getDict().certainty_scale /
|
|
(rating_scale * blob_length);
|
|
}
|
|
BLOB_CHOICE* blob_choice = new BLOB_CHOICE(UNICHAR_SPACE, rating, certainty,
|
|
-1, 0.0f, MAX_FLOAT32, 0,
|
|
BCC_SPECKLE_CLASSIFIER);
|
|
bc_it.add_to_end(blob_choice);
|
|
}
|
|
|
|
// Returns true if the blob is small enough to be a large speckle.
|
|
bool Classify::LargeSpeckle(const TBLOB &blob) {
|
|
double speckle_size = kBlnXHeight * speckle_large_max_size;
|
|
TBOX bbox = blob.bounding_box();
|
|
return bbox.width() < speckle_size && bbox.height() < speckle_size;
|
|
}
|
|
|
|
|
|
} // namespace tesseract
|